Systems Engineering Interfaces: A Model Based
Approach

Elyse Fosse, Christopher L. Delp
Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
elyse.fosse @ jpl.nasa.gov

Abstract—The engineering of interfaces is a critical function of
the discipline of Systems Engineering. Included in interface
engineering are instances of interaction. Interfaces provide the
specifications of the relevant properties of a system or com-
ponent that can be connected to other systems or components
while instances of interaction are identified in order to specify
the actual integration to other systems or components. Current
Systems Engineering practices rely on a variety of documents
and diagrams to describe interface specifications and instances
of interaction. The SysML[1] specification provides a precise
model based representation for interfaces and interface instance
integration. This paper will describe interface engineering
as implemented by the Operations Revitalization Task using
SysML, starting with a generic case and culminating with a
focus on a Flight System to Ground Interaction. The reusability
of the interface engineering approach presented as well as its
extensibility to more complex interfaces and interactions will be
shown. Model-derived tables will support the case studies shown
and are examples of model-based documentation products.

TABLE OF CONTENTS

1 INTRODUCTION ...ieteeeenseasaossosascascascnnes 1
2 INTERFACE PATTERNS AND POINTS OF VIEW .. 1
3 MODELING INTERFACES WITH SYSML......... 2
4 OPERATIONS REVITALIZATION INTERFACE
ENGINEERING ..ccvvietentensansaossacascescnnans 6
5 SUMMARY titiueenrsnrsssessssssscsscescscassns 8
ACKNOWLEDGMENTS ...eveeecereraocacncesanans 8
REFERENCES ..0vittiurentencencsscsscascescnsons 8
BIOGRAPHY ..iuviniiinrenrencancencescascascnnans 8

1. INTRODUCTION

The topic of Interfaces is at the heart of the multi-disciplinary
nature of Systems Engineering. This area covers what is
necessary in order to connect the individual pieces of the
System together into a working System. To accomplish the
connection the relevant properties and behavior of each part
of the System must be specified. It is also necessary to specify
the particular connections between each part and the nature
of those connections in terms of limitations, protocols, and
various operational conditions or scenarios.

The describing and specifying of interfaces in a general way
is a challenging problem. Current Systems Engineering
practices rely on a variety of documents and diagrams to
describe interface specifications for different Systems as well

978-1-4577-0557-1/12/$26.00 (©2012 IEEE.

(©2012 California Institute of Technology. Government sponsorship ac-
knowledged

1 IEEEAC Paper #2562, Version 2, Updated 5/1/2013.

as existing industry standards for specific kinds of interfaces.
SysML[1] provides a precise model based representation for
specifying the interfaces of parts and integration between
parts through those interfaces. The language also allows for
domain-specific semantics to be applied as an extension to the
basic modeling capability of SysML.

The interface engineering work performed by the Opera-
tions Revitalization (Ops Rev) Task[2], sponsored by the
Multimission Ground Systems and Service Office of NASA,
utilized a model based approach to represent the interfaces
and interactions required for a Mission Operations System
(MOS). Mission Operations Systems Engineering concerns
with interfaces begin with the Flight-Ground Interface. The
interface focuses on the interaction between the Flight Sys-
tem and the Ground System. Within the Ground System the
MOS must interface with ground stations, networks, and a
host of organizations. Within the MOS, Mission Services,
Operations Roles, and Software must interface with each
other.

This paper will describe the key Viewpoints used to define
the patterns for modeling MOS interfaces. These Viewpoints
will then be complemented by examples from the MOS 2.0
Architecture [2]. Beginning with the Flight-Ground Interface,
examples from these models will be used to illustrate specifi-
cation of Interfaces, Interactions between Interfaces, and the
limitations and operational contexts of those interactions.

2. INTERFACE PATTERNS AND POINTS OF
VIEW

Ops Revitalization is building a model of a Mission Opera-
tions System (MOS). The interfaces for Mission Operations
Systems cover a broad range of systems, software, hardware,
and human interactions. In order to model this broad range
of interfaces and interactions, it is useful to describe the
system from different points of view [3]. Ops Revitalization
has developed the Mission Service Architecture Framework
(MSAF) [4]. The MSAF defines the atomic interface en-
gineering components (Table 1) as well as a set of patterns
for modeling this broad set of integrated systems and other
patterns in the MOS. These basic Views can be used to
describe the different interfaces related to the MOS.

Table 2 identifies the Viewpoints that address important con-
cerns with respect to the topic of interfaces. Part Interface
Viewpoints of the system describe what interfaces the part
presents. The Interface Layered Viewpoints describe the
interfaces in a recursive manner and are a special case of
the Part Interface Viewpoint. In systems where software is
part of the system, it is common to have logical layering
of software interfaces on top of hardware. Interface Speci-
fication Viewpoints describe the individual specifications of

Table 1. Interface Engineering Definitions

Term

Definition

Interface

The system boundary that is presented by a system for interaction with other systems.

Interface Specification

Describes the nature of the boundary presented by a system or component in terms of properties
and functionality.

Interaction

An instance of an operational entity (system, organization, or services) interface. The interaction
can connect to other operational entities according to its Interaction Specification.

Interaction Specification

Describes how an operational entity (system, organization, or service) can effect another
operational entity when a connection exists.

Table 2. Viewpoints

Viewpoint

Purpose

Concern

Part Interface

Identify Interfaces for a given Part.

What are the interfaces for a given Part?

Layered Part Interface

Specify layering of interfaces such as
application, protocol and data layers.

What is the structure of the different in-
formation aspects on the interface?

Interface Specification

Specify a given Interface in terms of
functions and properties of that interface.

What is the detailed set of functions and
properties of a given interface?

Interface Connection

Specify the integration of 2 or more
Parts through their respective Interfaces
in terms of the specific conditions and
function occurrences that define the inte-
gration according to the Interface Speci-
fication.

What Parts are connected to each other?

Interface Object Flow

Specify how objects (materials, informa-
tion) flow across a given integration of
interfaces for a set of Parts.

What are the flows between parts of the
system?

Interface Function Occurrence

Specification for behavioral interaction
across interfaces.

How do functions occur between Parts of
the System?

Performance and Limitations on In-
terfaces

Specify constraints on interfaces such
as policies, agreements and performance

What are the expectations and limits of

constraints.

the given integration?

each Interface. The Part Interface, Layered Part Interface,
and Interface Specification Viewpoints describe the part of
the system in terms of interfaces without explaining how they
will be integrated. Providing these views of the system allows
the Systems Engineer to evaluate and analyze parts based on
their interfaces separately from how they will be integrated.

The remaining set of Viewpoints in Table 2 refer to how Inter-
faces may be instantiated into Interactions in order to describe
context-specific integrations and behavior. Interface Connec-
tion Viewpoints identify what parts will be integrated with
each other and how they will behave when they are integrated.
Interface Object Flow Viewpoints describe how objects are
allowed to flow across the interfaces of the integrated parts in
the context with which the parts are integrated in. The objects
could be physical objects, like shipping a spacecraft to Cape
Canaveral, or Radio Waves in deep space. The objects could
also be logical like data moving through cables. Interface
Function Occurrence Viewpoints show behavior interaction
between parts. From this vantage point the system can be
described in terms of the occurrence of functions and events
among the interfaces of components. Interface Constraints
Viewpoints describe how the interface is constrained. This
could be in the form of expected performance or operational
limitations. Together, these Viewpoints describe integration
of parts through their interfaces.

3. MODELING INTERFACES WITH SYSML

The SysML specification provides a precise model-based
representation for interfaces and interactions. Interface spec-
ifications are described using SysML flow ports, operations,
and signals which correlate to the system or component
interface properties, as shown in Table 3.

Table 3. Interface Specifications To SysML

Interface Property | SysML Property
Functions Operations
Signals Signals
Information I/0 Flow Ports
Materials I/0 Flow Ports

A simple system will be used to describe the Ops Rev Tasks’s
SysML interface engineering implementation. The following
figures and tables are views into the SysML model describing
the system shown in Figure 1, which is comprised of two
systems, A and B. The previously identified viewpoints will
be elaborated presently using System A’s interface and its
interaction with System B

bdd

«block»
System

«block»
System B

«block»
System A

Figure 1. System Identification

Interface Specification Viewpoint

Every system or component that is intended to be composed
into a greater system has some functionality that the com-
prising system needs. The functionality is a property of the
system or component, independent from whom the system
or component is intended to interact with. The Interface
Specification Viewpoint focuses on identifying the function-
ality properties as operations owned by a SysML block. The
functionality identified is the generic set of functionality that
is available to any system or component when an interaction
exists.

bdd

«Interface Specification»

System A
Interface Specification

System A Interface Functionality O
Specification

i «InterfaceOperation»+Do Something()

«signal»Notification Sent()
«signal»Notification Received()

Figure 2. Functionality Specification

Figure 2 illustrates that an interface element named “System
A Interface Functionality Specification” is used to describe
the functionality of System A. The functions that are available
for use by other systems or components during an interaction
are shown on the interface element as operations. The param-
eters of the operation are suppressed in Figure 2 for the sake
of readability and are instead shown in Table 4. Notifications
are also specified on the interface element and are accessible
during an interaction with System A.

The “System A Interface Functionality Specification” is real-
ized by the “System A Interface Specification” which means
that the functionality identified is available for use when a
SysML port is typed with the “System A Interface Specifica-
tion” block. Describing the functionality in this way allows
for the reusability of the interface specification. Any SysML
port that is typed by the “System A Interface Specification”
will automatically have the functionality specified.

Note that Ops Rev utilizes the extensibility of SysML to cre-
ate a Domain Specific Language (DSL) by extending SysML
Block to “Interface Specification” and SysML operation to
“Interface Operation”, as seen as stereotypes (enclosed by
guillemets) for their respective elements in Figure 2. Ex-
tending SysML and creating the appropriate customization
classes allows for any properties or relationships that are
true for any interface specification or interface operation to
be created once and be reused by applying the appropriate
stereotype. For example, if all interface specifications have
some property that identifies the time for which the specifica-
tion is valid, then this property can be a part of the block that
is associated with the customization class for the “Interface
Specification” stereotype. When the stereotype is applied
to another element, the element will already have the time
property associated with it.

Extending SysML in this manner also allows Systems En-
gineers implementing the interface pattern to now work and
implement SysML elements that make sense for their domain,
such as “Interface Specification” or “Interface Operation”.

Table 4. System A Operation I/O

’ Operation ‘ Inputs ‘ Outputs ‘

’ Do Something ‘ Raw Input ‘ Manipulated Output ‘

Table 5 identifies the type of information parameters used
in System A interface operations. The parameter types are
themselves SysML Blocks and can have properties specific
to them such that when applied as the type of a parameter
that parameter has those same properties. The overall pattern
that is emerging is that SysML provides the ability to spec-
ify properties in a recursive fashion (an interface has some
information property which in turn has some other defining
property, and so on). A Systems Engineer is able to identify
and define properties at any level of fidelity that is necessary.
For example, currently the “Information Specification” block
that types the functional inputs and outputs has no properties
explicitly identified, which is assumed to be the correct level
of fidelity. If at a later point in time a Systems Engineer
identifies some property that is true for all “Information
Specifications” the property can be added to the element in a
single place in the model and all other elements that are typed
by the “Information Specification” will receive that update.

Table 5. Operation I/O Information Types

Function Input/Output Type
Raw Input Information Specification
Manipulated Output Information Specification

The model-derived figures and tables described in this section
comprise a interface specification view for System A. This
view could be incorporated into supporting interface docu-
ments or presentations by a Systems Engineer to provide an
accurate and explicit definition of the interface functionality
of System A.

Layered Interface Viewpoint

SysML flow ports on an interface specification prescribe
some sort of logical layering which the Systems Engineer

bdd

«Interface Specification»

System A
Interface Specification

Raw Input

|
Manipulated Output

Figure 3. Information Interface Layer

wants to abide by. Layering interfaces contributes to the sep-
aration of concerns methodology driven out by Viewpoints.
In particular it is possible to create ports on an interface spec-
ification, thus creating nested ports. The ports nested upon
the interface specification concern themselves with properties
that provide greater detail about the specification.

Figure 3 illustrates how the “System A Interface Specifi-
cation” further derives properties about the types of infor-
mation System A expects or provides in order to fulfill its
functionality. It follows then that the information identified
as ports are related to the functional parameters identified
(refer back to Table 5). This relation at the simplest level
could be an equivalent, but could also be a subset relationship
where the information inputs and outputs for the functions
could be a subset of the information actually expected or
provided on the port. The implication then is that there is
some system functionality that is not used by another system
or component, but is needed for that system to meet its
objectives.

Interface Viewpoint

The properties designated by an interface specification are
applied to a system’s interface in SysML by assigning the
type of the interface port to be that of the interface speci-
fication element. This means that the system specification
has the details of the interface, regardless of with whom the
system is expected to interact. Decoupling the system’s inter-
action(s) and interface in this way allows a systems engineer
to describe the concerns of the interface without convolving
those concerns with that of interactions. The implication is
that a system’s interface can be identified and specified once
with as many instantiations as needed to achieve the expected
interactions.

Figure 4 shows that the System A port stereotyped “Interface”
is typed by the “System A Interface Specification” that was
previously defined. The assignment means that “System A
Interface” has all of the functionality and information proper-
ties as defined by the “System A Interface Specification.” The
interface for System A has been fully defined with no regard
to System A’s interactions. As interactions with System A
are identified, the “System A Interface” is instantiated and
refined to meet the explicit needs of the specific interaction.

Interface Connection Viewpoint

The method of instancing an interface involves redefining the
interface specification into an interaction specification. The

«block»

System A

«Interface»

System A Interface :
System A
Interface Specification

Figure 4. System A Interface

redefinition involves redefining port and operation properties
to meet the specific needs of the interaction. The assertion is
that all instances contain a subset of the properties defined in
the interface specification. Mathematically, let S be the set
of interface properties specified by an interface specification

and let S" be the set of interaction properties specified by an
interaction specification. Based on SysML redefinition rules,

it follows then that, S’ C S.

Figure 5 shows that the System A interface specification is
specialized to be an interaction specification for the exchange
between System A and System B. For completeness all prop-
erties of the interface need to be inherited as well and as a
result the functionality of System A’s interface is specialized
to be specific for the exchange. “Functionality for System
B” redefines the interface operation found on “System A In-
terface Functionality Specification”. The redefinition means
that the the properties of the “Functionality For System B”
interface operation, such as its parameters, are either of the
same type as the redefined interface operation “Do Some-
thing” or have a type that further refines the type that is being
redefined. The information implemented in the interaction
specification is a specialization of the block used to type
information in the interface specification. Similarly, the
information property “schema” refines the generic property
“information property”. Completing the redefinition involves
creating a new port on the System A block and having that
port redefine the “System A Interface” port. Additionally,
the new port is typed with the newly instanced interaction
specification. System A now has the port needed to fulfill its
need to interact with System B.

Creating the interface and interaction with this model based
approach allows a Systems Engineer the ability to implement
automation (exploiting the patterns and stereotypes used) in
order to completely and rapidly redefine an interface for each
necessary interaction. The automation employs the DSL to
capture and replicate (e.g., specialize) inheritance, composi-
tion, and dependency relationships and the affiliated model
elements, thus ensuring that all interactions are implemented
in a similar manner and thereby removing any ambiguity
from their specifications or descriptions.

Figure 6 and Table 6 together describe the functionality
occurrences in System A’s interaction with System B. The
figure shows explicitly that there is a connector between the

bdd

«Interface Specification»
System A
Interface Specification

«block»
Information Specification
information property

«Interaction Specification»

Sys A - Sys B Interaction
Specification

«block»
Information Product
schema{redefines information property}

System A Interface Functionality Specification
«InterfaceOperation»+Do Something()
[

System A - System B Interaction Functionality Specification O
«InterfaceOperation»+Functionality For System B(){redefines Do Something}

Figure 5. Complete Interface Instance

Table 6. Interaction Functionality Description

Interaction Spec Inputs | Outputs
Sys A - Sys B Interaction Spec

Functionality for System B ILP.B LP. A
Sys B - Sys A Interaction Spec

System B Interface Operation LP. A ILP.B

two interface instances. The table implements a nested table
technique such that the interface is identified and, indented
within the next row, are the functional properties of the
interface as well as the operation’s corresponding inputs and
outputs. For conciseness, “I.P.” means “Information Product”
and “Spec” means “Specification”.

ibd System
«Interaction» «Interaction»
Sys A-SysB SysB-Sys A
Interaction Interaction
(E————] (— |

Figure 6. System Interaction

While System B’s interface and interaction specifications
weren’t derived explicitly, the assumption has been made that
System B has a single interface operation and its inputs and
outputs are the exact conjugates of System A’s inputs and
outputs.

Interface Object Flow

Figure 7 and Table 7 together provide an information ex-
change view of System A’s interaction with System B. Each
interaction is expanded to show their respective nested flow
ports, which identify the expected inputs and outputs that
occur during an interaction between the two systems. All
information described in Tables 6 and 7 have “Information
Product” as their type, which is also shown in Figure 7 as
the information that is conveyed during the interaction. Con-
necting the interactions and typing the connections with the

information flows completes the interaction definition. It can
be seen then that an interaction is comprised of two or more
interface instances with conveyed information connections.

Iod [Block] System [System Information]

System A
«Interaction»
Sys A-SysB
Interaction Information
Product B
\
Information
Product A .
I Information
Specificition
A 4
Information
System B Spedification
«Interaction» |
Information
Sys B - Sys A5 oduct A
Interaction |
Information
Product B
(I —]

Figure 7. System Information Interaction

Table 7. Interaction Information Description

Interaction Spec \ Inputs \ Outputs
ILP.B LP. A

LP. A ILP.B

Sys A - Sys B Interaction Spec
Sys B - Sys A Interaction Spec

The instantiation process can be reused as many times as
needed to specify all of System A’s interactions. Thus this
method allows the Systems Engineer to specify system or
component interface properties once and redefine specific
aspects as needed on an interaction-by-interaction basis. The
redefinition part of the approach can be automated such that
the Systems Engineer is able to focus on the aspects of
interaction that are different and allow the automation to
take care of the repetitive mechanics of interface instancing.
The views shown can be queried from the model such that
the Systems Engineer can provide stakeholders with accurate
information about interfaces and interactions in a template-
able manner.

Performance Limitations on Interfaces Viewpoint

Almost every interaction a Systems Engineer identifies has
some sort of timing (e.g., duration or frequency) or quality
(e.g., lossless) constraint that must be met in order for the
interaction to be successful. To accommodate this, the
model based approach is extended to include SysML con-
straint blocks as agreements among two or more systems or
components. These agreements can contain all constraining
parameters and are placed between the connectors of the
interaction, as seen in Figure 8.

ibd System

System A System B
«Interaction» «constraints «Interaction»
SysA-SysB Sys A-Sys B SysA-SysB
Interaction Agreement Interaction

Figure 8. System Interaction with Agreement

The properties that pertain to the agreement could include
but are not limited to the quality of the Information Products
exchanged between System A and B as well as the timeliness
with which System A expects to receive Information Products
from System B.

4. OPERATIONS REVITALIZATION
INTERFACE ENGINEERING

The interface and interaction modeling approach was ex-
tended by the Ops Rev Task in order to represent interfaces
and interactions required throughout mission operations as it
pertains to a Multi Mission Operations System(MMOS). The
necessary extension was for the pattern to be implemented in
a deeper nested port manner (two levels of nested interfaces
rather than one) in order to separate out control concerns
that the Ops Rev Task is addressing. A Mission Operations
Systems Engineer (MOSE) is particularly interested in how
the MMOS interacts with other systems such as a Project
or Flight System, as well as how the MMOS is organized
internally based on interaction. The following section will
show the Ops Rev Tasks implementation of the approach as
it applies to a flight system and ground interaction, which is a
high valued interaction for an MOSE to describe. Another
implementation will be shown that focuses on how two
Mission Services, components of the MMOS, interact with
each other in order to achieve the MMOSs over-arching goal.
The union of these implementations will show the generic
approachs extensibility and reusability.

The description that follows is comprised of views, each of
which conforms to a previously described viewpoint. The ab-
sence of a viewpoint can be understood as future or ongoing
work for the Ops Rev Task.

MMOS - Flight System Interface Connection View

The interface specification for the MMOS is assumed to
be fully specified and therefore ready for instancing. The
assumptions made on the interface are that the functionality
available is delegated to the MMOS from its component
Mission Services (i.e., the MMOS does not carry out the
functionality but delegates the appropriate work to the appro-
priate Mission Service), and that the functionality parameters
as well as information required or provided are types of
timelines[4]. The specification of the Flight System interface
is outside of the purview of the Ops Rev Task and as a result
the functionality is undefined. Figure 8 and Table 7 together
provide a functional view of the MMOSs interaction with
a Flight System. The functionality shown to be that of the
MMOS is delegated to the MMOS by one of its component
Mission Services, the Mission Engineering Service. For
conciseness, Cfg means Configuration, Telem means Teleme-
try and portions of the MMOSs interaction functionality are
hidden.

There is added complexity compared to the previous section
due to the inclusion of the Ground Domain. The Ground
Domain acts as a delegate for the MMOS interaction with
the Flight System, and as such nests the MMOS Interaction
with the Flight System onto its own interaction port with the
Flight System. That is, the Ground Domains interaction with
the Flight System specification includes a property that is the
MMOSs interaction with the Flight System specification. For
this reason, Table 8 excludes the Ground Domains interaction
specification in order to eliminate redundancy.

ibd Mutti-Mission Lifecycle Domain

Multi-Mission Ground Domain ‘
\
MM Ground
Domain - Flight
System
MMOS Interaction [1..*]
MMOS - Flight MMOS - Flight
System System
Interaction Interaction
[] \

\

Flight System

Flight System -
MM Ground
Domain
Interaction [1..%]

Flight System -
MMOS
Interaction [1..%]

Figure 9. MMOS Functionality Interaction

Table 8. MMOS Interaction Functionality Description

Interaction Specification Inputs Outputs
MMOS - FS Interaction Spec

Update Commands Cmd Telem

Update Configuration Cfg Loads | Cfg Telem
FS - MMOS Interaction Spec

N/A

MMOS - Flight System Object Flow View

Figure 9 and Table 9 provide an information exchange view
of the MMOS’s interaction with a Flight System. There is
added complexity compared to the previous section due to the
addition of a “MMOS-Flight System Controller Interaction”
port. The Ops Rev Task sought to not only separate interface
and interaction functional and informational concerns, but
also to further decompose information concerns as to the type
of control trying to be achieved. A controller/controlled inter-
action is one type of control that the task has identified. Note
that the conveyed information is an information type specific
to Mission Operations such that the notion of Timeline[5]is
extended to include mission operational concepts as conveyed
information between the MMOS and other systems.

Flight System

Multi-Mission Ground Domain
MM Ground Domain -
Flight System
MMOS - Flight Interaction | MMOS - Flight
System System
Interaction Interaction
MMOS-Flight MMOS-Flight System
System Controller Controller Interaction
Ir ion Flight System
7 | Commands |
Flight System
Telemetry

Timelint
Flight System - MM
Ground Domain A
Interaction [1..*1 v
Flight System -
MMOS

Interaction [1..*]

Integrated Flight System
Actual Measufement

Flight
System-MMOS
Controlled
Interaction

Integrated Flig
Actual Comma

ht System
d Timeline

Figure 10. MMOS Control Information Interaction

Table 9. MMOS - FS Interaction Information Description

Interaction Spec Inputs Outputs ‘
MMOS - FS Controller Int Spec | FS Telem | FS Cmds
FS - MMOS Controlled Int Spec | FS Cmds | FS Telem

MMOS Internal Interaction Object Flow View

The Ops Rev Task also implemented the same interface
engineering approach to specify interfaces and implement
interactions for MMOS components, known as Mission Ser-
vices. Mission Services exert a different type of control on
each other, called director/directed control. Figure 4 is a view
of how the MMOS’s Mission Engineering Service(MES)
interacts with the MMOS’s Flight Systems Engineering Ser-
vice(FSES). The information identified in the view describes
information pertaining to state, which is a subset of the
information that may be conveyed between these two Mis-
sion Services in pursuit of directional control. Information
pertaining to commands and activities would also need to be
included in this view for it to be considered complete. For
conciseness, the supporting tables are suppressed here but can
be queried and rendered out of the model.

This section has shown that the generic interface engineering
approach was competent enough to be implemented in the
context of mission operations for the Ops Rev Task. Not only
was the approach sufficient, it was shown to be extensible and
reusable. The approach allows the Ops Rev Task to reduce the
amount of effort focused on creating documents , and instead
focus on specifying the interfaces and interactions in a model-
based way so that the corresponding views can be derived
in a formulaic manner. Further automation endeavors have
allowed the Ops Rev Task to capitalize on this approach by
reducing the effort needed for the instantiation of interfaces.

Verification

A model-driven interface engineering approach provides the
Systems Engineer with some useful verification functionality.
When dealing with complex systems it is arduous for a
human to confidently verify that all information exchanges
are appropriate and correct. Using blocks to type the flow
ports on the interfaces, as well as to type the parameters of
operations, allows the Systems Engineer to query the model
to check that all interactions have allowable types connected.
Rules can be created that identify the allowable port type
connections. The model can then be queried and a list of
invalid connections can be produced. Further, implementing
a generalization hierarchy to the blocks used as information
types, as seen in Figure 5, affords the Systems Engineer the
ability to use generic types early in the interface engineering
task. These types can be later refined to include more specific
information types as that information becomes available, or
as it is needed to describe the interfaces and interactions at a
prescribed level of fidelity.

Interface Function Occurrence Extension

The interaction across interfaces can be specified through
SysML Sequence Diagrams. A current limitation of SysML
is that it is difficult to associate operations on a block with
functions calls on a Sequence Diagram. This limitation disal-
lows that ability to have the functionality of a system traced
across interactions. It is possible, with some adaptations and
extensions to SysML to extend the model based approach
to include function occurrences among two or more com-
ponents. These occurrence would be shown on a Sequence
Diagram along with their associated timeliness and quality
constraints.

ibd MMOS
Mission Flight Systems
Engineering Engineering
Service
MES-FSE Integrated
Interaction Flight
System-MES
MES-FSE FSEMES ption
Director Directed
Interaction Interaction
[Mission Timeline } »
| | Intended State Mission Timeline
[Desired Spacecraft States | _
! : Intended State FSE System Timeline
Spacecraft Predicted Events | =
Predicted State FSE System Timeline
Spacecraft Health and
Performance Trends <
Trend State FSE System Timeline
Figure 11. MES to FSES Interaction
5. SUMMARY BIOGRAPHY

The Ops Rev Task implemented a model-based engineering
approach to provide a more rigorous and formulaic descrip-
tion of interfaces and interactions. The task uses a separation-
of-concerns methodology to both provide descriptions of
the interfaces and interactions, as well as to decouple their
specifications. The implementation was shown to be reusable
in both a generic manner, as well as in its applicability to
engineering the Multi Mission Operations Sys- tem(MMOS)
interfaces for the Ops Rev Task. Its extensibility was also
shown through the MMOS cases presented. The efficiency
of the approach in terms of view generation and model
verification has afforded the Ops Rev Task more time to focus
on the engineering of the interfaces and interactions and less
on document generation and narrative descriptions.

ACKNOWLEDGMENTS

The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

REFERENCES

[1] Object Management Group, “OMG Systems Modeling
Language (OMG SysMLTM), version 1.3,” OMG, Tech.
Rep. OMG document number formal/12-06-02, June
2012.

[2] D. Bindschadler, C. L. Delp, and M. McCullar, “Princi-
ples to Products: Toward Realizing MOS 2.0,” in Pro-
ceedings of the 12th International Conference on Space
Operations, Stockholm, Sweden, June 2012.

[3] ISO, “ISO/IEC 42010 Systems and software engineering-
Architecture description,” Tech. Rep., 2011.

[4] e.a. Chris L. Delp, “Mission Service Architecture Frame-
work: Model Based Mission Operations Systems Engi-
neering.”

[5] S. H. Chung and D. Bindschadler, “Timeline-based Mis-
sion Operations Architecture: An Overview,” in Pro-
ceedings of the 12th International Conference on Space
Operations, Stockholm, Sweden, June 2012.

Christopher L. Delp is the Systems Ar-
chitect for the Ops Revitalization task in
MGSS and a Lead Systems Engineer for
MBSE on the Europa Mission. He is a
founder of the Modeling Early Adopters
grass roots Model Based Engineering
working group. Chris continues to lead
A the INCOSE Space Systems Working

‘;'_ Group MBSE Challenge Team for the

SN INternational Council On Systems Engi-

neering. Previously he served as Flight Software Test Engi-
neer for MSL and Software Test Engineer for the Tracking,

Telemetry, and Command End-to-End Data Services. He
also leads the INCOSE Space Systems Working Group’s entry
in the Model Based Systems Engineering Grand Challenge.
Additionally, he has performed research on software verifica-
tion and tools for Service-Oriented Architecture in support of
the Deep-space Information Services Architecture. Prior to
coming to JPL, he worked as a software engineer performing
DO-178b Level FAA flight qualified software development
and testing on Joint Tactical Radio System (JTRS) and the T-
55 Full Authority Digital Engine Controller (FADEC). Chris
earned a Master of Science in Systems Engineering from the
University of Arizona where he studied Model Based Systems
Engineering, Simulation and Software Engineering. Previous
to graduate studies, Chris performed his duties as a systems
engineer on Missile Systems Verification and Validation.

Elyse Fosse is a Software Systems En-

gineer for the Ops Revitalization task
in MGSS. She developed ground system
cost models for deep space and Earth
missions. She is also a member of the
Multimission Ground Data System Engi-
neering group at the Jet Propulsion Lab-
oratory. Her interests include software
and systems architecture, applications
of model-based system engineering, and
cost model implementation and analysis. Elyse is also a part
of the INCOSE Space Systems Working Group’s entry into the
Model Based Systems Engineering Grand Challenge. Elyse
earned her M.A. in Applied Mathematics from Claremont
Graduate University and her B.S. in Mathematics from the
University of Massachusetts Amherst.

