SysML and Systems Engineering Applied to
UML-Based SoC Design

Yves Vanderperren, Wim Dehaene

Katholieke Universiteit Leuven,
EE Department (ESAT-MICAS)

Abstract. UML is gaining increased attention as a system design lan-
guage. This is confirmed by several reported experiences and current
standardization activities such as the SysML initiative, which extends
UML toward the Systems Engineering domain. This paper summarizes
the main features of SysML and analyzes the synergies between Systems
Engineering and complex SoC design using UML. In particular, the ap-
plication of Requirements Engineering is illustrated in the SoC context,
and suggests possible improvements to existing SoC design processes
based on UML.

1 Introduction

UML is attracting growing interest as a system level visual language to support
the tasks of analyzing, specifying, designing, verifying and validating systems-
on-a~chip (SoC) [1]. Indeed UML presents the particular advantage of allowing
customization for specific application domains, such as SoC design, while pro-
viding unification [2]:

— across historical notations: UML 2 is the result of a long evolution from the
‘method wars’,

across development life cycles: despite its primary focus at system level,
UML can be used in other phases of the SoC development lifecycle, such as
prototype test [3,4],

— across application domains: UML has the capability of providing a unified
view of a heterogeneous SoC,

across development processes: UML can be associated with any particular
design method of choice,

across design languages: several synergies between UML and existing SoC
design languages at different abstraction levels have been reported in the
recent years, such as UML/SystemC [5-7] or UML/VHDL [8,9].

However the semi-formal aspect of UML and its lack of clear semantics con-
stitute a well-known issue. Moreover, UML still has strong roots in the software
domain despite its official and domain-neutral definition [10]. SysML [11] is an
extension of UML which allows modeling a system from a Systems Engineering
(SE) point of view. Strong similarities exist between the methods used in the

In: Proc. 2nd UML-SoC Workshop at 42nd DAC, Anaheim (CA), USA, 2005



area of SE and complex SoC design, such as the need for precise requirements
management, heterogeneous system specification and simulation, system vali-
dation and verification. This paper gives an overview of SysML and identifies
the opportunities to improve UML-based SoC development processes with the
successful experiences from the SE discipline.

2 SysML: UML for Systems Engineering

The Systems Modeling Language (SysML) is the result of a joint initiative of
OMG and the International Council on Systems Engineering (INCOSE). SysML
is a (draft) profile extending the UML 2.0 Superstructure Specification and pro-
vides a standard modeling language to support the specification, analysis, design,
verification and validation of a broad range of complex systems which are not
necessarily software based.

SysML is based on the minimal subset of UML that satisfies the needs of
systems engineers, and adapts UML only when it is necessary. One of the major
improvements SysML brings to UML is the support for representing require-
ments and relating them to the model of a system, the actual design and the
test procedures. Indeed UML does not address how to trace the requirements
of a system from informal specifications down to the individual design elements
and test cases, although this activity is crucial. Use Cases help build up a sound
understanding of the expected behavior of the system and validate the proposed
architecture. However requirements are often only traced to the use cases but
not to the design. Adding design rationale information capturing the reasons for
design decisions made during the creation of development artifacts and linking
these to the requirements helps to analyze the consequences of a requirement
change. SysML therefore introduces the requirement diagram and defines sev-
eral kinds of relationships for improving the requirement traceability. The pur-
pose is not to replace the available commercial tools dedicated to this subject,
but to provide a standard way of linking the requirements to the design and
the test suite within UML. Requirements can be decomposed by means of the
containment relationship in a similar way to that for class diagrams. The trace
dependency relates derived requirements to source requirements. The system de-
signed and the requirements are linked by a satisfaction dependency. Finally, the
verification dependency associates a requirement with the test case used to ver-
ify this requirement. Requirement diagrams contribute to the rigorous transfer
of specifications and related information among tools used by systems, software
and hardware engineers.

SysML enhances the UML diagrams used to represent the structural aspects
of a system. It introduces the concept of assembly, a stereotyped class which
describes a system as a structure of interconnected parts. An assembly provides
a domain neutral modeling element that can be used to represent the structure
of any kind of system, regardless of the nature of its components. In the context
of a SoC, these components can be hardware or software based as well as analog
or digital. An assembly model, the SysML version of the composite structure



diagram, shows the interconnection of the parts of a system and supports infor-
mation flows between components, as present for example in the datapath of a
heavy signal-processing oriented SoC.

The concept of allocation in SysML is a more abstract form of deployment
than in UML. It is defined as a design time relationship between model elements
which maps a source into a target. An allocation provides the generalized ca-
pability to allocate one model element to another. For example, it can be used
to link requirements and design elements, to map a behavior into the structure
implementing it, or to associate a piece of software and the hardware deploying
it.

As a consequence, SysML abandons the use of the communication diagram.
The SysML support for flows between assemblies is meant to provide an equiva-
lent and domain-neutral modeling capability. The same argument applies to the
deployment diagram. It is considered too specific to the software domain as it
is limited to the deployment of software artifacts onto hardware components,
while the SysML allocation provides a more flexible deployment mechanism.

Finally, SysML provides several enhancements to activity diagrams. In par-
ticular the control of execution is extended such that running actions can be
disabled. In UML 2 the control is limited to the determination of the moment
when actions start. In SysML a behavior may not stop itself. Instead it can
run until it is terminated externally. For this purpose SysML introduces control
operators, i.e., behaviors which produce an output controlling the execution of
other actions.

These new features from SysML can be applied to SoC design [12]. SysML
provides therefore a bridge between the domains of Systems Engineering, UML,
and SoC design. This important point needs to be carefully understood, however:

— SysML does not solve the question of the lack of semantics in UML. SysML
does also not define always precise semantics for the modeling elements it
introduces: although the concept of assembly allows unifying the represen-
tation of heterogeneous systems, this achievement comes at the cost of in-
creased abstraction and weaker semantics. Abstraction is a double-edged
sword since it is necessary in order to deal with increasing complexity but
can cause interpretation issues.

— When considering the particular aspects of complex SoCs, the ability to nav-
igate both horizontally and vertically through the system architecture is of
major importance. SysML allows the integration heterogeneous domains in a
unified model at a high abstraction level. The semantic integrity of the model
of a heterogeneous SoC could be ensured if future tools supporting SysML
take advantage of the concept of allocation and provide facilities to navigate
through the different abstraction layers into the underlying structure and
functionality of the system.

— SysML, like UML, is neither a methodology nor does it dictate any particular
development process to be used. SysML provides systems engineers with
modeling means to enhance the communication of the design intent, but it
does not tell how these can be best applied within a design flow. This is



the role of a development process, the backbone of any project based on
UML/SysML.

This last comment is of paramount importance and is further detailed in the
remainder of this paper. Several synergies can indeed be identified between the
disciplines involved in Systems Engineering, complex SoC design flows, and as-
pects related to the definition of a design process based on UML/SysML.

3 Systems Engineering and UML/SysML-based SoC
design processes

INCOSE [13] defines Systems Engineering as an ” interdisciplinary approach and
means of enabling the realization of successful systems. It focuses on defining
customer needs and required functionality early in the development cycle, doc-
umenting requirements, then proceeding with design synthesis and system vali-
dation while considering the complete problem. Systems engineering integrates
all the disciplines and speciality groups into a team effort forming a structured
development process which proceeds from concept to production to operation.”.
This definition is analyzed in the context of SoC design in the following sections.

Systems Engineering as an interdisciplinary approach. Fabless system
providers generally lack expertise in designing state-of-the-art submicron VLSI
circuits. On the other hand, silicon providers often do not have the global visibil-
ity and the overall system knowledge required to define a complex SoC. However,
the successful construction of such systems requires a cross-functional team with
system design knowledge combined with an experienced SoC design team from
hardware and software domains [14].

The Essential Role of Requirements Engineering. Requirements Engi-
neering (RE) constitutes a branch of Systems Engineering which must span the
gap between the informal world of the stakeholders needs and the formal world
of the system’s behavior. RE for SoC can be performed in different contexts,
such as market-driven product development (ASSP) or for a specific customer
(ASIC, FPGA), and leads to a particular choice of possible requirements elici-
tation techniques (see figure 1) [15]. Four of these techniques suit especially the
domain of RE for SoC using UML/SysML. Model-driven SoC design flows, where
an executable model of the system is built early in the project lifecycle using an
electronic system languages (ESL), share similar principles as the prototyping re-
quirements elicitation technique. Executable UML could support new approaches
at system level, in particular for control-oriented and software-dominated em-
bedded systems. Goal-oriented techniques [16] stress the question why a system
is needed, regardless of the details of how to achieve the goals. These correspond
to the services to be provided (functional concerns) as well as the required quality
of these services (non functional concerns, typically throughput, execution time



% Requirement elicititation technique

i i

ob r Unstructured Structured "
A SE"’_"‘ ion elicitation elicitation Mapping
echnique techni technique technique

Formal analysis

technique
Prototyping Open Goal-oriented . Focus - . Repgrtory
interview approach Scenarios groups Cognitive Rich grids
mapping pictures
Brainstorming Structured Future - o
interviews analysis Varlange ata flow
analysis diagrams

Critical success
factors

Joint application
development

Fig. 1. Requirements Elicitation Techniques

and power consumption in the SoC context). Such techniques can be applied
in conjunction with approaches structuring use cases with goals [17,18]. Struc-
tured elicitation techniques based on scenarios and mapping techniques based
on data flow diagrams are supported by the behavioural diagrams available in
UML/SysML and can be applied to SoC design. Scenarios generated by any of
the previous techniques help to validate the SoC requirements and verifying their
completeness. The object-oriented aspects of UML are actually not required at
this stage, where the system is seen as a black box, and several techniques from
the structured systems development and Systems Engineering methodologies are
applicable.

Defining requirements not only involves the task of requirements elicitation,
but also the modeling of requirements, which is concerned with the efficient rep-
resentation of the accumulated information. The SysML requirements diagram
fills here the gap of UML.

Besides the requirements definition, managing change and evolving require-
ments is another fundamental RE activity. This task calls for cross-compatible
tools which can exploit the standard SysML traceability links between require-
ments as well as from requirements to design and test, in order to facilitate
the analysis of the consequences of a requirement change. Requirements can not
only evolve in time, but across product families as well. Platform-based designs
[21,22] can benefit substantially from the experience of RE in this domain, as
they need a dedicated attention to the definition of core and differentiating re-
quirements. Different platform instances share indeed similar requirements and
architectural characteristics, but differ in certain key requirements depending on
the target application.

Managing inconsistencies is an essential concern when defining requirements.
Viewpoint modeling [19] can be used not only as a requirements validation
method, but also to organise a multi-perspective SoC development technique
so that the specification process remains a coordinated effort. Viewpoints allow
constructing the description of large and complex systems from different per-
spectives and are supported by SysML. Examples of possible applications in the



SoC domain include the verification of a hardware-software interface, or the in-
tegration of an intellectual property (IP) block within a system. In these cases,
it is essential to focus not only on specifying the functionality of the (sub)system
under consideration, but also on modeling the properties of the environment and
what the (sub)system should achieve in this environment. This is one of the mo-
tivations for goal oriented techniques, which decrease the emphasis on modeling
information flow and system state, and concentrate instead on capturing the
system’s purpose within its context.

Systems Engineering and SoC Development Processes. It is crucial to
adapt the development process to the particular needs of the given application
domain, much the same way as UML requires customization toward the area
in which it is used. In the SoC context, characterized by severe first time right
requirements and exponentially increasing mask costs which prevent successive
physical implementations, executable models provide a means to support itera-
tive development processes. As an example, a customized version of the RUP [20)]
was applied in [14]. The importance of a system model makes SoC development
processes based on UML [14, 18,21, 23] resemble Systems Engineering processes,
such as SIMILAR [24] or HARMONY [25]. As illustrated by the experience re-
ported in [3] compared to [23], re-evaluation and continuous improvement of
the development process, one of the most important phases of SIMILAR, plays
a crucial role in the successful integration of UML into SoC design processes.
Moreover, the reported experience indicated that 55% of the errors detected were
related to inconsistencies in the specification during the analysis and modeling
phase, while another 21% were discovered during to black box implementation
tests based on scenarios derived from use cases. These results confirm the bene-
fits of a clear requirements management procedure and the applicability of UML
at different phases of the design flow.

These SoC development processes based on UML could be improved by in-
tegrating further the requirements management as a lifecycle task running in
parallel with the design and verification activities, as recommended by the un-
derlying principles of the Requirements-Based UML (RBU) process [26]. An-
other aspect which deserves more attention concerns the investigation of design
alternatives, as stressed in a dedicated phase of SIMILAR. This task requires
the definition of clear performance and cost figures of merit, and the possibil-
ity to proceed fast with the design synthesis of the alternatives. The former
might however be particularly difficult to estimate accurately at system level, in
particular power related aspects, while the latter motivate programmable and
reconfigurable architectures as well as improved support for automatisation.

4 Conclusions

The recent advances in UML and SysML present a valuable milestone for the
application of UML to modern chip design. However, it is essential to remember
that SysML, like UML, only provide standard modeling means. Neither UML



nor SysML solve the difficulty associated with systems analysis, but they allow
efficient communication between the project stakeholders. A sound development
process which suits the peculiarities of SoC design is necessary to complement
the use of UML/SysML for SoC design. Regardless of the specific characteristics
of the particular adopted process, it is beneficial to extend SoC engineering from
its focus on hardware and software technologies to an engineering discipline of
system development. A multi-disciplinary approach is indeed crucial to coping
with increasing product complexity and the need for reduced design time. In
particular, SoC designers can capitalize on the experience accumulated in the
domain of Requirements Engineering in order to improve substantially product
quality and design productivity.

References

1. Martin, G., Miiller, W. (Eds.): UML for SoC Design. Springer, 2005.

2. Holt J.: UML for Systems Engineering. Institution of Electrical Engineers, 2004.

3. Zhu, Q., Oishi, R., Hasegawa, T., Nakata, T.: Integrating UML into SoC Design
Process. Proc. Design, Automation and Test in Europe (DATE), 2005, pp. 836-837.

4. Vanderperren, Y., Dehaene. W.: UML for SoC: Added Value or Hot Topic?. Tutorial.
DAK-forum, 2004.

5. Vanderperren, Y., Pauwels, M., Dehaene, W., Berna, A., Ozdemir, F.: A SystemC
Based System On Chip Modelling and Design Methodology. In ”SystemC: Method-
ologies and Applications”, Chapter 1, Mueller, W., Rosenstiel, W., Ruf, J. (Eds.),
Kluwer Academic Publishers, 2003.

6. Baresi, L., Bruschi, F., Di Nitto, E., Sciuto, D.: SystemC Code Generation from
UML Models. In ”System Specification & Design Languages”, Chapter 13. Kluwer
Academic Publishers, 2003.

7. Nguyen, K.D., Sun, Z., Thiagarajan, P.S.: Model-Driven SoC Design Via Executable
UML to SystemC. Proc IEEE International Real-time Systems Symposium (RTSS),
2004.

8. Bjorklund, D., Lilius, J.: From UML Behavioral Descriptions to Efficient Synthesiz-
able VHDL. Proc. IEEE Norchip Conference, 2002.

9. McUmber, W.E., Cheng, B.H.C.:. UML-Based Analysis of Embedded Systems Us-
ing a Mapping to VHDL. Proc. IEEE International Symposium on High-Assurance
Systems Engineering (HASE), 1999, pp. 56-63.

10. OMG: UML 2.0 Infrastructure Specification. http://www.omg.org.

11. SysML Forum: SysML Specification (Draft), 2005. http://www.sysml.org

12. Vanderperren, Y., Dehaene, W.: UML 2 and SysML: An Approach to Deal with
Complexity in SoC/NoC Design. Proc. of the conference on Design, Automation and
Test in Europe (DATE), 2005, pp. 716-717.

13. INCOSE: What is Systems Engineering? http://www.incose.org

14. Vanderperren, Y., Sonck, G., Van Oostende, P., Pauwels, M., Dehaene W., Moore
T.: A Design Methodology for the Development of a Complex System-on-Chip Us-
ing UML and Executable System Models. Proc. Forum on Specification and Design
Languages (FDL), 2002.

15. Darke, P., Shanks, G.: User Viewpoint Modelling: Understanding and Representing
User Viewpoints During Requirements Definition. Information Systems Journal, 7:3,
1997.



16. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.
Proc. 5th IEEE International Symposium on Requirements Engineering, 2001, pp.
249-263.

17. Cockburn, A.: Use Cases, Ten Years Later. Software Testing and Quality Engi-
neering Magazine (STQE), 4:2, 2002, pp. 37-40.

18. Vanderperren, Y., Dehaene, W.: A Model Driven Development Process for Low
Power SoC Using UML. In [1], Chapter 10.

19. Easterbrook, S., Nuseibeh, B.: Managing Inconsistencies in an Evolving Specifica-
tion. Proc. 2nd IEEE International Symposium on Requirements Engineering, 1995,
pp. 48-55.

20. Kruchten, P.: The Rational Unified Process: An Introduction (3rd Ed.). Addison-
Wesley, 2003.

21. Green, P. N., Edwards, M. D.: Platform Modelling with UML and SystemC. Proc.
Forum on Specification and Design Languages (FDL), 2002.

22. Sangiovanni-Vincentelli A., Martin, G.: Platform-Based Design and Software De-
sign Methodology for Embedded Systems. IEEE Design and Test of Computers, 18:6,
2001, pp. 23-33.

23. Zhu, Q., Matsuda, A., Kuwamura, S., Nakata, T. , Shoji, M.: An Object-Oriented
Design Process for System-on-Chip Using UML. Digest of IEEE Int. Solid-State
Circuits Conf., 2002, pp. 249-254.

24. Babhill, A.T., Gissing, B.: Re-evaluating Systems Engineering Concepts Using Sys-
tems Thinking. IEEE Trans. Systems, Man, and Cybernetics—Part C: Applications
and Reviews, 1998, pp. 516-527.

25. Hoffmann, H.-P.: UML 2.0-Based Systems Engineering Using a Model-Driven De-
velopment Approach. I-Logix White Paper, 2004.

26. Schulz, J.: Requirements-based Unified Modeling Language. Borland White Paper,
2003.



