

OMG Systems Modeling Language (OMG SysML™) Tutorial

11 July 2006

Sanford Friedenthal Alan Moore Rick Steiner

Copyright © 2006 by Object Management Group. Published and used by INCOSE and affiliated societies with permission.

Caveat

- This material is based on version 1.0 of the SysML specification (ad-06-03-01)
 - Adopted by OMG in May '06
 - Going through finalization process
- OMG SysML Website
 - http://www.omgsysml.org/

Objectives & Intended Audience

At the end of this tutorial, you should understand the:

- Benefits of model driven approaches to systems engineering
- Types of SysML diagrams and their basic constructs
- Cross-cutting principles for relating elements across diagrams
- Relationship between SysML and other Standards
- High-level process for transitioning to SysML

This course is <u>not</u> intended to make you a systems modeler! You must <u>use</u> the language.

Intended Audience:

- Practicing Systems Engineers interested in system modeling
 - Already familiar with system modeling & tools, or
 - Want to learn about systems modeling
- Software Engineers who want to express systems concepts
- Familiarity with UML is not required, but it will help

Topics

- Motivation & Background (30)
- Diagram Overview (135)
- SysML Modeling as Part of SE Process (120)
 - Structured Analysis Distiller Example
 - OOSEM Enhanced Security System Example
- SysML in a Standards Framework (20)
- Transitioning to SysML (10)
- Summary (15)

Motivation & Background

SE Practices for Describing Systems

Past

- Specifications
- Interface requirements
- System design
- Analysis & Trade-off
- Test plans

Future

Moving from Document centric to Model centric

System Modeling

Integrated System Model Must Address Multiple Aspects of a System

Model Based Systems Engineering Benefits

- Improved communications
- Assists in managing complex system development
 - Separation of concerns
 - Hierarchical modeling
 - Facilitates impact analysis of requirements and design changes
 - Supports incremental development & evolutionary acquisition
- Improved design quality
 - Reduced errors and ambiguity
 - More complete representation
- Early and on-going verification & validation to reduce risk
- Other life cycle support (e.g., training)
- Enhanced knowledge capture

System-of-Systems

Modeling Needed to Manage System Complexity

Modeling at Multiple Levels of the System

Stakeholders Involved in System Acquisition

Modeling Needed to Improve Communications

What is SysML?

- A graphical modelling language in response to the UML for Systems Engineering RFP developed by the OMG, INCOSE, and AP233
 - a UML Profile that represents a subset of UML 2 with extensions
- Supports the specification, analysis, design, verification, and validation of systems that include hardware, software, data, personnel, procedures, and facilities
- Supports model and data interchange via XMI and the evolving AP233 standard (in-process)

SysML is Critical Enabler for Model Driven SE

What is SysML (cont.)

- Is a visual modeling language that provides
 - Semantics = meaning
 - Notation = representation of meaning
- Is not a methodology or a tool
 - SysML is methodology and tool independent

- UML V2.0
 - Updated version of UML that offers significant capability for systems engineering over previous versions
 - Finalized in 2005 (formal/05-07-04)
- UML for Systems Engineering (SE) RFP
 - Established the requirements for a system modeling language
 - Issued by the OMG in March 2003

SysML

- Industry Response to the UML for SE RFP
- Addresses most of the requirements in the RFP
- Version 1.0 adopted by OMG in May '06 / In finalization
- Being implemented by multiple tool vendors

SysML Team Members

- Industry & Government
 - American Systems, BAE SYSTEMS, Boeing, Deere & Company, EADS-Astrium, Eurostep, Lockheed Martin, Motorola, NIST, Northrop Grumman, oose.de, Raytheon, THALES
- Vendors
 - Artisan, EmbeddedPlus, Gentleware, IBM, I-Logix, Mentor Graphics, PivotPoint Technology, Sparx Systems, Telelogic, Vitech Corp
- Academia
 - Georgia Institute of Technology
- Liaison Organizations
 - INCOSE, ISO AP233 Working Group

Diagram Overview

Relationship Between SysML and UML

SysML Diagram Taxonomy

4 Pillars of SysML – ABS Example

3. Requirements

4. Parametrics

SysML Diagram Frames

- Each SysML diagram represents a model element
- Each SysML Diagram must have a Diagram Frame
- Diagram context is indicated in the header:
 - Diagram kind (act, bdd, ibd, seq, etc.)
 - Model element type (activity, block, interaction, etc.)
 - Model element name
 - Descriptive diagram name or view name
- A separate diagram description block is used to indicate if the diagram is complete, or has elements elided Diagram Description

Structural Diagrams

Package Diagram

- Package diagram is used to organize the model
 - Groups model elements into a name space
 - Often represented in tool browser
- Model can be organized in multiple ways
 - By System hierarchy (e.g., enterprise, system, component)
 - By domain (e.g., requirements, use cases, behavior)
 - Use viewpoints to augment model organization
- Import relationship reduces need for fully qualified name (package1::class1)

Package Diagram Organizing the Model

By Diagram Type

By Hierarchy

By IPT

Package Diagram - Views

- Model is organized in one hierarchy
- Viewpoints can provide insight into the model using another principle
 - E.g., analysis view that spans multiple levels of hierarchy
 - Can specify diagram usages, constraints, and filtering rules
 - Consistent with IEEE
 1471 definitions

Blocks are Basic Structural Elements

- Provides a unifying concept to describe the structure of an
 - element or system
 - Hardware
 - Software
 - Data
 - Procedure
 - Facility
 - Person

«block» BrakeModulator

allocatedFrom «activity»Modulate BrakingForce

values

DutyCycle: Percentage

- Multiple compartments can describe the block characteristics
 - Properties (parts, references, values)
 - Operations
 - Constraints
 - Allocations to the block (e.g. activities)
 - Requirements the block satisfies

Block Property Types

- Property is a structural feature of a block
 - Part property aka. part (typed by a block)
 - Usage of a block in the context of the enclosing block
 - Example right-front:wheel
 - Reference property (typed by a block)
 - A part that <u>is not owned</u> by the enclosing block (not composition)
 - Example logical interface between 2 parts
 - Value property (typed by value type)
 - Defines a value with units, dimensions, and probability distribution
 - Example
 - Non-distributed value: tirePressure:psi=30
 - Distributed value: «uniform» {min=28,max=32} tirePressure:psi

- Based on UML Class from UML Composite Structure
 - Eliminates association classes, etc.
 - Differentiates value properties from part properties, add nested connector ends, etc.
- Block definition diagram describes the relationship among blocks (e.g., composition, association, classification)
- Internal block diagram describes the internal structure of a block in terms of its properties and connectors
- Behavior can be allocated to blocks

Blocks Used to Specify Hierarchies and Interconnection

Block Definition vs. Usage

Block Definition Diagram

Definition

- Block is a definition/type
- Captures properties, etc.
- Reused in multiple contexts

Internal Block Diagram

Usage

- Part is the usage in a particular context
- Typed by a block
- Also known as a role

Internal Block Diagram (ibd) Blocks, Parts, Ports, Connectors & Flows

Internal Block Diagram Specifies Interconnection of Parts

S1 is a reference part in ibd shown in dashed outline box

SysML Port

- Specifies interaction points on blocks and parts
 - Supports integration of behavior and structure
- Port types
 - Standard (UML) Port
 - Specifies a set of operations and/or signals
 - Typed by a UML interface
 - Flow Port
 - Specifies what can flow in or out of block/part
 - Typed by a flow specification

2 Port Types Support Different Interface Concepts

Port Notation

Delegation Through Ports

- Delegation can be used to preserve encapsulation of block
- Interactions at outer ports of Block1 are delegated to ports of child parts
- Ports must match (same kind, types, direction etc.)
- (Deep-nested) Connectors can break encapsulation if required (e.g. in physical system modeling)

Parametrics

- Used to express constraints (equations) between value properties
 - Provides support for engineering analysis (e.g., performance, reliability)
- Constraint block captures equations
 - Expression language can be formal (e.g., MathML, OCL) or informal
 - Computational engine is defined by applicable analysis tool and not by SysML
- Parametric diagram represents the usage of the constraints in an analysis context
 - Binding of constraint usage to value properties of blocks (e.g., vehicle mass bound to $F = m \times a$)

Parametrics Enable Integration of Engineering Analysis with Design Models

Defining Vehicle Dynamics

Defining Reusable Equations for Parametrics

Vehicle Dynamics Analysis

- Activity used to specify the flow of inputs/outputs and control, including sequence and conditions for coordinating activities
- Secondary constructs show responsibilities for the activities using swim lanes
- SysML extensions to Activities
 - Support for continuous flow modeling
 - Alignment of activities with Enhanced Functional Flow Block Diagram (EFFBD)

Activity Diagram Notation

- Join and Merge symbols not included
- Activity Parameter Nodes on frame boundary correspond to activity parameters

Activity Diagrams Pin vs. Object Node Notation

- Pins are kinds of Object Nodes
 - Used to specify inputs and outputs of actions
 - Typed by a block or value type
 - Object flows connect object nodes
- Object flows between pins have two diagrammatic forms
 - Pins shown with object flow between them
 - Pins elided and object node shown with flow arrows in and out

Pins must have same characteristics (name, type etc.)

Explicit Allocation of Behavior to Structure Using Swimlanes

Activity Diagram (without Swimlanes)

Activity Diagram (with Swimlanes)

SysML EFFBD Profile

EFFBD - Enhanced Functional Flow Block Diagram

Aligning SysML with Classical Systems Engineering Techniques

Distill Water Activity Diagram (Continuous Flow Modeling)

Representing Distiller Example in SysML Using Continuous Flow Modeling

Definition

Use

- Sequence diagrams provide representations of message based behavior
 - represent flow of control
 - describe interactions
- Sequence diagrams provide mechanisms for representing complex scenarios
 - reference sequences
 - control logic
 - lifeline decomposition
- SysML does not include timing, interaction overview, and communications diagram

Black Box Interaction (Drive)

Black Box Sequence (StartVehicle)

Simple Black Box Interaction

White Box Sequence (StartVehicle)

Decomposition of Black Box Into White Box Interaction

Trial Result of Vehicle Dynamics

Lifeline are value properties

Timing Diagram Not Part of SysML

Typical Example of a Timing Diagram

State Machines

- Typically used to represent the life cycle of a block
- Support event-based behavior (generally asynchronous)
 - Transition with trigger, guard, action
 - State with entry, exit, and do-activity
 - Can include nested sequential or concurrent states
 - Can send/receive signals to communicate between blocks during state transitions, etc.

Operational States (Drive)

Transition notation: trigger[guard]/action

Use Cases

- Provide means for describing basic functionality in terms of usages/goals of the system by actors
- Common functionality can be factored out via include and extend relationships
- Generally elaborated via other behavioral representations to describe detailed scenarios
- No change to UML

Operational Use Cases

Cross-cutting Constructs

- Allocations
- Requirements

- Represent general relationships that map one model element to another
- Different types of allocation are:
 - Behavioral (i.e., function to component)
 - Structural (i.e., logical to physical)
 - Software to Hardware
 -
- Explicit allocation of activities to structure via swim lanes (i.e., activity partitions)
- Both graphical and tabular representations are specified

Different Allocation Representations (Tabular Representation Not Shown)

Allocate Relationship

Explicit Allocation of Activity to Swim Lane

Compartment Notation

Callout Notation

SysML Allocation of SW to HW

- In UML the deployment diagram is used to deploy artifacts to nodes
- In SysML allocation on ibd and bdd is used to deploy software/data to hardware

Requirements

- The «requirement» stereotype represents a text based requirement
 - Includes id and text properties
 - Can add user defined properties such as verification method
 - Can add user defined requirements categories (e.g., functional, interface, performance)
- Requirements hierarchy describes requirements contained in a specification
- Requirements relationships include DeriveReqt, Satisfy, Verify, Refine, Trace, Copy

Requirements Breakdown

Requirement Relationships Model the Content of a Specification

INCOSE Example of Derive/Satisfy Requirement Dependencies

Arrow Direction Opposite Typical Requirements Flow-Down

Problem and Rationale can be attached to any Model Element to Capture Issues and Decisions

Stereotypes & Model Libraries

- Mechanisms for further customizing SysML
- Profiles represent extensions to the language
 - Stereotypes extend meta-classes with properties and constraints
 - Stereotype properties capture metadata about the model element
 - Profile is applied to user model
 - Profile can also restrict the subset of the meta-model used when the profile is applied
- Model Libraries represent reusable libraries of model elements

Stereotypes

«configurationItem» **Engine**

author="John Doe" version="1.2" lastChanged=Dec12, 2005

Defining the Stereotype

Applying the Stereotype

Applying a Profile and Importing a Model Library

Cross Connecting Model Elements

1. Structure 2. Behavior

11 July 2006

Copyright © 2006 by Object Management Group.

SysML Modeling as Part of the SE Process

Distiller Sample Problem

Distiller Problem Statement

- The following problem was posed to the SysMLteam in Dec '05 by D. Oliver:
- Describe a system for purifying dirty water.
 - Heat dirty water and condense steam are performed by a Counter Flow Heat Exchanger
 - Boil dirty water is performed by a Boiler
 - Drain residue is performed by a Drain
 - The water has properties: vol = 1 liter, density 1 gm/cm3, temp 20 deg C, specific heat 1cal/gm deg C, heat of vaporization 540 cal/gm.

A crude behavior diagram is shown.

Dirty water

Dirty water

What are the real requirements? How do we design the system?

Distiller Types

Batch Distiller

Continuous Distiller

Distiller Problem – Process Used

- Organize the model, identify libraries needed
- List requirements and assumptions
- Model behavior
 - In similar form to problem statement
 - Elaborate as necessary
- Model structure
 - Capture implied inputs and outputs
 - segregate I/O from behavioral flows
 - Allocate behavior onto structure, flow onto I/O
- Capture and evaluate parametric constraints
 - Heat balance equation
- Modify design as required to meet constraints

Distiller Problem – Package Diagram: Model Structure and Libraries

Distiller Example Requirements Diagram

Distiller Example: Requirements Tables

 table [requirement] OriginalStatement [Decomposition of OriginalStatement]

id	name	text						
S0.0	OriginalStatement	Describe a system for purifying dirty water						
S1.0	PurifyWater	The system shall purify dirty water.						
S2.0	HeatExchanger	Heat dirty water and condense steam are performed by a						
S3.0	Boiler	Boil dirty water is performed by a Boiler.						
S4.0	Drain	Drain residue is performed by a Drain.						
S5.0	WaterProperties	water has properties: density 1 gm/cm3, temp 20 deg C,						
S5.1	WaterInitialTemp	water has an initial temp 20 deg C						

table [requirement] PurifyWater [Requirements Tree]

id	name	relation	id	name	Rationale
					The requirement for a boiling function and a boiler
S1.0	PurifyWater	deriveReqt	D1.0	DistillWater	implies that the water must be purified by distillation

Distiller Example – Activity Diagram: Initial Diagram for DistillWater

This activity diagram applies the SysML EFFBD profile, and formalizes the diagram in the problem statement.

Activities (Functions)

Control (Sequence) Things that flow (ObjectNodes)

Distiller Example – Activity Diagram: Control-Driven: Serial Behavior

Distiller Example – Block Definition Diagram: DistillerBehavior

Distiller Example – State Machine Diagram: States of H2O

Distiller Example – Activity Diagram: I/O Driven: Continuous Parallel Behavior

Distiller Example – Activity Diagram: No Control Flow – Simultaneous Behavior

Distiller Example – Activity Diagram (with Swimlanes): DistillWater

Distiller Example – Block Definition Diagram: DistillerStructure

11 July 2006

Distiller Example – Block Definition Diagram: Heat Exchanger Flow Ports

Distiller Example – Internal Block Diagram: Distiller Initial Design

Distiller Example –Internal Block Diagram: Distiller with Allocation

INCOSE Distiller Example – Parametric Diagram: **Heat Balance Equations**

Distiller Example – Heat Balance Results

Distiller Example – Activity Diagram: Updated DistillWater

Distiller Example – Internal Block Diagram: Updated Distiller

Distiller Example – Use Case and Sequence Diagrams

Distiller Example – Internal Block Diagram: Distiller Controller

Distiller Example – State Machine Diagram: Distiller Controller

OOSEM – ESS Example

System Development Process

Integrated Product
Development (IPD) is
essential to improve
communications

A Recursive V process that can be applied to multiple levels of the system hierarchy

Systems Modeling Activities - OOSEM

Enhanced Security System Example

- The Enhanced Security System is the example for the OOSEM material
 - Problem fragments used to demonstrate principles
 - Utilizes Artisan RTS™ Tool for the SysML artifacts

ESS Requirements Flowdown

Operational View Depiction

ESS Enterprise As-Is Model

ESS Operational Enterprise To-Be Model

System Use Cases - Operate

System Scenario: Activity Diagram Monitor Site (Break-In)

ESS Elaborated Context Diagram

ESS Logical Design – Example Subsystem

ESS Logical Design (Partial)

ESS Allocation Table (partial)

Allocating Logical Components to HW, SW, Data, and Procedures components

			Logical Components												
	Туре		Entry Sensor	Exit Sensor	Perimeter Sensor	Entry/Exit Monitor	Event Monitor	Site Comms I/F	Event Log	Customer I/F	Customer Output Mgr	System Status	Fault Mgr	Alarm Generator	Alarm I/F
al Components	«software»	Device Mgr													X
		SF Comm I/F						X							
		User I/F									X				
		Event Mgr				X	X								
		Site Status Mgr											X		
		Site RDBMS							X			X			
		CMS RDBMS							X						
	«data»	Video File							X						
		CMS Database							X						
		Site Database							X			X			
	«hardware»	Optical Sensor	X	X											
		DSL Modem						X							
		User Console								X					
		Video Camera			X										
		Alarm												X	

ESS Deployment View

11 July 2006 Copyright © Lockheed Martin Corporation 2000 – 2003 & INCOSE 2004-2006 107

ESS Parametric Diagram To Support Trade-off Analysis

Entry/Exit Test Case

OOSEM Browser View Artisan Studio™ Example

SysML in a Standards Framework

Systems Engineering Standards Framework (Partial List)

ISO/IEC 15288 System Life Cycle Processes

Enterprise Processes	Project Processes	Technical Processes
5.3.2 Enterprise Environment Management Process	5.4.2 Project Planning Process	5.5.2 Stakeholder Regts Definition Process
5.3.3 Investment Management Process	5.4.3	5.5.3 Reqts Analysis Process
5.3.4	Project Assessment Process	5.5.4 Architectural Design Process
System Life Cycle Processes Management	5.4.4 Project Control Process	5.5.5 Implementation Process
5.3.5 Quality	Project Control Process	5.5.6 Integration Process
Management Process 5.3.6 Resource	5.4.5 Decision-Making Process	5.5.7 Verification Process
Management Process	5.4.6 Risk Management	5.5.8 Transition Process
Agreement Processes	Process	5.5.9 Validation Process
5.2.2	5.4.7 Configuration Management Process	5.5.10 Operation Process
Acquisition Process	5.4.8	5.5.11 Maintenance Process
5.2.3 Supply Process	Information Management Process	5.5.12 Disposal Process

Standards-based Tool Integration with SysML

Systems Modeling Tool

Model/Data Interchange

Other SE Engineering Tools

Participating SysML Tool Vendors

- Artisan
- EmbeddedPlus
 - 3rd party IBM vendor
- Sparx Systems
- Telelogic (includes I-Logix)
- Vitech

UML Profile for DoDAF/MODAF (UPDM) Standardization

- Current initiative underway to develop standard profile for representing DODAF and MODAF products
 - Requirements for profile issued Sept 05
 - Final submissions expected Dec '06
- Multiple vendors and users participating
- Should leverage SysML

Transitioning to SysML

Using Process Improvement To Transition to SysML

Integrated Tool Environment

Project Management							
ment	ement	e Analysis	SoS / DoDAF / Business Process Modeling		on	y Analysis	
Data Management nents Management y Performance Ana	System Modeling SysML		ion & Validation	/ Engineering			
CM/DM Product	Requirements	Engineering	Software Modeling UML 2	Hardware Modeling VHDL, CAD,	Verification	Specialty	

Summary and Wrap up

- SysML sponsored by INCOSE/OMG with broad industry and vendor participation
- SysML provides a general purpose modeling language to support specification, analysis, design and verification of complex systems
 - Subset of UML 2 with extensions
 - 4 Pillars of SysML include modeling of requirements, behavior, structure, and parametrics
- OMG SysML Adopted in May 2006
- Multiple vendor implementations announced
- Standards based modeling approach for SE expected to improve communications, tool interoperability, and design quality

References

- OMG SysML website
 - http://www.omgsysml.org
- UML for Systems Engineering RFP
 - OMG doc# ad/03-03-41
- UML 2 Superstructure
 - OMG doc# formal/05-07-04
- UML 2 Infrastructure
 - OMG doc# ptc/04-10-14