The OpenSE Cookbook: A practical, recipe based collection of
patterns, procedures, and best practices for executable systems
engineering for the Thirty Meter Telescope

Robert Karban*?, Amanda G. Crawford?, Gelys Trancho®, Michele Zamparelli®, Sebastian Herzig?,
Ivan Gomes?, Marie Piette?, Eric Brower®
4Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, CA, USA 91109;
"Thirty Meter Telescope, 100 West Walnut Street, Pasadena, CA, USA 91124;
“European Southern Observatory, Karl/Schwarzschild-Str 2,

Garching b. Muenchen, Germany 85748
*robert.karban@jpl.nasa.gov
© 2018. All rights reserved

ABSTRACT

The OpenSE Cookbook is an open-sourced collection of patterns, procedures, and best practices targeted for
systems engineers who seek guidance on applying model-based and executable systems engineering (MBSE)
using SysML. Its content has emerged from the system level modeling effort on the European Framework
Program 6 (FP6) and the Thirty Meter Telescope (TMT). The TMT MBSE approach applied the Executable
Systems Engineering Method (ESEM) and the open-source Engineering Environment (OpenMBEE) to specify,
analyze, and verify requirements of TMT’s Alignment and Phasing System (APS) and the Narrow Field Infrared
Adaptive Optics System (NFIRAOS). In these applications, implicit dependencies are made explicit in a formal
model through the use of ESEM, OpenMBEE, and SysML modeling constructs. The value proposition for
applying this MBSE approach was to establish precise requirements and fine-grained traceability to system
designs, and to verify key requirements beginning early in development. The integration of ESEM and the
OpenMBEE tooling infrastructure (providing linked-data and web-operability) is a significant added value for
the MBSE approach. The APS is responsible for the overall pre-adaptive optics wavefront quality, using starlight
to measure wavefront errors and align the TMT optics. In the formally integrated and executable SysML model,
simulations are performed to analyze the impact of changed requirements and verify specified constraints for
various operational scenarios.

The APS team used several modeling patterns to capture information such as the requirements, the operational
scenarios, involved subsystems and their interaction points, the estimated or required time durations, and the
mass and power consumption. Adaptive optics systems are designed to sense real-time atmospheric
turbulence and correct the telescope’s optical beam to remove its effect. The system model for the adaptive
optics operational modes was developed to capture sequence behaviors and operational scenarios to run
Monte-Carlo simulations for verifying acquisition time, observing efficiency, and operational behavior
requirements. The model is particularly useful for investigating the effect of parallelization, identifying interface
issues, and re-ordering sequence acquisition tasks. A former version of the Cookbook (which is now updated
to MBSE challenges, goals, and lessons learned) included modeling guidelines and conventions for all system
aspects, hierarchy levels, and views, which were developed during for the Active Phasing Experiment (APE),



an opto-mechatronical system technology demonstrator for the Extremely Large Telescope (ELT). The
Cookbook utilizes the above mentioned system models as real-world case-studies to demonstrate and
document the applications of the recipes, providing also instructional examples and addressing the available
tooling support. The Cookbook is accompanied by a number of SysML models and aodel libraries which
facilitate model authoring and maintenance. The Cookbook covers the different aspects of Systems
Engineering such as management of Requirements, Design (behavior and structure), Interfaces,
Interdisciplinary Integration, Analysis, Trade Studies, and Technical Resources. This paper presents the
background, motivation, architecture, and highlights some key content of the Cookbook. For example, interface
management, error budget management, requirements verification, Monte Carlo driven analysis, and timing
analysis of operational scenarios. The paper discusses how the capabilities of OpenMBEE contributed
significantly to the adoption of executable systems engineering.

Keywords: Model-Based Systems Engineering, Executable Models, SysML, Engineering Environment,
Telescope

1. INTRODUCTION

The Thirty Meter Telescope (TMT) [9], under development by the TMT International Observatory (TIO), applies
a “hybrid” systems engineering approach leveraging traditional systems engineering and more modern model
based techniques to perform the systems engineering tasks such as requirements management, technical
resource management, interface and design management and analysis.

Figure 1 The Thirty Meter Telescope
Traditional systems engineering requires clear, defined deliverables, easily accessible processes, a shallow
learning curve, and simple traceability among artifacts.



Model based techniques significantly enhance the understanding of the behaviors of a system, and provide rich
capabilities to represent complex systems. Model Based Systems Engineering (MBSE) emphasizes rigor and
precision helping to manage the complexity of the system and its design. It supports the integration horizontally
across the system life cycle, and vertically, across multiple domains.

The main objective of MBSE for the TMT is to capture operational scenarios and demonstrate that requirements
are satisfied by the design. For this purpose, a SysML [7] model is created to better understand and
communicate system behavior, motivated by optimizing the system design.

The SysML model is executable (i.e. it is built for simulation for analysis purposes) to capture requirements,
use cases, system decomposition and subsystem relationships. The resulting system design is analyzed
against power, mass, duration and error budget requirements, and used to produce engineering documents
such as detailed design documents, interface control documents. In order to enhance the communication of
the design, standard languages (e.g. SysML) and techniques are used.

The Jet Propulsion Laboratory (JPL) participates in the design and development of several subsystems of TMT
and delivers the complete APS. The TIO is the customer, which provides the APS requirements to JPL, and
JPL delivers an operational system to the TIO. The APS team pursues an MBSE approach to analyze the
requirements, come up with an architecture design and eventually an implementation.

The TMT project captures the functional and physical architecture, behavior, requirements, and parametric
relationships for TMT NFIRAOS LGS MCAO Acquisition Sequence and related use case scenarios at system
level to verify timing requirements in the early life-cycle phase through system-level simulation. This is achieved
by performing Monte Carlo simulations for acquisition and slew time.

In the course of applying model based techniques, a number of modeling pattern, recipes, and best practices
have been identified that are collected and described in the OpenSE Cookbook which is the topic of this paper.

The application of the OpenSE Cookbook practices allows to deliver consistently engineered products using a
well-defined modeling approach, called the Executable Systems Engineering Method (ESEM) [4] that is a
refinement of Object Oriented Systems Engineering Method (OOSEM), introducing the next phase of system
modeling emphasizing executable models to enhance understanding, precision, and verification of
requirements.

OOSEM provides an integrated framework that combines object-oriented techniques, a model-based design
approach and traditional top-down systems engineering practices. OOSEM is a scenario-driven process
coupling top-down decomposition with bottom-up design. It provides guidance on building a system model to
analyze, specify, design, and verify the system. An example application of OOSEM is also described in detail
in chapter 17 of [14].

ESEM augments OOSEM activities by enabling executable SysML models which verify requirements fulfillment.
It includes a set of analysis patterns that are specified by means of various SysML structural, behavioral and
parametric diagrams.

2. COOKBOOK PRINCIPLES

The OpenSE Cookbook provides a consistent, comprehensive, detailed and background-agnostic set of
operational procedures to guide practitioners through MBSE. Unlike existing SysML literature whose goal is to
provide the foundations of descriptive modeling to new comers and bring forward the arguments in favor of
MBSE, the cookbook merely represents an implementation of what such literature often refers to as best-
practices, or organization (or project)-specific procedures. Prerequisites for the Cookbook are SysML



knowledge, and experience with some MBSE method such as OOSEM. It provides goal oriented guidance for
systems engineers explained by a set of combinable patterns, e.g. how to verify requirements or roll-up
technical resources. Systems engineering workflows drive each of the pattern definitions (e.g. analysis, see Fig
2).

As shown in Figure 2, a TMT requirement change propagates to the configuration managed SysML model,
where it is formalized into so-called property-based requirements (2), which allow for a formalized trace of
requirements into the design. A property-based requirement captures the quantifiable textual content (e.g.
values, constraints) of a requirement as distinct SysML model elements, in this case properties that enable
formal evaluation of said properties. The as-specified conceptual design (3) and/or the realization design (4)
are verified against the changed requirement, providing immediate feedback of the change impact to the design,
resulting in a pass or fail. The design information and associated analysis reports are delivered in various
engineering documents (5).

«{ Update Requirements2| s Analyze Conceptual Design 3

TFa 2 sl Port Sog Rt T Lt | Piaot Sarert Encturge ¥ A O i g PR - g Frumrg
4 5 Foris | Iringe Irfiiger

HNFIRADS
T F
APE

Analyze Realization
Design/Specification

Pass/fail

Change request 1 A et
Max duration Post-segment exchange: 72005 5000s
Mumber of exposuresofdbs 4 &

Max peak power consumption in dome: 8.5kw 8-tkw Produce Engineering Documents 5
Number of motors with 50W 10 12

Figure 2 TMT analysis workflow
The OpenSE Cookbook demonstrates how to build and analyze system models using OpenMBEE [8] as
applied to educational examples as well as actual usages in the TMT production model. The overall goal of
the OpenSE Cookbook in conjunction with OpenMBEE is to commoditize the Executable Systems Engineering
Method, i.e. remove the cost and barriers to entry that allows for expanded innovation and broader operations
driven by increased user access and decreased costs, in order to foster broadest adoption.

The methodology, best practices and patterns are supported by a rich set of tooling, aggregated in a so-called
systems environment, see Fig 3. The systems environment supports an orchestrated pipeline for systems
engineering tasks and products. Engineers use a multitude of tools which are integrated through the systems



environment infrastructure allowing ubiquitous data access, transparent to the individual tools users, and
avoiding peer-to-peer integrations. Note, that not all the shown tools are required but they are merely brought
to the “engineering table” and integrated according to the engineer’s needs. The tools are a mix of commercial,
open source, and in-house built. Each of the mentioned tools serves one or more roles in the above pipeline.
Different engineers use (sometimes slightly) different tools for the same or different purpose and yet want to
integrate with other tools and propagate or relate data from multiple heterogeneous sources. The inner part of
the “table” enables this integration and propagation for the user and avoiding costly peer-to-peer integrations.

EPDM

Analysis Multi-Machine

p Orchestrator Analysis
F'p'n':] p_.[e r'IB E ;

ModelCenter Syndeia Artifactory
Cloud Cloud
Analyses Maps

Artifacts

™S MMS  Teamwork 45 Cloud
Cloud

Timehnes Indices Models Analyses

Web Services

Python View Editor

OpenCAE DevOps

Figure 3 JPL Systems Environment for the entire development lifecycle

The systems environment is continuously evolved through so-called Case Studies which capture engineering
workflows and uses cases, analyzing them, and providing the appropriate support within the environment.
Those Case Studies address for example the following areas:

o Requirements Management

e Interface Management

o Design Management

e Trade Studies

¢ Interdisciplinary Integration

¢ Analysis Management



¢ Resource Management

e Timeline Management

Each Case Study has a corresponding volume in the OpenSE Cookbook that contains best practices, patterns
and procedures to support the identified engineering workflows and use cases.

The following table shows a subset of the patterns which are captured in the Cookbook, that were informed by
the TMT effort.

Table 1. Subset of Cookbook Patterns

Pattern Intent Volume
Customer/Supplier Capture  Customer  Supplier [ Requirements Management
specifications and their
relationship
Black Box Specification Specify a system as a black box | Analysis Management
Property Based Requirements Link requirements management | Requirements Management

and system design

Requirements Verification Validate requirements, verify as | Requirements Management
designed system against
requirements and publish
analysis results

Duration Analysis Analyse timing and duration | Analysis Management
constraints

Static Roll-up Roll-up static technical resources | Resource Management
Dynamic Roll-up Roll-up dynamic technical | Resource Management
resources depending on

operational modes

Monte Carlo Analysis Perform Monte Carlo Analysis of | Analysis Management
technical resources

Time Modeling Capture Timing and duration | Resource Management
constraints




Quantities Units Dimensions and | Specify quantities and units for | Resource Management
Values technical resources

Error Budget Manage an error budget of a | Resource Management
technical resource such as wave
front error

The patterns are captured in a standard format as described below.

Table 2. Standard format for Cookbook Patterns

View

Description

Intent

A brief description of the problem which is
addressed by the design pattern. The intent should
prove useful when searching through design
patterns, and to quickly understand the purpose of
the pattern.

Motivation

Explains a representative problem of a broad class
of problems that the pattern seeks to address. The
representative problem is a widespread concern
and not trivial. In addition, the Motivation provides
conditions that must be satisfied in order for the
pattern to be used. After the conditions have been
satisfied, the goals that the designer is trying to
fulfill can be met. Any complicating design aspects
and design constraints will be mentioned as well.

Concept

A description of the structure of the pattern using
SysML diagrams. All elements are generalizations
of those that appear in the specific example given
in the Motivation view. Each element of the
structure is described, and a description of their
responsibilities, purpose, and important
relationships/interactions among participants are
provided.

Consequences

A description of the results, side effects, and trade-
offs caused when applying the design pattern to the
modeler's system. The actions and the positive or
negative consequences are described.
Additionally, a listing of possible conflicts that can




occur while applying or using the pattern are
provided. The possible scenario is described, and
an explanation of the conflict is provided. It should
be understood to the reader of the design patterns
that both positive and negative consequences
could occur. The designs are a compromise
between available options and no design is
completely devoid of negative consequence.

Implementation A sample model for instructional purposes that
addresses the problem which is presented in the
Motivation view. The example illustrates in detail
how the pattern is applied to a particular problem.

Known Uses Other efforts that have dealt with the design
problem which is addressed by the design pattern.
An example system may have used a variation or
the same design pattern as a solution.

Tooling Tooling information that can aid the implementation
of the pattern is provided. Note, the information
provided is meant only to aid and provide a faster
method for implementing an aspect of the pattern.
Tooling support is provided in several ways. If a
specific software or plugin is recommended,
information and links regarding such will be
provided. Assuming the reader will proceed with
the suggested tooling, screenshots of the expected
input and output will be shown.

Related Patterns Other patterns from the Cookbook that could be
used in combination with the selected pattern. The
similarities and differences between the patterns
serves to provide guidance as to which pattern may
prove more useful.

A previous version of the cookbook, produced by the INCOSE MBSE initiative [22] in 2012, which focused on
structure and requirements, has been integrated. It was created by reverse engineering of the European FP7
Active Phasing Experiment (APE) project as a case study. Whereas the 2012 version focused on demonstration
of the application of SysML, the 2018 version focuses on the systems engineering concerns, guided by the
ESEM, and capturing behavioral aspects of system design and analysis. It is accompanied by a model library
which provides commonly used elements to facilitate the authoring of the system model. In addition to the TMT



and APE examples, the 2018 version contains a variety of instructional examples, showing the how systems
engineering tasks are accomplished.

The application to an actual engineering team on TMT has proven its practical value in production and ironed
out the practices and patterns described in the Cookbook. Template models and recommended model
organizations provide an additional value in getting started with Executable Systems Engineering.

The OpenSE Cookbook is layered in different application domains which promotes re-use and enhances the
general practices by institutional and project specific adaptations.

'OpenSE Cookbook

I

) Nl = | i
ECAE SE Cookbook ‘ JPLSE Cookbook |

I
[

|'Europa—co_okBook"‘ i'Ms_R?oﬁbBok" "Mzozo Cookbook |

Figure 4 OpenSE Cookbook Hierarchy

Fig 4 shows the hierarchy established at JPL. The generic OpenSE Cookbook is elaborated by institutional
patterns and practices addressing JPL specific tool services (CAE SE Cookbook) and JPL specific systems
engineering practices (JPL SE Cookbook). Additionally, project specific adaptations (e.g. Europa Clipper,
Europa Lander) are captures in project specific cookbooks.

3. RUNNING EXAMPLES

For brevity only the APS is shown in more detail to provide context for the patterns described below.

Following the ESEM, first the APS mission boundaries are defined, by identifying the interfaces and interchange
of APS with other subsystems within the TMT. This is achieved using SysML Block Definition (BDD) and Internal
Block (IBD) diagram types as can be seen in Fig 5.



Operator [ Modeled high-level
behavior of interfacing
TMT specification 37 -~~~ | components
handed to JPL _ |l
wd | 1CS — APS Black
[ \ APS Box
(G R Speumnton T [ e = 8 ———
M1CS
atiocks <E
APS Operational Blackbox
aai e —— et
oF=1= Interfaces
JPL realization \ between APS
of APS e ol and other
/ e = | |subsystems
Other TMT W A |
Subsystems == =

Figure 5 TMT Block Diagrams

Then, the conceptual architecture is elaborated to identify the functional components of the APS itself, again

using BDD and IBDs, see Fig 6

APS conceptual is
broken down into
several components |

I

Procedure
= = Executive
Analysis
Software
(PEAS)

L= ShE
* Camera

ji ¥

Behavior of all
components modeled

Figure 6 APS Block Diagrams




4. SELECTED COOKBOOK CONTENT

A selection of patterns from the Cookbook are described here in an abridged format. The unabridged content
can be found at https://mms.openmbee.org

Requirements Verification Pattern

Intent

The intent of this pattern is to validate requirements, verify as designed system against requirements and
publish analysis results.

Concept

The pattern follows the OOSEM structure, specifying the system of interest within the context of an enterprise.
The specification is then elaborated into the three OOSEM white box designs, Conceptual Design, Conceptual
Node Design, and Physical Design, see Fig 7. Additionally, property based requirement are used to specify
requirements on the system of interest. For further analysis of one of the white box designs, the enterprise is
specialized into a Context block, see Fig 8. In this example, the Context's system specification property is
redefined by the Conceptual Node Design that allows interactions between the white box design components
and the external systems in the enterprise context to be shown.

bdd Pattern | N Reguirements Verification Structure J

eblocks
Enterprise

\

external Sys!emL g system Suecl.‘rcntrun_[

atlocks | sblocks L ablocks |
External System System Specification Context
‘ ‘OFEG Diagram = &ijSystem Specification Etfhmed Diagram |
) ) fequlrememi_ﬂ. N
| eblocks ; ‘ ebiocks ‘ ebiocks
Conceptual Node Design Physical Design Conceptual Design

Reql:ll_rgment

«biocka |

|Owned Diagram Sonsirams
| |constraint : Constraint

concaptual Component |1, * valeProperty : Real [

| «blocks
| Conceptual Component
= — <

S\nlerachines Conceptual Component State Machine

Figure 7 Enterprise Context



bdd [Package] [ E Analysis Contextu

xblocks
Analysis Context
Context
«blocks
Context
parts
system Specification : Conceptual Node Design{redefines system Specification}
: System Specification
: External System

Figure 8 Analysis Context

Known Uses
The as specified system of APS is analyzed to see if it meets the timing requirement of the post-segment
exchange operational scenario.

First the textual requirement is formalized into a property-based requirement, see Fig 9.

bdd [Package] Domain| APS Operational Biad&boxu

«TMT Regquirements
Post-Segment exchange alignment time
wblocks «Specifiess | 18xt = TREQ-2-APS-0016] APS shafT T
APS Black Box Specification TMT = — — — — |perform on-axis alignment in less thz
(at a single elevation angle) when alllopdi
the post-segment exchange specifications. *
TMT ID = REQ-2-APS-0016"
T
luwﬂnh
|
«blocks «blocks
APS Operational Blackbox On-axis alignment maximum time for Post
Specification JPL Segment Exchange JPL
T mm:md 7200(unit = second}
Mathematical
«constraint»

re-formulation MaxTimeConstraint
of requirement | [

«blocks wblocks
m:m; APS Conceptual parmmoters
APS Realization maxTime : Real
! pi: Real

Figure 9 Property-based Requirements



The analysis context aggregates the conceptual model, binds the formalized requirements to the properties of
the system design, in this case the total duration of an operational scenario, see Fig 10.

bdd [Package] Automat Duration Analysis| Duration Analyss - Post Segment Exchangs 1| 1
par [Biock] Post-Segment Exchange Dution Sounarc] Post-Segment Excharge Dursiion Scenario Analyiis ||
S
Imw R —_——
| <blocks APS Ops i Blackbox : APS wpuat (1]
| Santion Asytysls Context poas : Procedure Exscutive and Analysis Softwars
| Pty Ty | anguabs
analysisDriver - Analysis Driver !m:ml
: L nad
: | oo b s e o P Sogrmen Exchange JPLpoetrehgTima L socsnd
| ! soquats.
| | raxTiene : Real p1 : Real
| Lﬂ"_‘. ]
. ‘ - T
I St fptesmanTime}
|
S
! T
: blocks == S I T !
| T ' .
| |wtCnee st SagmantExchange Duraton S i— _ _1 Analysis context aggregates conceptual
— —w :} model, binds formalized requirement,
and triggers verification use case

Figure 10 Binding Parameter in Analysis Context
Then, the operational scenario is initiated through a sequence diagram by passing a message, see Fig 11

bdd [Package] Automatic Duration Analysis| Duration Analysis - Post Segment Exchango |]

L P I oy 1
d sd [Tost Case] Post-Segn o Sconara] Post - 0]
sbiocks
Duration Analysis Context
S |

| [ ablocis n’] iocks =]
{ analysisOriver : Anatysis Driver nmmw
analyses E peas : Procedure

Use case initiated
with same message
aaess] PASSING MEChanism | e

T

(.; (B0}

Is 2: Post-Segment Exchange Alignment
«blocks 11"') . H
P T g k-1 el | (720172018}

cisxnler befator \

atesiCase »Post-Segment Exchange Duration Scenarkay |
3 Abort

-

Figure 11 Analysis Scenario



Finally, a table with the results is produced showing if the constraint associated with the requirement is violated
or not see Fig 12. In this example, the requirement is 7200 seconds and the as-specified system performs the
operation in 4804 seconds.

- i L S— - postSegXchgT A postSegmentE
# :‘ «TMT Requirements l :secon thinal: Real : MaxTimeCo
Post-Segment exchange alignment time F $7200.0 = - i
| 22 UL pass
|| Text = TREQ-2-APS-0016] APS shall bp-able-io + . . !
|_||perform on-axis alignment in less tha ag) hr_l_:‘du 3 4804.0 _
[ (at a single elevation angle) when all oplits are¥ A o . : :
j%ﬂfg‘ﬁmﬁm&gﬂﬁgimm‘ Bk 93 Concptn ) Constraintis either
m:mmﬂmmammnm" . V|0|at6d or nOt

wequals

[ tFinal : Real |

‘ on-axis alignmont maximum time for Post Segment Exchange JPL postSegXchgTimeLimit : second ‘

wequals
maxTime : Real p1: Real
L] L]
sconsiraints
on-axis alignment maximum time for Post Segment Exchange JPL.postSegmentExchange : MaxTimeConstraint
{p1<=maxTime}

.

Figure 12 Requirements Verification

Tooling
Cameo Systems Modeler and Simulation Toolkit are used to capture the model and perform the system level
behavior simulation. View Editor is used to publish the analysis report.

Fig 13 shows a screenshot of the educational example of the autonomous ferry’s internal structure while the
simulation is run where different states are indicated by the elements highlighted in green, yellow, and red. Red
for the currently active element, yellow for the last visited element, and green for the ones which have been
active during the simulation.

Ibd {Block] Communication Cantaxt| Communication Cantext ||

*satllio : Satollite. y - ; wproys ([ systom Specification : Concoptual Node Design
i | autonomous Ship Comm2ChargingBase ; Communication Intedace 1~
p1 : Communication intarface g | PRy e et —
— o4 M2 : 1 Interincs | autonomousShip = Autonomous Farry | |
: canmector Communication interface -
«pranys
proxys 5| + Remo
G b INGGomm ZE oncepiuaiiode : Communication Intedace : ‘
1y 7 7] .
P : Communication Infortace [
DR FNGComm2ChargngBase | Communication Intertace

Figure 13 Internal Block Diagram



Fig. 14 shows a user interface produced with the simulation environment, plotting several state variables of the
as-designed system, the battery state of charge, the data volume and the operational states of the ferry.

Analysis Conbext
Ta|
mission
concegtuallesgn
BUADABMOUSF BTy
43,0000
LT T2
battery data
0 1,000,000
: 78 | o 7m0
§ o E soo000
28| = 250000
o e o - -
o 250 S0 TSD 1000 1250 1500 1750 0 25 500 750 1000 1250 1500 1,750
time{a) el
s
]
e
Rasharging | Rty & oy Crasge Bty fury Cragea
S = o Y
et Recharging = Al e Prihary = 80
T — Marsery Lo Haney Lonm
ALACNOTIOUS Fermy Transmitting |
j'-n_l e |-.=.-.] . I-.A.I
Readyfor Transmission . i - s i — il i
¥ P v en Hire P ey P
..... a 750 1,000 vaa ! o |
| tima(s)
-
I ¥

Figure 14 Plot of System State Variables

Monte Carlo Analysis Pattern

Intent
The intent is to estimate the characteristics and probability of a particular behavior.

Concept
The properties to be estimated can be expressed in SysML as either attributes to activities or as properties of
the structural elements (typically blocks) whose classifier behavior the activity represents. Such an approach

is in fact not restricted to Activities but may also be applied to other behavioral elements (conditional to tool
support), see Fig 15

Probability at the edges of decision nodes can be modeled as value properties of systems.



act | g_f‘:} System Activity |

’ aallocates
component : Subsystem

1
| {pfonsbiny = "2 |
sy =8 |
[ Action 2 |
! I
| I
& - -] _
{probability = factionProb"} |

l{pemxumy ="f.acionProb’} ¢

] I

| —N

e BB _|_( Action3
endTime=simtime = )

®

Figure 15 System Behavior

Implementation

A Quadrupedal Robot is used as an educational example. The Monte Carlo simulation is combined with the
Requirements verification pattern in order to verify the as-specified system against the requirement. The
behavior of the robot shall be performed within 17 seconds, see Fig 16.

bdd [ g System Hierarchy u

ablocks
Multi Element Analysis Context

constranty

- Calcutate Avg
GetSize

geTime - timelsecond]

single Element Analysis Contekt

sbiocks
Single Element Analysis Context

mnotI system Specification
ablocks «blocks arequirements
Quadrupedal Robot System Specification Performance Test
valyes Requirement
endTime : tima{sacond] = 0.0 —3 d=""
Text = "The robot shall
perform physical actions for
a maximum of 17 seconds™
esatisfys
-~
sensory Sulm_«slern timng Requirement o
ablocks wblocks wconstraints
Sensory Subsystem Timing Requirement Timing Constraint
maxAverageTime : timefsecond] = 17.0  tining Condtraint |{maxTime<=designTime}
DEEmelErs
maxTime
designTime

Figure 16 Analysis Context



The behavior of the robot is specified with an activity model and duration constraints on the actions. Each
decision node in the activity flow has a certain probability to be taken, as shown in Fig 17.

act [Activity] [ Move Robot |
salocates
Sensory Subsystem
¥
f {orcenity =7 \’rf |
:Turn on I Malfunction [
s;l;::g {8s..Bs} |
{4s..4s) L |
Run ! I
i’f 7777777777777777777 o (5s..55) | |
i {probabiity = "0.87} | | |
! [ ! I
| W | |
______ = g e e Som o meocs
= {peobabilty = 47 i I/_ lprodability = 0.3 |
¥ |
Gallop \ I _)"\p
{Bs. 68} N obaBMly="04T — — — — — <2
f—— < - dbeorg J i
— s | I ¥
v | Jump over
- = object
| {2s..25}
endTime = ) —
simtime; . |
print | \f
(endTime}); | |
y |
3 |
® |
|

Figure 17 Behavior of Robot

Performing multiple runs of the system’s behavior results in a table showing different times. In Fig 18. Resuls
from five different runs are shown.

= 7 Name [¥] endTime : time[second]
1 = robot at 2017.07.20 17.38 10.0
2 = robot at 2017.07.20 17.38 112.0
3 = robot at 2017.07.20 17.38 15.0
4 =1 robot at 2017.07.20 17.38 l12.0
5 = robot at 2017.07.20 17.38 17.0

Figure 18 Timing Results

Those runs are then combined using a parametric model to verify the requirement against the as-designed
system.

Known Uses

In the TMT project this method is used to capture and analyze the Acquisition Process with IRIS and NFIRAOS
LGS MCAO mode, shown in Fig 19.



(“act [ctivity] Acquire a target with IRIS and NFIRAOS - Gonceptual Actual Acquire a target with IRIS and NFIRAOS - Gonceptual Aclua|/'

Author. rkarban [Version

Modification Date: 5/4/18
406 PM Completion Status:

‘Rewewed by: ‘
‘LastMud\Ted by: girancho ‘

&

Figure 19 IRIS and NFIRAOS LGS MCAO operational Acquisition Scenario

Tooling

Cameo Systems Modeler is used to perform the simulation runs, which also produce a trace of the actions

taken for each run.

SysML probability concepts and distributed properties capture operational knowledge in system model.

Probabilistic distributions can be simulated within Cameo Systems Modeler using standard SysML probability

distributions defined for value properties.

tMT Observatory System Black Box ion : TMT O System Conceptual
¥
Start Acquisition
015015}
[Acquire Telescope Painting] ¥ [Align BTO]
Iprobabilify = “ProbsbiliyAcaTelPeintT ¥ [probssility = “ProsssiliBTOOR]
v v
: Acquire Telescope Pointing R 0R i copnal A2
A1 Conceptual ¥, | [A2]
[A1] 7
th
¥ [Canfirm Laser Propagation]
" fprocasility = “FrabailiyChiLaserFios ]
: Check Laser Propagation
Permission Conceptual
Yo [A3]
¥ [cquire and Lock LGS]
¥ (prabability = "FrobabilityAcaLLGE
: Acquire and Lock LGS
" ¥ Conceptual [A4]
> <o
%
[Acquire PWFS Tier 0 or Tierl and HO Truth]
" lprobability = "FrababilityAcoPwlsFist] T
: Acquire and Lock PWFS
Conceptual
[A5] "
¥
>
¥ [Acquire Tier 1 TTF OIWFS]
- {probability = "ProbabilityAca TTFOINFS]
2
y : Acquire and Lock TTF OIWFS
o Conceptual [A6]
th
[Acquire PWFS HO Truth Only] ¥ ¥ |Acquire Tier 2 TT OIWFS/ODGW]
r 5 b
{probability = "ProbabilityAcaPwizSecand] {probability = "ProbabilityAcaT TOIWFSODGW}
v
+ Acquire and Lock PWFS : Acquire and Lock TT
AT Conceptual 2 OIWF SI0DGW Canceptual
[A7] s #| 1A8]
¥ £,
>3 <
¥ [Acquire Tier3 or Tier3F Truth ODGW/OIWFS]
b {probability = "ProbabilityAcaTruthODEWOIWFS]
&
v + Acquire and Lock TT Truth
>d OIWF S/0DGW Conceptual [ AQ]
h
¥
Acquisition Finish.
015 015}
®




Error Budget Management Pattern

Intent
The intent is to manage error budgets of technical resources such as wave front error.

Concept

Conceptually, the errors are rolled up recursively in the system using different formulas, such as Sum,
RootSumSquared, or Product, as shown in Fig 19 and Fig 20. Additionally, a margin is calculated and verified
against a requirement.

bad [Package] [ | &) Error Rolkup Pattern ﬂ

«blocks

£ Bl i D £l

vales

lerroridargin : Real

lerrorReq  Real UsubError
/errorCBE : Real fo.r
T {union}
marginPercentageCalc
«consiraints zblock» eblocks wblocks
MarginPercentage SumRollUp RootSumSquaredRollUp ProductRollUp

oonstraints

{margin = round(100 * (allocated - cbe) / allocated)}

paramelers
aliocated : Real
cbe : Real
margin : Real
errorCBECalcSum | errorRegCalcSum ermorReqCalc | errorCBECalc | errorReqCaicProd emmorCBECalcProd
«constraints «constraints «constraints
Sum RootSumSquared Product
COASITEMS CONSiraris oonstrainis
{outValue = sum(inValues}} {vars=0; foutValue = 1;
e for {i=0; i < inputVals_length; i++) for (i = 0; i < inValues length; i++)
Sl s += inputV/als[j] * inputVals(i; outValue *= inValuesll;
aies : Real [0..1] output = Math.sart(s)} if (inValues Jength == 0)
outValue : Real S outValue = 0;}
parameters =
output - Real pammeters
inputVals : Real[1." inValues : Real [0.."]
outValue : Real

Figure 20 Different types of Roll-ups

par [Block] RootSumSquaredRollup [ ErrorCBECalc lJ

aconstraints
errorCBECalc : RootSumSquared

ale _I'orC“.--_'_.- b tput —— {vars=10;

T BE : Real | e il | for (i = 0; i < inpufVals. length; i++)

s += inputVals[] * inputVals(i;

output = Math.sqri(s)}
*IsubError : ErrorRollUpPatternElement [0.."]

lerrorCBE : Real nputvaE {19 F

wequals

Figure 21 Parametric Model of RSS Roll-up



Known Uses

Within the TMT, the APS uses this pattern to capture the alignment error of the M3 to APS interface. Fig 22

shows the alignment requirement and the required accuracy (0.03 percent) as a property-based requirement,
refined from a textual requirement.

bdd [ Error Requirementsy

sblocks =0ObjectPropertiess
APS Operational Blackbox «TMT Rethrem?nt»
Specification JPL L cEpeEiﬂes: Telescope Pupil Alignment

—|Text = TREQ-2-APS5-0086] APS shall measure the
position the telescope pupil to an accuracy of 0.03% the
diameter of the pupil.

TMT ID = REQ-2-APS-0086~

T

arefines

«blocks
Telescope Pupil Alignment Requirement

tele Pupil Al t R t i
i b ! i v constr : Pupll Aignment CBE vs Reqguired Value Comparison
1 |conversion : Convert Meters to Percent

requiredAccuracyinPercent : Real = 0.03

Figure 22 Property-based Requirement
The structure of the error budget is defined by an error budget tree that shows the hierarchy of system blocks

that contain error values that contribute to the overall budget. The figures below show excerpts of the error
breakdown tree, as shown in Fig 23

bdd [ M3 Tip/Tilt Error Budgety

ablocks

abbjeciﬁmperll’esx
zrootSumSquaredRolllps =TMT Requirements
Alignment of M3 to APS-TMT interface point _uSpecifiess Telescope Pupil Alignment
' v lig="g6"
JerrorMargin : Real = 31.0 Text = " [REQ-2-APS-0086] APS shall measure the position the

lerrorCEE © Real = 0.0140228385143664583

telescope pupil to an accuracy of 0.03% the diameter of the pupil”
ferrorReq - Real = 0.020248456731316585 . . - ;

- ] . 4
whlocks whlocks ablocks
wroctSumSquaredRollUps | arootSumSquaredRollUps «wroctSumSquaredRolilUps:
Knowledge of APT-TMT interface point EAIiunmeﬂt of APS Stimulus to Referenence Point K-Mirror Offset
weiues [ values [ values

ferrorReq - Real = 0.01044030650591055 ferrorReq : Real = 0.01 \lerrorReq - Real = 0.014177448878757825
|lerrorCEE : Real = 0.00824621125123532 lerrorCEBE : Real = 0.008 ‘lerrorCBE : Real = 0.008035500496896712
\lerrorfMargin : Real = 21.0 \ferrorMargin : Real = 20.0

lerrorMargin : Real = 43.0

Figure 23 Error Budget Tree



Fig 24 shows the top of the M3 alignment error budget that ties the requirement to the top of the error budget
tree.

| bdd [ Knowledge to APT-TMT interface poinf /

«blocks
wrootSumSquaredRolllUps
Knowledge of APT-TMT interface point
values
lerrorReq ; Real = 0.01044030550851055
femmorCEE : Real = 0.00524821125123532
lerrorMargin : Real = 21.0

-

«blocks sblocks
aerrorRollUpElements werrorRollUpElements
Error between Reference Point and fiducials Error in global alignment of AP S using fiducials (by TMT)
values values
ermorCEE : Real = 0.002 errorCEBE : Real = 0.003
fermorReq - Real = 0.003 ferrorReq - Real= 0.01
lerrorbargin : Real = 33.0 lerrorbfargin @ Real = 20.0

Figure 24 Alignment Error Budget

5. MODEL LIBRARIES

The OpenSE Cookbook is accompanied by the OpenSE model library that provides model templates (e.g. to
support ESEM), structural elements (e.g. for organizational charts), and behavioral elements to facilitate the
authoring and analysis of models following the described patterns.

6. DISCUSSION AND LIMITATIONS

The Cookbook is organized into a specification and tooling part. The specification part focuses on how the
relevant information is captured in SysML and serves also as a specification for the tooling in the sense that
the tools should support such SysML models in terms of syntax and semantic. Tools are also expected to use
the examples as test cases to demonstrate their capabilities. The tooling part is extended as tooling support
grows, which may consist of both open-source and commercial tools. However, to efficiently apply the specified
patterns, adequate tooling support is a requirement. The current Cookbook version (2018) describes the usage
of commercial and open-source tools (e.g. Cameo Systems Modeler, MDK-Systems Reasoner). It is expected
that the tools supporting the patterns will expand.

7. RELATED WORK

The first version of a cookbook was the “COOKBOOK FOR MBSE WITH SYSML” [23] authored by the

Telescope Challenge Team [23] as part of the INCOSE MBSE Initiative. It focused on demonstrating the use
of SysML for a non-trivial interdisciplinary system with the Active Phasing Experiment (APE) as a case study.
APE is a technology demonstrator for extremely large telescopes. The case study and examples focused mainly
on structural and requirements modeling, whereas the additions from the TMT focus on behavioral modeling.



8. CONCLUSIONS AND FUTURE WORK

The OpenSE Cookbook addresses systems engineering concerns by providing a collection of best practices,
procedures, and patterns which are targeted on guiding systems engineers in their day to day work. The
cookbook is organized in different volumes according to typical systems engineering tasks, describing how to
capture, manage, and analyze system design related information and produce the required systems
engineering products.

The Cookbook is built on proven patterns applied in TMT and APE production models, and supported by
available tooling which facilitates the application of the recommended practices.

9. ACKNOWLEDGEMENTS

This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under
a contract with the National Aeronautics and Space Administration (NASA), the Thirty Meter Telescope Project,
and at the European Southern Observatory.

The TMT Project gratefully acknowledges the support of the TMT collaborating institutions. They are the
California Institute of Technology, the University of California, the National Astronomical Observatory of Japan,
the National Astronomical Observatories of China and their consortium partners, the Department of Science
and Technology of India and their supported institutes, and the National Research Council of Canada. This
work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation,
the Ontario Ministry of Research and Innovation, the Natural Sciences and Engineering Research Council of
Canada, the British Columbia Knowledge Development Fund, the Association of Canadian Universities for
Research in Astronomy (ACURA) , the Association of Universities for Research in Astronomy (AURA), the U.S.
National Science Foundation, the National Institutes of Natural Sciences of Japan, and the Department of
Atomic Energy of India.

REFERENCES

[1] Trancho, G., Analyzing the Operational Behavior of NFIRAOS LGS MCAO, Acquisition on the Thirty Meter
Telescope using SysML

[2] Karban, R., Dekens, F., Herzig, S., Elaasar M., Jankevicius, N., “Creating systems engineering products
with executable models in a model-based engineering environment”, SPIE, Edinburgh, Scotland, 2016

[3] Karban, R., Hauber, R., and Weilkiens, T., “Mbse in telescope modeling," Insight 12(4), 24{31 (2009).

[4] Karban, R., Jankevicius, N., and Elaasar, M., “Esem: Automated systems analysis using executable sysml
modeling patterns,” in [INCOSE International Symposium], 26(1), 1{24, Wiley Online Library (2016).

[5] Karban, R., Jankevicius, N., Elaasar, M. “ESEM: Automated Systems Analysis using Executable SysML
Modeling Patterns”, INCOSE International Symposium (IS), Edinburgh, Scotland, 2016

[6] Karban, R. “Using Executable SysML Models to Generate System Engineering Products”, NoMagic World
Symposium, 2016

[7] OMG SysML, [Systems Modeling Language (SysML) Version 1.5], OMG, 2016

[8] OpenMBEE https://github.com/Open-MBEE

[9] TMT, “Thirty Meter Telescope.” http://www.tmt.org

[10]I1SO/IEC, ISO/IEC 15288:2008(E), Systems and Software Engineering — System life cycle processes,
International Organisation for Standardisation/International Electrotechnical Commission, February 1, 2008

[11]1INCOSE “International Council on Systems Engineering.”_http://www.incose.org




[12] OMG, “Object Management Group.” http://www.omg.org

[13] Friedenthal S, Moore A., and Steiner R., [A Practical Guide to SysML 3rd Ed.] Morgan Kaufmann OMG
Press, 2014

[14]NoMagic “MagicDraw”_http://ww.magicdraw.com

[15]NoMagic = “Cameo  Simulation  Toolkit” https://www.nomagic.com/product-addons/magicdraw-
addons/cameo-simulation-toolkit

[16] TMT model https://github.com/Open-MBEE/TMT-SysML-Model

[17]11SO/IEC, ISO/IEC 42010:2011, Systems and software engineering - Architecture description

[18] http://www.omgsysml.org

[19]Karban, Robert, M Zamparelli, B Bauvir, B Koehler, L Noethe, A Balestra, Exploring Model Based
Engineering for Large Telescopes, SPIE Astronomical Telescopes and Instrumentation, 2008

[20] Analyzing the Operational Behavior of the Alignment and Phasing System of the Thirty Meter Telescope
using SysML Sebastian J. |. Herzig, Robert Karban, Gelys Trancho, Frank G. Dekens, Nerijus Jankevicius,
and Mitchell Troy, Adaptive Optics for Extremely Large Telescopes, Tenerife, 2017

[21]Luigi Andolfato, Robert Karban, Marcus Schilling, Heiko Sommer, Michele Zamparelli, and Gianluca
Chiozzi, Experiences in Applying Model Driven Engineering to the Telescope and Instrument Control
System Domain 2014, SPIE

[22] COOKBOOK FOR MBSE WITH SYSML 1.0 19/01/2011, http://mbse.gfse.de/documents/faq.html

[23] Telescope Challenge Team: http://omgwiki.org/MBSE/doku.php?id=mbse:telescope




