
Model Based Document and Report Generation for
Systems Engineering

Christopher Delp, Doris Lam, Elyse Fosse, Cin-Young Lee
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

(818)319-3251
Christopher.L.Delp@jpl.nasa.gov

Abstract—As Model Based Systems Engineering (MBSE) prac-
tices gain adoption, various approaches have been developed
in order to simplify and automate the process of generating
documents from models. Essentially, all of these techniques can
be unified around the concept of producing different views of
the model according to the needs of the intended audience. In
this paper, we will describe a technique developed at JPL of
applying SysML Viewpoints and Views to generate documents
and reports. An architecture of model-based view and document
generation will be presented, and the necessary extensions to
SysML with associated rationale will be explained. A survey of
examples will highlight a variety of views that can be generated,
and will provide some insight into how collaboration and inte-
gration is enabled. We will also describe the basic architecture
for the enterprise applications that support this approach.

TABLE OF CONTENTS

1 MBSE AND THE STATE OF THE PRACTICE OF
DOCUMENT GENERATION . 1

2 THE PRINCIPLE OF COMMUNICATION 2
3 ARCHITECTURE FOR EXTENDING SYSML

VIEWPOINT AND VIEW . 2
4 MODEL BASED ENGINEERING ENVIRONMENT . 6
5 REALIZING SOFTWARE AND APPLICATIONS . . . 8
6 CONCLUSION . 10

ACKNOWLEDGMENTS . 10
REFERENCES . 10
BIOGRAPHY . 11

1. MBSE AND THE STATE OF THE PRACTICE
OF DOCUMENT GENERATION

Several projects at JPL have now embraced Model Based
Systems Engineering (MBSE). As a result, JPL has de-
veloped an institutional approach to MBSE. This approach
is based on Systems Modeling Language (SysML) [1] and
formal ontology expressed in the terminology and lexicon of
each engineering domain. MBSE promises to alleviate the
difficulty systems engineers face in communicating across
engineering disciplines primarily in terms of completeness
and consistency. By describing these systems in a formal
way using domain specific terms, models can be checked
for completeness and consistency. These models can also be
analyzed to answer questions about the system such as input
to simulations or other engineering analysis.

At the core of realizing these benefits is effective commu-

978-1-4673-1813-6/13/$31.00 c©2013 IEEE.
1 IEEEAC Paper #2233, Version 2, Updated 5/1/2013.

nication between Systems Engineers and other engineering
disciplines. Since other engineering disciplines are not versed
in Systems Engineering models, Systems Engineers still need
to produce documents and reports as the primary way to com-
municate with stakeholders and other engineering disciplines.
One of the keys to MBSE adoption at JPL has been the
practice of generating documents from systems engineering
models. This allows systems engineers to easily update and
ensure consistency among a set of documents as updates are
made to the model.

This document generation technique originated from other
JPL efforts including Ops Revitalization [2]. Since these
initial innovations, MBSE at JPL has flourished in a number
of projects. In particular, the Ops Revitalization Task [3], the
Europa Study [4] and the Integrated Model-Centric Engineer-
ing effort [5] have been crucial drivers for the development
of models, architecture, technology, and applications that
provide this capability.

As MBSE practice has begun to move into the mainstream,
several homegrown approaches have been developed around
the use of the DocBook standard for publishing [6]. In gen-
eral, these approaches involve the use of a SysML profile for
DocBook to produce a model of a document. The document
model is then linked to other SysML models and diagrams to
produce the document.

These approaches are effective at generating the basic struc-
ture of the document with injected model information. How-
ever, they lack the semantics and patterns to describe how the
model is projected into a document structure. Each existing
implementation has attempted different ways to support this,
but none of these applications provides a comprehensive set
of capability. They also lack a more fundamental concept
and foundational support for describing how to extract infor-
mation from the model in such a way so that analysis and
editing of that information can be integrated with external
applications.

MGSS Ops Revitalization [7] and the Europa Mission Study
[8] have deployed full-scale project models in SysML. Sev-
eral other efforts across industry are engaged in MBSE with a
similar scale of modeling effort [9]. Modeling at an enterprise
scale requires enterprise computing environment capable of
supporting collaboration among a variety of users working
with large models and data sets. Web technologies have been
used extensively in these efforts to realize such a scalable
enterprise computing environment.

This paper describes the fundamental concept of Viewpoint
and View as the foundation for providing a comprehensive
capability for generating Views of models. The architecture
for Viewpoint and View and its extensions in SysML are

1

described using examples from the projects at JPL sponsoring
this work. Models of this size require enterprise scalability.
Finally we describe the current implementation of a Model
Based Engineering Environment and the document genera-
tion support and applications for generating documents and
reports for Systems Engineering.

2. THE PRINCIPLE OF COMMUNICATION
Systems Engineers and Architects produce products that must
communicate with a diverse group of customers including
different engineering disciplines, managers, organizational
and business roles. This diverse group each has a different
point of view with respect to how they understand the system.
This motivates a principle of communication that will ensure
that the system is described from each the point of view of
each of these stakeholders. 2-way communication asserts
that person communicating report what they heard the other
person request as well as there response. The ISO/IEC 42010
[10] definition of Viewpoint and View is consistent with
this principle. Viewpoint and View can be used to provide
a platform that can describe different aspects of a model
according to the rules for describing those different aspects
of the model. Viewpoint describes what the stakeholder point
of view and View represents the depiction of the model of the
system according to the Viewpoint.

Figure 1. Metamodel of Basic Viewpoint and View

Generating documents and reports using Viewpoints and
Views has been demonstrated at JPL as an effective way
to communicate across disciplines using models to ensure
completeness and consistency of the system architecture and
design. The current technique employed at JPL uses SysML
Viewpoint and View to specify a model for communicating
different aspects of a system model. The SysML defini-
tions of Viewpoint and View are consistent with ISO/IEC
42010. Figure 1 illustrates the basic semantics for relating
elements of the model to the model View. The conformance
relationship expresses the requirement that the View of the
model be consistent with the methods and rules expressed
by the Viewpoint. It is often necessary to communicate a
certain set of Views in a particular order. These collections
can be represented as familiar document structures such as
sections and subsections in a document as well as slides,
tables, worksheets or other forms typical in office reporting
software.

The semantics of Viewpoint and View are represented mathe-
matically by stating that a Viewpoint morphs the elements of
a model into contents of the View as seen in Figure 2.

If VP is defined to be the homomorphism that represents a
viewpoint then:

VP : D(VP) → R(VP)

where D(VP) is the set of integrated model elements that
are within scope for the Viewpoint (e.g., the domain of the
Viewpoint) and R(VP) is set of view elements that is the
image of D(VP). (e.g., the range of the Viewpoint). It follows
then that:

View : {VP(ME) : ME in D(VP)}

where ME corresponds to a model element. In other words, a
Viewpoint is the homomorphism that transforms a subset of
model elements into View elements.

Figure 2. Mathematical representation of Viewpoint and
View

Representing Viewpoint and View mathematically provides
a theoretical foundation for the semantics - the implication
being that the mathematical theory provides constraints for
the implementation.

3. ARCHITECTURE FOR EXTENDING SYSML
VIEWPOINT AND VIEW

Using the Viewpoint and View definitions in SysML it is pos-
sible to define a model of Views that will provide a linearized
description of models referenced by the Views. SysML
Viewpoint and View have roots in ISO/IEC 42010 so most
of the elements in SysML come directly from the ISO/IEC
42010 meta-model. The current SysML implementation does
not treat all of these elements as first-class model elements.
Table 1 identifies the concepts in SysML related to Viewpoint
and how they are expanded to facilitate View generation.

Models, Views and Viewpoints

Most MBSE practitioners at JPL link their Views together
to linearize a particular description of a model or models.
Modeling the relationships between Views in this way allows
for a clickable navigation through the model as well as
provides a structure that can be used to generate documents
and other formatted output based on the content of the model.

Figure 3 illustrates how Views can be linked together with
dependencies to model the precedence order for reading the
Views. Views import models of any sort or type. These
models may be SysML models, ontologies, structured data
from a database or website, and notional illustrations, just
to name a few. In principle, the Viewpoint is even capable
of describing Views that exist outside of software, such as
renderings from a 3D printer or clay models of a concept
automobile or building.

2

Table 1. Extensions to SysML

SysML Element Metaclass Metaclass Change Description
Viewpoint (Existing) Class No Change The element that embodies the rules for

describing a view
View (Existing) Package No Change The element representing the View pro-

duced from the model
Conforms (Existing) Dependency No Change Represents the relationship between the

View and the Viewpoint that the View is
required to conform to.

Import (Existing) Dependency No Change Links the model(s) to the Viewpoint
through the View

Stakeholder
(Existing)

Tag Value (String) Actor The elements that represent stakeholders
for the View

Concern (Existing) Tag Value (String) Tag Value or Class A subject of interest being addressed by the
View

Purpose (Existing) Tag Value (String) No Change A narrative description of the purpose of
the Viewpoint

Method (Existing) Tag Value (String) Activity Class Behavior model that defines the ordered
steps to making the View

Analysis Model
(New)

N/A Constraint Property The individual analysis definitions used by
the Viewpoint Method

View Format (New) N/A Property The rules for outputting the View in speci-
fied formats

View Presentation
(New)

N/A Property The styles used to present the View

Imported Model
(New)

Tag Value from Con-
form Dependency

Reference Property The parameter that is assigned the list of
models described by the import

Model Language
(Existing)

Tag Value (String) Property The Modeling language(s) used in the im-
ported model.

Figure 3. View Tree

As illustrated in Figure 4, the Viewpoints can be composed to
create a template for a particular set of Views in a particular
order. This has the effect of instantiating the Viewpoint
tree. It also allows a particular View tree to be compared for
conformance to the Viewpoint tree.

For example, Ops Revitalization is building a series of
documents that describe processes for different engineering
disciplines in mission operations. The precedence and Views
are the same for each discipline. The only variables are the
process models. Figure 5 illustrates an example of 2 different

Figure 4. Viewpoint Templates

View models that use composite Viewpoints to assert the
same precedence order.

Viewpoint and View

A Viewpoint is a specification of the conventions and rules for
constructing and using a View for the purpose of addressing
a set of stakeholder concerns. The Viewpoint model as

3

Figure 5. Ops Revitalization Process Documents

Figure 6. Viewpoint Model

illustrated in Figure 6 defines the properties and constraints
used to define the View. The Viewpoint also defines the
Method, which is the process for constructing the View.

The Purpose, Concern and Stakeholder elements are prop-
erties that describe the point of view of the stakeholder.
The Method describes the systematic process in which the
model will be used to create the View. The Imported Models
represent the models that the Viewpoint operates on for a
given View. The View in these models is just a proxy
for attaching properties and relationships. Execution of the
method is necessary to render the View.

An example from Ops Revitalization is illustrated in Figure 7.
This Viewpoint is defined to render a 2 dimensional Cartesian
plot of an Ops Scenario model, such that the scenario function
calls are plotted against time. The Ops Scenario Model is
a SysML sequence model with domain specific semantics
from The Mission Service Architecture Framework (MSAF).
In this illustration the scenario models as well as all of the
languages that are used in rendering the View are shown.
The Viewpoint is defined in terms of the analyses, method,
format and presentation necessary to produce the View. These
elements are defined in Table 2.

An example from the Europa Mission Study [11] is the Mass
Properties Viewpoint as illustrated in Figure 8 and Table 3.

Figure 7. Scenario Timeline Plot Viewpoint

The purpose of this Viewpoint is to calculate the dry mass
of the Flight System and show a table of components and
their masses. Operating on the composite model of the Fight
System through the Viewpoint renders this table. This model
describes the complete component composition of the Flight
System as well as the value and behavioral properties of the
system.

Domain Specific Models and Languages

A key piece of effectively communicating with Views is spec-
ifying the language the model is written in. Modeling lan-
guages provide the patterns and syntax used in the description
of the View. Domain Specific Modeling Languages specify
the elements expected to be represented in the View, and may
be formally or informally defined. Views are descriptions
intended to communicate, thus it is necessary to assert the
allowable syntax and syntactic environments that can be used
to describe them. For Viewpoint the Language specified
is allowed to be anything from natural language English to
SysML to a Domain Specific Modeling Language to a formal
Mathematical notation such as MathML. Unless explicitly

4

Table 2. Scenario Viewpoint Elements

Viewpoint
Element

Description

Scheduling
Analysis

This analysis reasons out the temporal
ordering from the model

Scenario
Coordinates
Model Trans-
formation

Transformation from SysML Scenario
model to trajectories in 2D coordi-
nates

Scenario Veri-
fication Rules

Completeness and Correctness rules
for verifying

Scenario Plot
Method

The order for executing each analysis
that ultimately produces the View

Figure 8. Mass Properties Table Viewpoint

prohibited, natural language documentation and narration are
always expected to be included.

An example of a Domain Specific Modeling Language can
be found in the Ops Revitalization project at JPL. Ops Re-
vitalization has developed the Mission Service Architecture
Framework (MSAF) [3] for the purposes of modeling Mis-
sion Operations Systems. The MSAF is a set of modeling
elements and relationships for describing the interfaces, func-
tions and process that make up an MOS using the lexicon of
Mission Operations. The MSAF also defines patterns that
reflect the allowable combinations of these domain specific
terms. The MSAF is a Domain Specific Modeling Language
and as such is built as an extension to BPMN (Business
Process Modeling Notation) and SysML. Viewpoints defined
for the Ops Revitalization Task are typically specified in the
language of the MSAF, however sometimes SysML or BPMN
are used.

Model Analysis

In order to generate a View of a model, it is necessary to an-
alyze the model. The Viewpoint also defines a set of analysis
that can be specified. These rules provide the means to check
and/or operate on the model as part of creating the View. This

Table 3. Mass Properties Viewpoint Elements

Viewpoint
Element

Description

Composite
Mass
Constraint

The constraint that asserts that the
mass of a component is the sum of the
masses of its child components

Component
Tree Model
Transforma-
tion

Model Transformation that transforms
the SysML flight system model into a
tree of flight system components

Value Tree
Model Trans-
formation

The model transformation that trans-
forms the flight system model into a
tree of mass properties

Component
Properties
Table Map

The model transformation that trans-
forms the flight system model into a
map of the trees described above

Mass Analy-
sis Method

The ordered steps for performing the
mass analysis

property can be used to describe any kind of analysis to be
performed on the Model. Some common uses include model
querying and filtering, asserting model verification, asserting
mathematical formulae, and model transformations. These
examples illustrate the broad range of the types of analysis
that can be defined as part of the Viewpoint. It is important
to note that the Method property described later defines how
these different suites of rules may be applied in the course of
generating the View.

The Europa study has found utility in this aspect of the
Viewpoint [12]. The Viewpoints for the Flight System Mass
Equipment List (MEL) define tables that describe the mass
needs and constraints for the Mission. Using the model
of a candidate Flight System, these Viewpoints are used to
render a View of the Flight System in terms of the MEL. The
Viewpoint defines analysis for verifying the correctness of the
model, verifying the mass calculation, and transforming the
model into a simpler model of hierarchical components and
mass properties.

Transforming the model into a simpler model of hierarchi-
cal components and mass properties is an example of an
Analysis that performs a Model Transformation. The Europa
Flight System Model is built in SysML. It has a hierarchical
component structure decorated with many properties and
behaviors. In order to calculate the mass of a Flight System,
the Flight System Model is transformed into a simpler model
that consists of components, mass constraints, and mass
properties. This new structure can then be used to solve the
mass constraints and calculate the mass of the Flight System
as defined in the Mass Calculation analysis.

Another analysis example from Ops Revitalization involves
pattern analysis. The MSAF mentioned earlier describes the
fundamental architectural patterns for a Mission Operations
System. Viewpoints defined for the MSAF all include rules
that verify usages of the framework patterns. These rules
compare models that have been built using the MSAF and
identify conditions that are not consistent or complete with
respect to the pattern.

5

View Format and Presentation

Stakeholders may have conventions, organizational or institu-
tional practices, and standards that influence how the View is
to be rendered. Views of the system model that are created by
Systems Engineers usually have very customized styles and
presentation requirements. Different organizations may addi-
tionally prefer a variety of formats. Some views are generated
in Power Point slides others are tables, documents, HTML
web pages, or 3D CAD Generated animations. Additionally,
conventions may dictate the use of certain diagrams, tables
color codes, etc.

Utilizing these rules is key to communication. The Format
and Presentation properties can be used to capture the specific
rules for the View as part of the overall Viewpoint specifica-
tion. The Format and Presentation properties of Viewpoint
provide the means of describing the styles in which the View
is presented and the output formats. Different Views require
different formats and presentation styles depending on the
stakeholder and the information being communicated. The
examples that describe this are best discussed as part of the
Method.

Method

The method is probably the most significant expansion of
this approach. The Method is the behavior model of the
Viewpoint. It describes the ordered steps required to process
the model and render the View of the model according to the
properties of the Viewpoint. This includes when and where
to execute the analysis specified by the Viewpoint and how to
apply the format and presentation specifications. The Method
is also extensible to any other step necessary to generate the
View.

Figure 9. MEL Viewpoint

For example, the Method for the Europa Mission Study MEL
Viewpoint is illustrated in Figure 9. It describes the steps
of expressing a SysML model of Flight System components
and properties as a table. This is accomplished by using
model transformations to build a tree of components and
a tree of mass properties and a map that relates each set
of mass properties to the corresponding component. These
transformations abstract out all the parts of the flight system
model that have nothing to do with the Mass Analysis.
The Mass Analysis asserts the constraint that the Mass of

a component is the sum of the components that compose
the component. This model is then transformed into a table
model. Once in the table model, the format and presentation
rules are applied. In this example, these tables have a long
list of applied formats and presentations. For reporting, the
DocBook format is used to produce a static output of the
table in HTML and PDF. The Viewpoint also defines rules for
rendering the table in an editable format for web browsers and
Java applications. In this rule the mass values and component
names are editable so that they can be easily updated without
having to open the thick model editor just to change certain
parameters in a lightweight fashion.

Similarly, Figure 10 from Ops Revitalization shows the
Method for transforming a scenario Model expressed using
SysML sequence diagrams as a plot of events and states over
time. First the rules for a complete and correct scenario
model are executed. Then a model transformation is used
to transform the SysML Sequence model into a precedence
ordered table of events. Then an analysis is performed to
determine the explicit and relative times for each event within
the table. Finally the plot is produced according to the format
and presentation rules. The plot is currently produced in
Excel spreadsheets, but ideally the Viewpoint will be able to
utilize more robust tools such as Mathematica, Matlab, and
Maple.

Figure 10. Scenario Viewpoint

4. MODEL BASED ENGINEERING
ENVIRONMENT

For any non-trivial system to be successfully engineered, sig-
nificant collaboration is required amongst Systems Engineers,
Domain Engineers, Project Managers, and other related
stakeholders. Views and Viewpoints form the foundation for
collaboration in a model-based engineering environment as
they describe how to communicate relevant aspects of the
system to particular stakeholders. While the Views generated
from Viewpoints can take the form of familiar documents
(e.g., Interface Control Documents, Software Requirements
Documents, etc.), a Viewpoint method can just as easily
describe how to generate editable web views or Mathematica
notebooks. As one can imagine, these dynamic views are a
much more effective means for collaboration between engi-
neers than static documents.

No tools currently support the vision of Views and View-
points as the cornerstone for facilitating collaboration and

6

Figure 11. Model Based Engineering Environment

communication between systems and domain engineers for
model based engineering. Figure 11 illustrates the Model
Based Engineering Environment or MBEE, that is currently
being developed by the Operations Revitalization and Europa
Mission tasks. The MBEE consists of a model repository
that serves as the single source of truth of for system models.
The repository exposes all the model elements on the web via
RESTful (REpresentation State Transfer) APIs. Any client,
be it a SysML modeling tool, Mathematica, or whatever else,
can then easily retrieve and update model information based
on said APIs. This approach parallels the View/Viewpoint
architecture, as the repository provides the model data, clients
have viewpoints of interest, e.g., a Mathematica power usage
viewpoint, which the client can then use to query out an ap-
propriate view, say for a particular flight system. The choice
of a RESTful architecture enables the enterprise scalability
necessary for the largest and most complex projects.

As with other web technologies, mashups of client services
can be orchestrated and combined to achieve more sophisti-
cated analysis and simulation than any single client by itself
can accomplish; for example, results of power simulations
can be used to inform thermal simulations.

The capabilities provided by this environment allow systems
engineers and modelers to build the model using commercial
SysML tools and also allows domain engineers to input their
data using more domain specific Views. For example, using
the same techniques of View generation from Viewpoints, we
can generate table Views of the model, which can then be
edited online or used for analysis with Mathematica, Excel,
NX, Maple, etc. and the results of such analysis can be fed
back into the model as necessary.

This interplay between systems and domain engineers needs
to be a managed and repeatable process. As the tooling
and software infrastructure for MBEE has been developed
at JPL, multiple projects have converged on the process
shown in Figure 12. Initially, the systems engineers create
a preliminary system model. Then, with inputs from domain
engineers and other stakeholders, experienced modelers de-
fine the Viewpoints that express the aspects of interest to the
stakeholders. For example, a Power Equipment List (PEL)
Viewpoint can be defined that exposes the power charac-
teristics to power subsystem engineers. Systems engineers
then create View definitions that conform to the defined
Viewpoints as the starting point of collaboration with domain
engineers. Continuing the PEL example, systems engineers

Figure 12. Simplified Workflow

may specify a View that only imports the avionics model
elements, resulting in a PEL for the avionics subsystem.
Domain engineers then take this information and do a more
detailed analysis of the power characteristics (perhaps adding
time based loading and discharging) that requires updates to
the system model. The updates can be pushed back into
the MBEE federated repository via web editors or directly
through an integrated tool. The systems engineers then create
a document View model (e.g., a requirements or architectural
description) that is used as the vehicle of communication
with other stakeholders such as project management. The
review process then follows the typical document review
processes with the only difference being that rather than
making changes directly to the document, changes are made
to the system model and the document regenerated. Not
captured in Figure 12 is the iterative nature of collaboration
and document generation, as model changes from one domain
may necessarily impact other domains, which requires addi-
tional collaboration cycles.

Figure 13. Current MBEE Components

7

5. REALIZING SOFTWARE AND
APPLICATIONS

At JPL we have developed several tools and applications
which implement the first version of this enterprise environ-
ment. An overview is shown in Figure 13. While these tools
were constructed in an exploratory fashion, many projects
have already incorporated them in their document generation
workflows as they adopt MBSE practices. In particular, the
Ops Revitalization project, sponsored by MGSS, generates
all of its architectural documents from models using this
framework and software that supports it.

DocGen

Figure 14. DocGen Components

Figure 15. Example of a generated table of key term defi-
nitions for Ops Revitalization’s Mission Service Architecture
Framework

DocGen is a plugin for the MagicDraw [13] modeling tool
used at JPL. The major components involved and the artifacts
produced are shown in Figure 14. It provides a profile that
implements the Viewpoint method specifications described in
Section 3 and the capability to parse and execute Viewpoint
models constructed using this profile. As shown in Figure 1, it
uses existing UML import semantics to indicate which model
elements should be imported by the View, which would then
be passed to the Viewpoint it conforms to.

An activity model captures the Viewpoints method, where

a sequence of stereotyped actions specify how to analyze,
transform, and present the elements imported from the View.
All stereotypes are defined in the DocGen profile as part
of the DocGen plugin, and the activity is essentially the
behavior of the Viewpoint. An example is shown in Figure
16. This simple Viewpoint results in a View that is an ordered
list, where each list item would show the documentation of
some model element that is an ”Essential” class, which can
be found under the namespace of elements imported from
the View that conforms to this Viewpoint. The stereotypes
on these actions effectively map to the rules, analyses, or
transformations for that Viewpoint. For example, filtering
actions can be interpreted as a rule that only certain elements
that pass a test will be shown in the View. Since we are using
UML activities to model the method, we have reused certain
UML elements like Fork, Join, and Merge to represent actions
with those same semantics. Given a library of these actions,
one can then build up a library of Viewpoints for specific
documents. These Viewpoints would essentially become the
document templates. When one wants to generate a document
from a model using a specific template, one can simply create
a conforming view that imports the desired model elements as
arguments to the template.

Figure 16. Viewpoint Method that generates a list of model
elements and their documentation

The library of actions can include any type of analysis or
transformation relevant to the organization. We have found
that the most basic actions include following model rela-
tionships or properties to other elements, filtering collections
of model elements by metaclasses or stereotypes, running
custom analyses and validation rules, and displaying tables,

8

paragraphs, lists, or images. One very common viewpoint
is generating a table of model elements and their documen-
tation, whose resulting HTML output is shown in Figure
15. More sophisticated transformations can include parsing
a model structure like composition or inheritance trees into
graphs for further processing. The stereotypes are defined
with tags that provide options that are relevant to that action,
for example, depth, include or exclude flags, etc. Example of
these tags are also shown in Figure 16. Projects can also add
actions that can call user specified scripts that contain more
project specific rules for checking the model and constructing
a custom display, like doing mass or power rollups for flight
systems and reporting on errors found.

Figure 17. An Editable Table

Since a document is composed of Views, Figure 3 shows how
a View hierarchy can be modeled and interpreted. From the
”Root View” package, which denotes the root of a document,
linked list semantics are used to indicate the first child View
and subsequent Views, where by default each View will be
interpreted as a section in the resulting document. Given a
library of Viewpoints, one can easily string together the View
model and conform each View to an appropriate Viewpoint
according to the needs of each document.

Currently, the most common use case for DocGen is to output
the results of viewpoint execution into DocBook XML, but
given the right specifications it can also show editable tables
within the modeling application and publish editable views
to the web. In the case of tables, since the content in table
cells ultimately come from some property of model elements,
DocGen provides an edit mode - instead of rendering a static
table, a pop up table is displayed where users can directly
edit those model properties. Figure 17 shows an example of
editing mass properties of a system composition.

As this illustrates, Views are not restricted to being parts in
a static document. They can be outputted in any format,
limited only by the format and presentation options specified
in the Viewpoint. A dynamic View like the editable table
significantly eases collaboration with domain engineers and
other stakeholders who provide inputs to the model.

It is important to note that the DocGen implementation is
not the only way to realize the View-Viewpoint paradigm.
Although we primarily work with SysML models, the View-
point specification can theoretically be implemented in any
language and a set of rules and transformations defined for
the target language. The steps in the Viewpoint method can
operate on a heterogeneous set of models, such as ontological
models, CAD models, as well as SysML models, as long as
there exists a unified way of describing these models.

View Editor

Complementing DocGen are various web applications that
facilitate communication with domain engineers and stake-
holders. The View Editor is an example where domain engi-

Figure 18. View Editor Components

neers can update the model online through HTML formatted
Views that are specific to their discipline. Figure 18 shows
how this capability is built around the existing DocGen plugin
by outputting the interpreted View information in different
formats. Instead of outputting to DocBook XML, DocGen
can instead serialize and package the same information to a
database through a REST interface. By having the software
keep track of where the content of a View comes from in the
model repository, users can update specific parts of the model
without having to know the details of how the model is put
together or even open the modeling application. Figure 19
shows the web page of a View, where users can directly edit
the contents. The View tree is also shown on the left as a
navigation pane for each of the document’s sections.

To achieve this, DocGen packages and upload subsets of the
model and View information to a database that the View
Editor operates on. Users can then update selected model in-
formation through the web that gets persisted in the database.
Cognizant system modelers will then import these changes
back into the model. Currently this extra layer is necessary
because of the lack of a central and accessible model reposi-
tory. Imagine then, if any tool can access model information
directly through a repository that houses all model, Viewpoint
and View information. Without the middleman, tools can
interpret Viewpoints directly and produce appropriate Views
according to the formats and presentation defined for that
tool. This technique can be used to integrate with existing
or new analysis tools. By adjusting the View format, we
are essentially defining an interface that can transmit subsets
of model data back and forth with applications like Excel,
Mathematica, Matlab, and more.

DocWeb

To facilitate document generation and review, we have de-
veloped a web application for requesting, scheduling, and
archiving artifacts generated from the model. Again, the
web interface and necessary additions are built around the
core DocGen plugin and the Viewpoint/View framework,
as shown in Figure 20. The output format is DocBook
XML, which can then be transformed into HTML and PDF.
CSV files from any relevant tables can also accompany the
generation, and possibly more in the future. These artifacts
are archived and tagged with a timestamp and can be retrieved
through a web interface, as shown in Figure 21. Options for
on demand generation or scheduled generation, like nightly or

9

Figure 19. View Editor Example - A view showing editable text and view navigation on the left

Figure 20. DocWeb Components

weekly, allow system engineers to monitor the general state
of the model and documents and be alerted in a timely manner
if any problems arise, such as failed generations or failed val-
idations. Since the model repository houses both the system
models and Viewpoint models that describe how to create
Views, the entire generation chain can be automated to ensure
that documents will always be up to date and consistent with
respect to the model, no matter how frequently the model gets
updated.

6. CONCLUSION
As MBSE becomes mainstream, the need for a more auto-
mated and streamlined approach to model based document
generation increases. We have extended the SysML concepts
of View and Viewpoint in order to create a foundation to

Figure 21. DocWeb Example - A generated document with
navigation on the left and section content on the right

address this need. This allows systems engineers to use View-
point models to describe how to extract, analyze, and present
specific information from the system model to stakeholders
and domain engineers. In addition to generating just static
artifacts, the format option in the extension also supports a
way to specify integration with other software that can ma-
nipulate model information. We envision that a model based
engineering environment with a central repository of model
and Viewpoint information will be the key to integrating all
the pieces needed to execute successfully in a model based
project. We have developed software like DocGen, View
Editor, and DocWeb to pave the way to realizing this vision.

ACKNOWLEDGMENTS
The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

REFERENCES
[1] Object Management Group, “OMG Systems Model-

ing Language (OMG SysMLTM), version 1.3,” OMG,

10

Tech. Rep. OMG document number formal/12-06-02,
June 2012.

[2] M. Jackson, C. L. Delp, D. Bindschadler, M. Sarrel,
R. Wollaeger, and D. Lam, “Dynamic Gate Product and
Artifact Generation from System Models,” in Proceed-
ings of Aerospace Conference. Big Sky, Montana:
IEEE, 2011.

[3] D. Bindschadler, C. L. Delp, and M. McCullar, “Prin-
ciples to Products: Toward Realizing MOS 2.0,” in
Proceedings of SpaceOps Conference. Stockholm,
Sweden: AIAA, 2012.

[4] T. Bayer, S. Chung, B. Cole, B. Cooke, F. Dekens,
C. Delp, I. Gontijo, and D. Wagner, “Update on the
Model Based Systems Engineering on the Europa Mis-
sion Concept Study,” in Proceedings of Aerospace Con-
ference. Big Sky, Montana: IEEE, 2013.

[5] T. Bayer, M. Bennett, C. L. Delp, D. Dvorak, J. S.
Jenkins, and S. Mandutianu, “Update - concept of oper-
ations for integrated model-centric engineering at JPL,”
in Proceedings of Aerospace Conference. Big Sky,
Montana: IEEE, 2011.

[6] DocBook Technical Committee, “DocBook 5,” OASIS,
Tech. Rep., 2009, http://docbook.org.

[7] MGSS, “Advanced Multi-Mission Operations System,”
http://ammos.jpl.nasa.gov/.

[8] OPFM, “Europa Jupiter System Mission,”
https://opfm.jpl.nasa.gov/europajupitersystemmission-
ejsm/.

[9] OMG Systems Engineering DSIG, June 2012,
http://www.omg.org/news/meetings/tc/ma-12/info.htm.

[10] ISO/IEC/IEEE, “Systems and software engineering -
architecture description,” ISO/IEC/IEEE, Tech. Rep.
ISO/IEC/IEEE 42010, December 2011.

[11] Europa Study Team, “Europa Study 2012 Report,” Na-
tional Aeronautics and Space Administration, May 1
2012.

[12] S. Chung, T. Bayer, B. Cole, B. Cooke, F. Dekens,
C. Delp, and D. Lam, “Model-Based Systems Engi-
neering Approach to Managing Mass Margin,” in 5th
International Workshop on Systems and Concurrent En-
gineering for Space Applications. Lisbon, Portugal:
ESA, 2012.

[13] NoMagic, “MagicDraw,” http://www.nomagic.com/.

BIOGRAPHY[

Christopher Delp is the Systems Archi-
tect for Ops Revitalization task in MGSS
and a Lead Systems Engineer for MBSE
on the Europa Mission. He is a member
of of the Systems Behavior and Architec-
tures Group at the Jet Propulsion Lab-
oratory. His interests includes Systems
and Software Architecture, applications
of Model-Based Systems Engineering ,
Model-Based Analysis and Enterprise

Engineering Systems. He earned his M.S. and B.S. degrees
from the U of A in Systems Engineering.

Doris Lam is currently a Software
Systems Architect working in the Model
Based Engineering Environment team at
JPL. She earned her B.S. in computer
science from UCLA in 2008 and joined
JPL after graduating. She has worked
on various UML and SysML model-
ing projects and software modernization
tasks for the ground system.

Elyse Fosse is a Software Systems En-
gineer for the Ops Revitalization task in
MGSS. She also develops ground system
cost models for deep space and Earth
missions. She is also a member of the
Multimission Ground Data System Engi-
neering group at the Jet Propulsion Lab-
oratory. Her interests include software
and systems architecture, applications
of model-based system engineering, and

cost model implementation and analysis. Elyse is also a part
of the INCOSE Space Systems Working Group’s entry into the
Model Based Systems Engineering Grand Challenge. Elyse
earned her M.A. in Applied Mathematics from Claremont
Graduate University and her B.S. in Mathematics from the
University of Massachusetts Amherst.

Cin-Young Lee is a Senior Software
Engineer in the Mission Information
Systems and Technology Development
Group at the Jet Propulsion Laboratory.
He earned his Ph.D. from Caltech.

11

