Analyzing the Operational Behavior of the Alignment and
Phasing System of the Thirty Meter Telescope using SysML

Sebastian J. I. Herzig®, Robert Karban®, Gelys TranchoP, Frank G. Dekens?®, Nerijus
Jankevicius®, and Mitchell Troy®

2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
PThirty Meter Telescope, Pasadena, CA 91124, USA
°No Magic, Inc. Kaunas, L'T-51480, Lithuania

ABSTRACT

The Alignment and Phasing System (APS) of the Thirty Meter Telescope (TMT) is responsible for positioning
individual segments of the primary mirror, as well as the secondary and tertiary mirrors. Given its essential role,
understanding the as-specified behavior and verifying related requirements is vital to the correct operation of the
TMT. Analyzing the behavior of APS is challenging due to the variety of interactions with other subsystems.
This paper presents results from developing an integrated system model that captures the structure, behavior,
and requirements in a formal modeling language to enable automated verification using appropriate solvers.
Specifically, demonstrated and discussed are the results of applying a Systems Modeling Language (SysML™)
based approach in which operational modes, behavior specifications and use case scenarios are used for the
purpose of verifying requirements on timing, power, and pointing error through system-level simulation using a
single, integrated model.

Keywords: Model-based Systems Engineering, Verification, Requirements, Modeling and Simulation, TMT

1. INTRODUCTION

The Alignment and Phasing System (APS) of the Thirty Meter Telescope (TMT) is a Shack-Hartmann wavefront
sensor responsible for the sensing and commanding of the pre-adaptive-optics wavefront quality.! In order to
produce wavefronts of acceptable quality, APS will adjust pistons and tip/tilts of each of the 492 segments of
the primary mirror (M1), adjust the segment surface figure (via warping harness adjustments), and rigid body
degrees of freedom of M2 (secondary mirror) and M3 (tertiary mirror) (piston/tip/tilt or alternatively piston/x
and y translation). APS interacts with numerous other components of TMT, including the M1 control system
(MI1CS), telescope control system (TCS), and common services (CS). APS also receives input from operators.
Other TMT sub-systems require knowledge about how APS is specified to operate. This is particularly important
to help develop, derive and verify interfaces to external subsystems, requirements on APS itself, and requirements
on other telescope subsystems. This, combined with the complex internal behavior of APS makes designing,
developing and verifying APS a challenge. In this paper, we present the latest findings on our model- and use-
case-based approach to analyzing the operational behavior of APS for the purpose of verifying requirements on
timing, power, and alignment error.

Analyzing the operational behavior of APS requires a variety of information about APS and its interfacing
components. In common systems engineering practice, this information is spread across a number of documents
(including spreadsheets and presentation slides) and isolated analysis models. These analysis models, which may
include discrete event simulations or algebraic models, refer to information captured in a variety of documents,
but this link is typically not explicit. Any change to the system specification - which may include changes in
requirements, interfaces, procedures and protocols and, in some cases, changes in structure - usually necessitates
an update to other artifacts, including any analysis models. This is typically an error-prone process, and artifacts
are synchronized often only infrequently.

Further author information:
Sebastian J. I. Herzig: E-mail: sebastian.j.herzigQjpl.nasa.gov, Telephone: +1 818 393 3059

In our work, we follow the Model-based Systems Engineering paradigm. The Systems Modeling Language
(SysML™) is used to create a holistic system model. This system model offers an integrated view on the
requirements, structure, behavior, and parametric relationships between APS, its components, and interfacing
components of TMT. The advantage of using a formal language such as SysML™ is its well-defined semantics
and the ability to interpret the model computationally. This enables, e.g., solvers such as the Cameo Simulation
Toolkit for the SysML™ modeling tool NoMagic MagicDraw to ezecute and simulate the system in the time
domain. An additional advantage of using system modeling languages such as SysML™ is the ability to maintain
a consistent view of the system and single source of authority for systems engineering related information.

The system model development is heavily driven by use cases. Use cases represent high level procedures
that APS uses to perform various telescope alignments and calibrations (i.e., operational scenarios). With these
use cases we are able to analyze, e.g., both power usage and the length of time a given procedure requires to
complete. This paper adds to previously published work by offering a complete view on operational analysis
of APS, and introduces a novel approach to error budget analysis in SysMLT™ which is demonstrated through
application to analyzing pointing errors.

The remainder of this paper is structured as follows: in section 2 our approach to modeling operational
scenarios using SysML™ is introduced. Section 3 details how our system model is used for the purpose of
analyzing the performance of, and verifying requirements on APS. Towards the end, we present a review of
related work in section 4. The paper closes with a summary of the main insights and conclusions from the work.

2. MODELING OPERATIONAL SCENARIOS IN SYSML

Operational scenarios are high level procedures that APS uses to perform various telescope alignments and
calibrations. As such, we use operational scenarios to verify requirements on the performance of the telescope
as specified. Primarily, this includes verifying requirements on (a) timing, (b) electrical power, and (c¢) pointing
errors. It should be noted that, thus far, we have not yet covered use cases that are specific to Assembly,
Integration and Verification (AIV) or commissioning, or off-nominal use cases.

We have modeled a number of operational scenarios, the current set of which is briefly introduced in the
following. The scenarios were modeled using SysML™ by following the principles of the Ezecutable Systems
Engineering Method (ESEM).?2 ESEM prescribes the functional and physical decomposition of the system into
a nested tree of components, as well as the specification of the behavior of each. Requirements are formally
captured through manual translation to mathematical constraints and the binding of any variables in these to
behavioral or structural properties of the system. This method is detailed in the second part of this section using
Maintenance Alignment as a guiding example. The system model is open source *.

2.1 List of Modeled Operational Scenarios

To cover the full spectrum of interactions with other subsystems of TMT, and to accurately predict the perfor-
mance of APS, a number of operational scenarios have been modeled. Currently, this set consists of:

e Post Segment-Exchange Alignment: re-align the telescope after new segments have been installed or
exchanged. It is estimated that 8 segments will need to be exchanged in a single night every two weeks.

e Maintenance Alignment: re-align the telescope in between segment exchanges.

e Rigid Body M3 Alignment: align M3 in rigid body motion. The main impact of M3 motion is pupil
motion, which APS can measure. M3 will be aligned at a single elevation angle.

o Off-Axis Wavefront Measurements: perform off-axis wavefront measurements at any point in the
telescope field of view. This scenario is primarily used to diagnose telescope problems as well as confirm
the telescope performance off-axis.

*Available at http://www.github.com/Open-MBEE/TMT-SysML-Model

http://www.github.com/Open-MBEE/TMT-SysML-Model

e On-Sky Measurement of Segment Warping Harness Influence Functions: on-sky measurements
of the segment warping harness influence functions. The control matrix for the warping harness is generated
and used in the correction of rigid body and segment figure.

e APS Self Test: execute tests using internal light sources to confirm that it is functioning correctly.

¢ M1CS Sensor Calibration with Post Segment-Exchange Alignment: perform calibration of the
M1 control system (M1CS) sensors. In this scenario, post segment exchange alignment at a single elevation
is run, followed by an alignment at two additional elevation angles.

e M2 and M3 Rigid Body Gravity Calibration: align M2 and M3 at multiple elevation angles in order
to provide the data needed for generation of calibration of M2 and M3 motion with telescope elevation
angle. APS is responsible for collecting this data, but the other sub-systems are responsible for using this
data to generate the needed calibrations.

2.2 Components and Interfaces

Both the structure and behavior of APS is captured in the system model. Structure includes the encapsulation of
properties of a system, and the decomposition of a system by either function or physical boundaries. Interfaces
formally capture any and all exchange of information, energy or matter between components. The captured
behavior of each component specifies how the state and properties of a component change, and when and how
components interact. Requirements are imposed on both structure and behavior. Since behavior is defined for
each component, the first logical step in creating the system model is modeling the structure.

In ESEM, the structure of a system is modeled by starting with the operational domain. This operational
domain specifies the context in which the mission (here: aligning and phasing TMT) exists. The mission
encompasses all elements which are needed to achieve the goals. This includes elements that are external to APS

par [Block] APS Conceptuall APS Components and Interfaces 1]

aproxy:

I peasesHout
| “PEASZM1CSOu : APS to M1CS Intartace PEASZM1CSOu,

[sh: SH camera
CC_SH2PEASOUt |

aproxys
APEAS2M1CSIn PEAS2M1GSI

PEAS2CSOut PEAS2CSOut km : K-mirror

PEAS2CSIn PEAS2CSIn

aproxys
APEAS2ESWIn

: Shear plate

aproxys
APEASZESWOUt

PEASZInsourceOut IS2PEASI |

[1 {]
‘

: Internal Source

APTIn APTOU

PEASZPITTrackout__ PIT2PEASIN [

L]
i
[] L]

: APT Loop

aproxys
bss2peasOut peasZbssin

aproxy»
PITDataProducerlF

PITDataOut

IAPTLZAPTAQut APTLZAPTAIN
PITT2PITAOuUt PITT2PITAIn
APTAZAPTLINt MPTAZAPTLOuUt PITAZPITTOut
LS LT . |- [
apt : Acquisition Pointing and Tracking Assembly pit : Pupil and Image Tracking

PEAS2APTIn PEASZAPTOUt PEASZPITOUt PEASZPITIn Assembly [1]

Figure 1. Conceptual model: interfaces, and components of APS with their respective APS-internal interfaces.

stm [State Machine] Procedure Executive and Analysis Software_Behavior[Use Case: Maintenance Alignmentu

Maintenance Alignment
Initializing

do / InitializePEAS /initTimer

Correcting Rigid Body and Segment Figure
InitComplete / do / Rigid Body and Segment Figure correction

StandBy

Maintenance Alignment

J/Finished / diffTime

Broad Band Phasing 1Tum

do / Broad Band Phasing 1um

Abort Finished / diffTime

Finished / FinalDiffTime Narrow Band Phasing
do / Narrow Band Phasing

\/ Finished

Figure 2. Partial behavioral specification of the Procedure Ezecutive Analysis Software (PEAS) of APS.

(e.g., the M1 control system and Telescope control system) and APS itself.? Since APS is the system of interest, it
is further broken down into sub-components. Figure 1 illustrates a view on this structural decomposition, which
also shows the various interfaces of each component (here: data flow) and of APS with external components (at
the diagram boundary). These “outer” interfaces are part of the specification of the interfaces with components
in the overall mission that are external to APS.

2.3 Operational Behavior of APS Components

In specifying the behavior of components, we distinguish between the lifecycle behavior and distinct, isolated
activities of a component. The lifecycle behavior describes the behavior of a component from beginning to
end-of-life, and describes the state of a component at any instant in its operational lifetime. In SysML™™, the
lifecycle behavior is the classifier behavior.

SysML™ supports multiple behavioral formalisms, and uses three primary notations for describing behavior:
state machines (state charts), activity diagrams (flow charts), and sequence diagrams. We have found state
machines to be most suitable for specifying the lifecycle behavior of components. Primarily, this is due to
state machines offering a natural way for specifying the various possible modes of a system (including failure
modes) using states, as well as the conditions for transitioning between them. For capturing specific tasks that
represent only a part of the overall behavior of a component, activity diagrams have shown to be most practicable.
The nature of such flow charts allow the specification of sequential and parallel behavior, decision points and
synchronization points among other features, allowing for an intuitive description of intended behavior.

The specification of the operational behavior of APS and its components is driven by the operational scenarios
introduced in section 2.1. In most cases, the Procedure Executive Analysis Software (PEAS) plays a central role in
their description. Figure 2 illustrates the specified behavior of PEAS during the operational scenario Maintenance
Alignment. After initialization, PEAS is in a StandBy state. An external signal Maintenance Alignment (which
may be provided by a user) triggers it to transition to the Maintenance Alignment state. PEAS is specified to
only be able to leave this state if an Abort signal is provided (internally or externally). Otherwise it proceeds
with first correcting the rigid body and segment figure, then performs broad band phasing and finally narrow
band phasing. Once completed, PEAS returns to the StandBy state.

act [Activity] Broad Band Phasing[Broad Band Pha:ingy

, Author: rkarban Version:
Modification Date: 5/27/17 A .
B ‘ 452 PM Completion Status:
: Check Mirror
Is Phaseabl Reviewed by: ™
avalueTypes m :h -
doGuide : Boclean Last Modifed by: sherzig
isPhaseable
fal S
_ [ralse] ={ ReportEmor |— a@
Guide. | [true]
‘ L ‘. desiredSHMask (3
avalueTypes 3 | docquisitionAndGuide,_| : Setup APS, Acquire and aing si asl result E‘
“m% =
walueTyper desiredSHFiler . doStartPITTrack result lvs]ueﬁ:aldﬁwumn
filter : SH Filter ».
P I
< . .
<[Look-up BB piston commands for Step 1 |
«comments : piston ! ___|PEAS Algorithm that picks the phasing steps to be send to
The band determines M1CS, based on a look up table, Changes for the
which filter has to be Broad-Band phasing capture range.
selected in SH wheel. So |
this parameter needs to be
passed into the Setup and ~ i B
then into configure APS for command M1CS for first move : Send :
SH fest Segment PTT For BB, we only send Piston commands.
th — — — My Owner
«package»Cmd_M1CS
A

Y

S
"’ : Take SH Expml#lu 4t
|

mund «readStructuralFeatures |

3
‘ Look-up BB piston commands for Step n :
I 2 pi

iston n

Daytime calibration between PIT
-and SH will determine the pupil
and image offsets (which are
assumed to be static for the night)

Y

} ‘ ﬂndlrdldmﬁiy\!’ﬂnd and identify n J

J

L
|" correct PIT tracking : Correct FI_Th_'acklnn.l J

2
: Calculate Pupil Registration and Image

th

\
1

‘command

M1ICS Moves : Send s-gm-m_nrl'.lr ‘ ' !

. W
(Calculate Coherence Parameters
| {1s..3s}

)

¥

il 1

\
1

\
act [Activity] Do PIT Tracking [Do PIT Tracking JJ
[

[step == broadbandPhasingSteps]

i
| I
i mwmﬂ&l?u 5 e 'd,”"""’ =
e a optimize M1CS phase : Calculate
‘ Send Segment F"rh Phasing Commands
th
| T
' '
. i \
 Display Phasing results : Display Results
to APS Operator
th
- b \
" : Ask OP to Send Segment PTT |'|1
decision
This sends the Piston commands | " — — — — = il
for the best phasing solution. | [true]
~
send phasing commands : Send
Segment PTT "

. v
‘Take Snaphot : Save MICS Conﬁgllrlﬁm)

|
|
|
|
| [false]
|
|
|
|
|

Tells M1CS to save its
configuration.

My Owner
«package»Cmd_M1CS

Figure 3. Specified behavior of PEAS during the Broad Band Phasing activity.

The “do” behavior of each state (or here: phase of the use case) specifies the behavior of PEAS when in
that particular state T. Figure 3 illustrates this “do” behavior, defined using an activity diagram, for broad
band phasing (see do / Broad Band Phasing Ipm in Figure 2). The goal of this activity is the reduction of
the steps (or piston errors) between the individual mirror segments to less than 1pm. In the APS for TMT,
this is accomplished mainly using the Shack-Hartmann camera and correlating individual subimages, similar
to the implementation at the Keck observatory.* The activity begins with setting up APS, acquiring a start
and start guiding. Parameters for this activity include the Shack-Hartmann filter to be used and the desired
Shack-Hartmann mask to be used. Note that this part of the overall flow of events is a call to another activity,
where the setup procedures are specified in more detail. This method of calling other activities allows for the
reuse of isolated, distinct tasks within multiple contexts without having to redefine the flow of events. After
initialization, the Shack-Hartmann camera is instructed to take a first image. The desired exposure time is
passed in as a parameter, and is defined in the property PhasingDit, which is a property defined in the context of
the PEAS component directly. This is executed in a loop, with the coherence parameters being calculated after
every image is taken while, in parallel, the mirror segments are moved. After a number of images are taken (the
number of images is also defined in a property in the context of the PEAS component), the initial position of
the telescope is restored, and the results of the main broad band phasing activity displayed to an operator. The
operator is then asked to confirm (or disprove) the computed new segment positions, after which the telescope
is moved back to the position previously identified.

2.4 Interactions Between Components

Figures 2 and 3 specify the behavior of PEAS. Notice how in Figure 3 a number of exposures are specified to
be taken using the Shack-Hartmann camera. Yet, according to the structural breakdown (see Figure 1), PEAS
and the SH Camera are two separate components. They are, however, connected. Similarly, PEAS is specified
to request M1CS to move segments of the primary mirror, which is a component outside of APS.

Formally, we specify such interactions over interfaces using the concept of ports and connectors in SysMLTM,
As introduced earlier, we specify the lifecycle behavior of each component using state machines, where events
such as signals (i.e., messages) can trigger state transitions. In SysML™ signals can be passed over ports, and
can have data attached to them. Actions with the semantics of receiving and waiting for signals are elementary
to SysML™ | allowing for communication between components using just signals.

Figure 4 illustrates the sending of a signal SH_Take_exposure_Cmd over the port PEAS2SHOut of PEAS (see
Figure 1). An excerpt of the state machine defining the lifecycle behavior of the SH Camera is shown in Figure 5
(left). If the SH camera is currently not in a state in which it is taking an exposure, receiving the signal

fSysML™ also allows for the behavior when entering and eziting the state to be defined.

(‘act [Activity] Take SH Exposure [Take SH Exposure
wvalueTypes .
dit : Integer |
| |
o W
P SH_Take_exposure_Cmd SH_Take_exposure_Ack
“I— On Port = b PEAS2SHOuUt
| |
|
®
, A

Figure 4. Interaction with Shack-Hartmann Camera: Take SH Ezxposure activity.

stm [State Machine] CC_SH|[CC_SH l, act [Activity] SendAck_Take_Exposure [SendAck_Take_Exposure lJ

’ o

Active

o
5H Take Exposure
{ditSetup s..ditSetup s}
Select SH_PupiMask_Cmd Change Pupil Mask | y
waiz : e b
. entry / processMask
CC_SH_Cmd_Completed2 | do / send_Ack_Select PM B motoe
| e = = {10s..10s}
I
SH_Take_sxposure_Ack
waitd SH_Take_exposure_Cmd Take Exposure I s — »
e - .y On Port= B CC_SH2PEASOut
@ 1 CC_SH_Cmd_Completeds | °'T¥/ processExposure i e o
|.©C_8H_Cmd_Compl do/ SendAck_Taks_Exposure

.L_.
©C_SH_Cmd_Completed3

e e Change Filter (.5

Figure 5. Specified behavior of SH filter (partial): (a) lifecycle behavior and (b) taking exposure.

SH_Take_exposure_Cmd leads to a transition into the Take Exposure state. This, in turn, triggers the “do”
behavior SendAck-Take_Exrposure (see Figure 5 (right)), in which an exposure is taken, the detector is read out,
and the results are sent back. Note that the exposure time is attached to the incoming signal as a payload (see
Figure 4). Similarly, the exposure image itself is sent back as a payload of the signal that PEAS is waiting for
(namely, SH_Take_exposure_Ack), over the port CC_SH2PEASOut which connects the SH camera to PEAS.

2.5 Scenario Execution Drivers

To simulate an operator initiating a particular operational scenario, signals must be injected that trigger ap-
propriate behavior of the various components. For instance, in the case of Maintenance Alignment, the signal
Maintenance Alignment triggers the start of the maintenance alignment scenario. In our approach, we have
chosen to substitute an operator with an Analysis Driver that interacts with APS (or one of its components)
simply by sending a signal to it. Practically, this can be done using sequence diagrams. Figure 6 illustrates
this: first, we abort any potentially running scenarios. Then, after 60s, maintenance alignment is initiated. As
a failsafe, the operational scenario is aborted by sending the Abort signal after 2000s.

sd [Test Case] Maintenance Alignement Duration Scenarid Maintenance Alignement Duration Sc:anarin!)

ablocks = «blocks =
analysisDriver : Analysis Driver aPS Mission C tual.APS Operati
Bl box.peas : Procedure Executive and

Analysis Software

]
1: Abort :

{605}

2: Maintenance Alignment

Figure 6. Flow of events initiating the operational scenario Maintenance Alignment.

3. VERIFYING REQUIREMENTS ON OPERATIONAL BEHAVIOR IN SYSML

SysML™ behavioral models have reasonably well defined execution semantics.® This allows for the execution
of the models of the operational scenarios introduced in section 2, thereby allowing for complex system simula-
tion verification of a variety of operational performance requirements by analysis. In this section we focus on
performing three types of analysis of operational behavior for the purpose of requirements verification: timing
(duration) analysis, power usage analysis, and error budget analysis.

3.1 Tying Operational Scenarios to Requirements

In the system model, APS is defined from two perspectives: the customer perspective, and the supplier perspective.
The customer perspective is modeled as a “black box” system that is specified by a number of requirements,
interfaces, and externally visible behavior. The supplier perspective is modeled as a specialization of the customer
perspective and captures supplier-specific decisions and technical solutions that meet the requirements.

Customer provided requirements are textual in nature, and are stored in an external requirements manage-
ment system. These requirements are imported into the SysMLT™ model. Given that the requirements are
all expressed using natural language, their use in computation is limited. Therefore, each requirement that is
relevant to analyzing the performance of APS is manually translated into a mathematical constraint. In our
approach, SysML™ blocks refine natural language requirements, and are composed of one or more mathemati-
cal constraints, which are modeled using SysML™ constraint blocks. The blocks representing requirements are
then modeled as being a composite part of the specification of APS. This formalization of requirements using
mathematical constraints and SysML™ -specific constructs is illustrated in Figure 7.

The definition of executable behavior and a formalization of requirements using mathematical constraints
provides the key ingredients for checking whether a particular performance requirement can be met. However,
they are seemingly still disconnected, also from the system structure. This connection can be formalized using
a SysMLT™ parametric diagram. Given that the system structure is modeled as the structural decomposition
of the “black-box” element that also has a direct reference to the requirements, a common context is present
in which the two can be related. Behavior simulations influence properties of the structure: e.g., the value of
a property “tFinal”, which is a property of the structural block PEAS and denotes the value of the simulation
clock at the end of the simulation, is set when PEAS transitions back into the StandBy state (see Figure 2. These
structural properties can now be formally related using binding connectors (which equate source and target).

bdd [Package] Timing Requirements] Maintenance Alignment Timing F{equi[emeny

«ObjectPropertiess

«TMT Reguirements
Alignment Maintenance time

uSpecifies» Text = TREQ-2-APS-0017] APS shall be able to perform

_____ on-axis alignment in less than 30 minutes (at a single
elevation angle) when all optics are within the alignment
maintenance specifications. "
TMT ID = 'REQ-2-APS-0017"

T
| «refines
|

«blocks «blocks
APS Operational Blackbox Specification M M Time
: JPL

«blocks
APS Black Box Specification TMT

values
maintenanceAlignmentTimeLimit second = 1800.0{unit = second)}

I

«constraints
MaxTimeConstraint

constraints

{p1<=maxTime}

Figure 7. Requirement as imported from DOORS, and formalization using mathematical constraints.

par [Block] Maintenance Alignment Duration Scenarid Maintenance Alignment Duration Analysisy

*aPS Mission Conceptual : APS Mission Conceptual

APS Clp!rlﬁo_nd Blackbox : APS Conceptual [1]

peas : Procedure Executive and Analysis Software

tFinal : Real Tl

maintenance alignment maximum time.maint itTimelimit : second = 1800.0 |
wequals
maxTime : Real p1: Real
wconstraints

maintenance alignment maximum time.maintenanceAlignment : MaxTimeConstraint
{p1==maxTime}

Figure 8. Connecting properties of APS to formalized requirements.

This is illustrated in Figure 8. Running a particular operational scenario using an execution engine such as the
Cameo Simulation Toolkit would now lead to the value “tFinal” being set, and trigger checking of the constraint.
The requirement is considered verified (by analysis) if the constraint is not violated.

3.2 Verifying Timing Requirements

SysML™ defines duration constraints which may be specified to have a lower and upper bound. These duration
constraints are typically applied to elements in behavioral diagrams and have the effect of the simulation engine
interpreting the particular step in the simulation to take a particular amount of time. For instance, consider the
activity diagram in the (right part of) Figure 5. Both SH Take Exposure and Read Out Detector have duration
constraints applied: for instance, Read Out Detector has a lower and upper bound of 10 seconds. Simulation
engines can typically be configured to either use the lower or upper value of a duration constraint, or use a random
value (assuming a distribution) in each run. The latter is used, e.g., in the design of the Adaptive Optics System
(AOS) of TMT to run a Monte Carlo simulation for determining with which certainty a particular requirement
can be met.5

Advanced simulation engines, such as the Cameo Simulation Toolkit, are capable of taking into account effects
on duration constraints when parallel behavior is analyzed. This allows for highly complex operational behavior
to be analyzed. Table 1 summarizes the results of applying the described pattern to the various operational
scenarios from section 2. The table contains both the predicted timing (using only the upper bound value), and
the requirement (if any).

Table 1. Results of timing analysis.

Operational Scenario Predicted Timing Requirement
Post-Segment Exchange Alignment 1h 15min <2h
Maintenance Alignment 26min <30min

Rigid Body M3 Alignment 79s TBD

Off-Axis Measurements 50min TBD

On-Sky Measurement of Segment Warping Harness Influence Functions 10h TBD

Self Test 10min 1h downtime / yr
M1CS Sensor Calibration with Post-Segment Exchange Alignment 2h 20min <3h

M2 and M3 Rigid Body Gravity Calibration 1h 10min TBD

stm [State Machine] PRBehavior| PRBahaviDrJJ
APS Power Usage
T 1,000
= off TumOff standby §. 750
{power=0} | standby {power=standbyPower} =
7 5 500
2
lTumOn '[Tumoﬁ g- 250 -
I on 0 -
tingPower} Stanby r T ' . .
{power=operatir 0 2,500 5,000 7,500 10,000
e time(ms)
- totalPower

Figure 9. Peak power consumption analysis: (a) general pattern used and (b) result of executing analysis.

3.3 Verifying Power Requirements

Similar to performing timing analysis, requirements on the power consumption can also be analyzed. While
SysML™ does not provide an explicit construct for power as a resource, the power usage of a component
at any instant in time (i.e., P(¢)) can be modeled as a numerically valued property of the component. Since
power consumption can often be associated with the state that a component is in, it is prudent to model power
consumption as a state invariant. This is illustrated in Figure 9 (left).

What is often of interest in analyzing the performance of a complex system, is the aggregate power usage
over time. For instance, APS, and TMT in general, consists of a number of components (SH camera, PEAS,
motors, controllers, etc.). But, not all components are active in their most power consuming modes at all times.
However, given the precise definition of the operational behavior of all components, adding the additional state
invariants defining the power usage of a component that is in a particular state provides one with the necessary
information to plot total power consumption over time!. Specific power scenarios can also be defined - e.g., a
peak power scenario, where a certain set of instruments is turned on in quick succession. The result can then be
plotted using a diagram similar to Figure 9 (right).

3.4 Pointing Error Analysis

In systems engineering practice, technical resources (such as cost, mass, data, or power) are often managed
using the concept of budgets. That is, at any point in the development lifecycle, there is a maximum possible,
maximum expected, and current best estimate (CBE) for any technical resource. The maximum possible is often
equal to an allocated value. The current best estimate evolves as the design matures. Margin is defined as how
much growth of a technical resource usage is possible. In telescope applications, error budgets play a central role.
Similar to other technical resources, portions of an overall acceptable error are allocated to various aspects of
the telescope. Verifying requirements on the operational behavior includes verifying that the aggregate expected
error is below the maximum allowed error.

As illustrated in Figure 10, we model the current best estimate, allocated value and margin as properties
of a SysML™ block. We follow the following pattern: an element that is, at some level in the inheritance
hierarchy, a ErrorRollUpPatternElement inherits three properties referring to the CBE and allocated value, as
well as the margin. All three can be derived from the values of its sub-components (using either a root sum
squared, product, or sum of values of the sub-component), or any may be directly specified. For instance, the
CBE value will often be specified directly, while the margin will typically be derived.

Decomposition is a natural mechanism for allocating error budgets. In practice this decomposition can be
distinctly different from a structural decomposition. For instance, in the example given in Figure 10 (right),

tAggregate numbers are simply formulated using parametric blocks, similar to how mass and other roll-ups are per-
formed in the TMT model.?

bdd [Package] Roll-up Pattemn[Error Roll-up Pattern u bdd [Package] Pupil Alignment Error Budge{ M3 Tip/Tilt Emor budget U
«blocks «blocks «rootSumSquaredRollUp» «TMT Requirement»
ErrorRollUpPatternElement RootSumSquaredRoliUp Alignment of M3 to APS-TMT interface point . Telescope Pupil Alignment
= /subError) e S | «Specifies® |76yt = TREQ-2-APS-0086] APS shall
-‘ - . ferrorMargin : Real = 31. measure the position the tel upil to an
leg;z p ';':]“ ouﬁinn /eTOICBE : Real = 0.014022838514366483 accuracy of 0?3;% the diammn?e%upu, =
fermorMargin : Real { } ferrorReq : Real = 0.020248456731316585 TMT ID = "REQ-2-APS-0086"
I emorCBECalc errorReqCalc l
wrootSumSquaredRollUp» «rootSumSquaredRollUp» «o
marginPercentageCalc «constraint» of APT-TMT point of APS to Point
«constraint» RootSumSquared valuss values
MarginPercentage constraints lerrorReq : Real = 0.01044030650891055 jerrorReq : Real = 0.01 femorReq
{vars=0; /errorCBE : Real = 0,00824621125123532 /errorCBE : Real = 0.008 /emorCBE
. constraints for (i = 0; | < inputVals.length; i++) /errorMargin : Real = 21.0 /errorMargin : Real = 20.0 /emorMarg!
{margin = round(100 * (allocated - cbe) / allocated)} s 4= inputVals[i] * inputVals[]; ‘
perameters output = Math.sqrt(s)} ! |
cbe : Real
allocated : Real) Paemeiecs «errorRollUpElements «emorRollUpElements
masgin: Real output: Real Error between Reference Point and fiducials Ervor in global alignment of APS using
. inputVals : Real [1.."] _— fiducials (by TMT)
values
ermorCBE : Real = 0.002 valuss
errorReq : Real = 0.003 emorCBE : Real = 0.008

Figure 10. Pointing error budget analysis: (a) general pattern used and (b) example application of pattern.

most errors refer to properties of a (mechanical) interface rather than a single structural component. Whenever
relevant and possible, properties related to the components involved can be bound to the error budget using
SysML™ parametrics, similar to how required values are bound to the relevant errorReq properties.

4. RELATED WORK

With SysML™ being the de-facto standard in applied Model-based Systems Engineering practice, there are
numerous publications describing the use of SysML™ for modeling complex systems. However, only few publi-
cations discuss the use of the execution semantics of SysML™ for purposes of system analysis and requirements
verification. In the following, we focus on related publications within the telescope domain.

Karban et al.” created a comprehensive system model in SysML™ of an actual operational demonstrator for
mirror phasing in the context of the European Extremely Large Telescope (E-ELT). This work was performed
in the context of the International Council on Systems Engineering (INCOSE) SE? MBSE Challenge. The
goal of the work was to provide examples of SysML™, common modeling problems and approaches, and to
build a comprehensive model that is to serve as the basis for providing different views for different engineering
aspects and associated activities. While the SysML™ model was not mean to be executed directly, Karban et
al. describe the use of model transformations for the purpose of simulation model and code generation.

Selvy et al.® describe their use of SysML™ for the development of the operational plan of the Large
Synoptic Survey Telescope (LSST). Specifically, all systems engineering planning and definition activities that
have historically been captured in paper documents are captured in a SysML™ model. Model transformations
aid in integrating with external tools such as specialized project management tools. The approach lead to full
traceability from initial requirements to scheduled, costed, and resource loaded activities.

Filgueira et al.” describe a end-to-end modeling approach using (textual) domain-specific (modeling) lan-
guages. These domain-specific languages expand into several knowledge domains including control, data process-
ing and observatory operations. The use of domain-specific languages gives access to a more precise vocabulary
for defining particular aspects of an overall system. The authors use SysML™™ primarily for purposes of visual-
izing the textual artifacts to communicate quantitative information if needed.

5. CONCLUSION

In this paper, we discuss the use of SysML™ for creating a comprehensive system model in which aspects of
behavior, structure and requirements are integrated formally. We also present how this system model can be
used for analyzing the operational behavior of the system by making use of the well defined execution semantics
of behaviors modeled in SysML™ . Specifically, we introduce how requirements on timing, power and alignment
errors can be verified, and formally linked to requirements and the system architecture.

We have found the approach to be highly effective in designing APS. For instance, behavioral specifications can
be easily modified, and the impact of the changes on timing, power usage, and other operational properties quickly
evaluated. Unfortunately, the approach still requires manual translation of artifacts specified in natural language
(primarily requirements) to a formal representation (e.g., requirements as mathematical constraints). This
introduces a possible source for inconsistencies. Such inconsistencies could be avoided if all systems engineering
related information were captured only using formal (i.e., computer-interpretable) languages. However, this
would require a significant paradigm shift.

Furthermore, we have found SysML™ to work very well within the context of certain system level analyses,
but not generally a suitable replacement for more specialized analyses. For instance, applications requiring
geometric reasoning, or finite element analyses, are best expressed using tools and languages specifically created
for that purpose. However, for many other tasks traditionally completed using spreadsheets or document,
SysML™ and MBSE in general, offer a plethora of advantages, including better traceability, less ambiguity,
and the ability to generate other artifacts automatically. While more effective, the use of SysML™ comes at
a price: the learning curve is steep. However, this is also the case for many frameworks and languages (e.g.,
programming languages, or even many branches of mathematics).

ACKNOWLEDGMENTS

This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration. The authors gratefully acknowledge the
support of the TMT collaborating institutions. These are the California Institute of Technology, the Univer-
sity of California, the National Astronomical Observatory of Japan, the National Astronomical Observatories of
China and their consortium partners, the Department of Science and Technology of India and their supported
institutes, and the National Research Council of Canada. This work was also supported in part by the Gordon
and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and
Innovation, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge
Development Fund, the Association of Canadian Universities for Research in Astronomy (ACURA), the Asso-
ciation of Universities for Research in Astronomy (AURA), the U.S. National Science Foundation, the National
Institutes of Natural Sciences of Japan, and the Department of Atomic Energy of India.

REFERENCES

[1] Troy, M., Chanan, G., Michaels, S., Bartos, R., Bothwell, G., Giveon, A., Hein, R., Radin, M., Roberts, J.,
Rodgers, J. M., Scherr, L. M., Seo, B.-J., and Zimmerman, D., “A Conceptual Design for the Thirty Meter
Telescope Alignment and Phasing System,” in [Proc. SPIE], 7012, 70120Y (2008).

[2] Karban, R., Jankevicius, N., and Elaasar, M., “Esem: Automated systems analysis using executable sysml
modeling patterns,” in [INCOSE International Symposium], 26(1), 1-24, Wiley Online Library (2016).

[3] Karban, R., Dekens, F. G., Herzig, S., Elaasar, M., and Jankevicius, N., “Creating system engineering
products with executable models in a model based engineering environment,” Modeling, Systems Engineering,
and Project Management for Astronomy VI, SPIE, Edinburgh, UK (2016).

[4] Chanan, G., Troy, M., Dekens, F., Michaels, S., Nelson, J., Mast, T., and Kirkman, D., “Phasing the mirror
segments of the keck telescopes: the broadband phasing algorithm,” Applied Optics 37(1), 140-155 (1998).

[5] Object Management Group, “Semantics of a Foundational Subset for Executable UML Models.” Ounline (Jan.
2016).

[6] Trancho, G., Wang, L., Herzig, S., Karban, R., Boyer, C., Herriot, G., Anderson, D., and Ellerbroek, B.,
“Analyzing the Operational Behavior of NFIRAOS LGS MCAO and IRIS Acquisition on the Thirty Meter
Telescope using SysML,” in [Adaptive Optics for Extremely Large Telescopes (AO4ELT)], (2017).

[7] Karban, R., Hauber, R., and Weilkiens, T., “Mbse in telescope modeling,” Insight 12(4), 24-31 (2009).

[8] Selvy, B. M., Claver, C., and Angeli, G., “Using sysml for verification and validation planning on the large
synoptic survey telescope (Isst),” in [SPIE Astronomical Telescopes+ Instrumentation], 91500N-91500N,
International Society for Optics and Photonics (2014).

[9] Filgueira, J. M., Bec, M., Liu, N., Peng, C., and Soto, J., “End-to-end observatory software modeling using
domain specific languages,” Software and Cyberinfrastructure for Astronomy III 9152, 915210 (2014).

	Introduction
	Modeling Operational Scenarios in SysML
	List of Modeled Operational Scenarios
	Components and Interfaces
	Operational Behavior of APS Components
	Interactions Between Components
	Scenario Execution Drivers

	Verifying Requirements on Operational Behavior in SysML
	Tying Operational Scenarios to Requirements
	Verifying Timing Requirements
	Verifying Power Requirements
	Pointing Error Analysis

	Related Work
	Conclusion

