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Abstract— State Analysis is a methodology developed over the 
last decade for architecting, designing and documenting 
complex control systems.  Although it was originally conceived 
for designing robotic spacecraft, recent applications include 
the design of control systems for large ground-based 
telescopes. The European Southern Observatory (ESO) began 
a project to design the European Extremely Large Telescope 
(E-ELT), which will require coordinated control of over a 
thousand articulated mirror segments. The designers are using 
State Analysis as a methodology and the Systems Modeling 
Language (SysML) as a modeling and documentation language 
in this task. To effectively apply the State Analysis 
methodology in this context it became necessary to provide 
ontological definitions of the concepts and relations in State 
Analysis and greater flexibility through a mapping of State 
Analysis into a practical extension of SysML. The ontology 
provides the formal basis for verifying compliance with State 
Analysis semantics including architectural constraints. The 
SysML extension provides the practical basis for applying the 
State Analysis methodology with SysML tools. This paper will 
discuss the method used to develop these formalisms (the 
ontology), the formalisms themselves, the mapping to SysML 
and approach to using these formalisms to specify a control 
system and enforce architectural constraints in a SysML 
model. 
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1. INTRODUCTION 

tate Analysis is a formal methodology that 
extends basic concepts from control theory and 

software architecture to aid in the design of 
complex control applications. Over the last ten 
years as we have been elaborating and formalizing 
this methodology we have also been searching for 
modeling frameworks and tools that might help to 
transition this from a collection of ad-hoc methods 
into a more integrated process that more cleanly 
bridges the gap we see between system analysis 
and control software specification. The goal of 
this process is to make it easier for system 
engineers to precisely express design intent in a 
tool that actively helps to ensure consistency. 

Over this period significant progress has been 
made in the field of model based system 
engineering (MBSE), which shares similar goals 
in a somewhat broader engineering perspective. 
Much effort has focused on the development and 
application of the Unified Modeling Language 
(UML), its derivative the Systems Modeling 
Language (SysML), and tools that support these 
languages. While these languages and tools help 
significantly to formalize the expression, 
exchange, and graphical representation of system 
models, they remain ambiguous and in need of 
extension to capture the specific semantics of a 
given engineering domain. In the same way that 
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English or another human language requires the 
creation and definition of new words to enable the 
precise discussion of new concepts, modeling 
requires the formal definition of concepts and 
relations that are unique to a given domain so that 
models elements can have precise meanings. 
Then, in order to express these concepts in a 
formal modeling language like SysML, a mapping 
is required between the domain concepts and 
relations and those of the language.  

In this paper we will first present a review of the 
architectural principles and methodology of State 
Analysis and summarize some earlier efforts in 
order to set the stage for describing our current 
work. We will then describe our current ontology, 
its mapping to SysML, the process used to 
develop and validate it, and an example system 
analysis to demonstrate how the concepts are 
applied to the analysis of a real system. We will 
conclude by describing some of the limitations 
discovered during this effort and future work we 
have identified to resolve them. We begin with a 
discussion of the relevant architectural principles 
that guide our modeling approach. 

2. STATE ANALYSIS 
Spacecraft design is reaching a threshold of 
complexity where customary methods of control 
are no longer affordable or sufficiently reliable. 
At the heart of this problem are the conventional 
approaches to systems and software engineering 
based on subsystem-level functional 
decomposition, which fail to scale in the tangled 
web of interactions typically encountered in 
complex spacecraft designs. A straightforward 
extrapolation of past methods has neither the 
conceptual reach nor the analytical depth to 
address the challenges associated with future 
space exploration objectives. 

Furthermore, there is a fundamental gap between 
the requirements on software specified by systems 
engineers and the implementation of these 
requirements by software engineers. Software 
engineers must perform the translation of 
requirements into software code, hoping to 
capture accurately the systems engineer's 
understanding of the system behavior, which is 

not always explicitly specified. This gap opens up 
the possibility for misinterpretation of the systems 
engineer's intent, which lead to  preventable 
implementation and operational errors 

State Analysis [1] addresses the above challenges 
by asserting the following basic principles: 

- Control subsumes all aspects of system 
operation. It can be understood and exercised 
intelligently only through models of the system 
under control. Therefore, a clear distinction must 
be made between the control system and the 
system under control. 

- Models of the system under control must be 
explicitly identified and used in a way that assures 
consensus among systems engineers.  

- Understanding state is fundamental to successful 
modeling. Everything we need to know and 
everything we want to do can be expressed in 
terms of the states of the system under control 
because ultimately those are the things we wish to 
control. 

- The manner in which models inform software 
design and operation should be direct, requiring 
minimal translation.  

State Analysis improves on the current state-of-
the-practice by producing requirements on system 

Figure 1 State-Based Control Architecture 
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and software design in the form of explicit models 
of system behavior, and by defining a state-based 
architecture for the control system. It provides a 
common language for systems and software 
engineers to communicate, and thus bridges the 
traditional gap between software requirements and 
software implementation. 

State Analysis provides a uniform, methodical, 
and rigorous approach for:  

- Discovering, characterizing, representing, and 
documenting the states of a system; 

- Modeling the behavior of state variables and 
relationships among them, including information 
about hardware interfaces and operation; 

- Capturing the mission objectives in detailed 
scenarios motivated by operator intent; 

- Keeping track of system constraints and 
operating rules; and 

- Describing the methods by which objectives will 
be achieved. 

For each of these design aspects, there is a simple 
but strict structure within which it is defined: the 
state-based control architecture (also known as the 
"Control Diamond", see Figure 1). 

The architecture has the following key features: 

- State is explicit: The full knowledge of the state 
of the system under control is represented in a 
collection of state variables. 

- State estimation is separate from state control: 
Estimation and control are coupled only through 
state variables. Keeping these two functions 
separate promotes objective assessment of system 
state, ensures consistent use of state across the 
system, simplifies the design, promotes 
modularity, and facilitates implementation in 
software. 

- Hardware adapters provide the sole interface 
between the hardware in the system under control 
and the control system: They form the boundary 
of our state architecture, provide all the 
measurement and command abstractions used for 

control and estimation, and are responsible for 
translating and managing raw hardware input and 
output.  

- Models are ubiquitous throughout the 
architecture: Models are used for both execution 
(estimating and controlling state) and higher-level 
planning (e.g., resource management). State 
Analysis requires that the models be documented 
explicitly, in whatever form is most convenient 
for the given application. 

- The architecture emphasizes goal-directed 
closed-loop operation: Instead of specifying 
desired behavior in terms of low-level open-loop 
commands, State Analysis uses goals, which are 
constraints on state variables over a time interval. 

- The architecture provides a straightforward 
mapping into software: The control diamond 
elements can be mapped directly into 
implementation artifacts in a modular software 
architecture. 

In summary, the State Analysis methodology is 
based on a control architecture that is inherently 
model-based and has the notion of state at its core. 
In the following section, we describe our early 
efforts at capturing the products of State Analysis. 

3. EARLIER MODELING EFFORTS 
From its earliest stages State Analysis has 
developed graphical notations to concisely 
express its concepts and relations. As in many 
other fields we quickly discovered the limitations 
of trying to do engineering with simple drawing 
tools such as PowerPoint and Visio. Although 
they could create pretty pictures, these tools had 
no representation of what the boxes and lines 
meant, and so could not enforce any kind of 
consistency with the rules of State Analysis or 
even the implied semantic conventions (e.g., color 
coding) in an individual diagram. Thus began our 
search for tools to enable more formal modeling. 

The first prototype for a State Analysis database 
was built in 2003 with a fairly simple entity-
relation schema. It supported multi-user web-
based sharing through a browser form interface 
built using a simple web interface over a file-
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based data manager. This development was 
seminal in that it could be used to specify a 
control system architecture in terms of State 
Analysis concepts. However, the schema was 
manually encoded in the source code of the tool, 
making it difficult to analyze and update.  

The second prototype was built using Common 
Lisp and the LOOPS object oriented database 
framework. Again, a web-based form user 
interface was provided to allow users to capture 
State Analysis artifacts. 

A formal description of the ontology was initiated 
to guide the design of the database in this second 
prototype. The ontology was described in terms of 
an object-oriented design, with object types for 
each of the State Analysis elements, each having 
properties, and typed links to describe 
relationships between the State Analysis element 
‘objects’. This tool performed better than the 
earlier one, but it still suffered in terms of 
usability and maintainability because the ontology 
was manually encoded in the tool implementation.  

The last prototype, the State Analysis Database 
[2], was implemented using a commercial 
backend relational database that was formally 
specified using XML and Entity-Relationship 
diagrams. The structure of the State Analysis 
Database schema was developed to enable 
enforcement of the correct relationships between 
different model elements, between different 
software specification elements, and between 
models and the corresponding software 
specifications. Thus, the schema prevented a class 
of architectural engineering errors, and provided a 
guide for doing a complete and consistent 
engineering analysis. The front end of the 
database was a standalone web-client application. 
The client application could create html reports 
desired by users. For example, a prototype 
command dictionary report generator was 
implemented. In addition to the form-based user 
interface, a graphical interface was developed in 
the client to draw some of the diagrams specified 
by State Analysis 

The State Analysis Database had a client-server 
distributed system design. A single central 

database was the repository for requirements and 
models. The database was hosted using a 
commercial database manager. Communication 
with clients and other tools was through SQL 
queries and other industry standard mechanisms 
so that the database could be easily re-hosted on a 
variety of systems. The database could be 
accessed through the internet using the HTTP 
protocol – a database web server serviced HTTP 
database requests from clients and tools. 

We designed the database schema to reflect the 
formal State Analysis process. Each of the kinds 
of architectural elements that could be modeled or 
specified in State Analysis had a corresponding 
table in the database. Relationships between 
architectural elements were captured as references 
to related elements in tables, or through the use of 
linking tables between tables. The design was 
guided by the nature of each kind of relationship 
and the desire for the schema to enforce 
architectural rules where possible and reasonable, 
rather than having to rely completely on external 
consistency checking scripts. 

Although we learned much about modeling, and 
refined our concepts at each step, none of these 
earlier tools gained much traction with the system 
engineering community for doing real system 
analysis because they just weren’t very easy to 
use, and they required significant effort to 
implement and maintain. The desire for a more 
user-friendly graphical modeling interface based 
on customizable tooling led us to the approach 
described in this paper. The current approach is to 
leverage existing graphical interfaces provided by 
commercial system modeling tools, which are 
founded on the industry-standard modeling 
languages UML and SysML. SysML is created as 
a UML profile1, i.e. it extends the UML meta-
model using the stereotype mechanism.  

Murray [3] first prototyped a UML customization 
for State Analysis using the MagicDraw modeling 
tool. The profile, consisting of UML stereotypes, 
was manually created in MagicDraw[13], 

 
1 A UML Profile is a collection of definitions for stereotypes, tags and 
constraints that customize UML for a domain, redefining the semantics of 
the modeling language by extension. 
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demonstrating for the first time the viability of 
this general approach. 

Karban [4] is leading a team using State Analysis 
in the design of the control system for the 
European Extremely Large Telescope (E-ELT), a 
highly complex hardware/software system. 
Because of their need to specify hardware, 
software, and system-level interactions, 
allocations, and other non-software properties, 
SysML is a more appropriate modeling language 
choice than UML. They have developed a 
handmade profile for MagicDraw that defines 
many of the basic concepts and relations from 
State Analysis. 

In both Murray’s and Karban’s efforts, 
customized stereotypes were used to apply 
domain-specific meanings to model entities 
(Classes or Blocks) in order to help reduce 
ambiguity. In the current version of UML/SysML, 
stereotypes are the only way to specify a domain-
specific meta-model that can be readily mapped to 
model entities and their relationships. 

Although these approaches have significantly 
improved the ability of graphical models to 
express design intent, and have made it much 
easier to integrate control analysis into system 
models, they have only limited ability to verify 
model consistency with the underlying semantic 
meaning of the applied stereotypes and relations. 
To achieve that it became clear that we needed to 
more precisely formalize the concepts of State 
Analysis, and then map those concepts to SysML. 

4. ONTOLOGY DEVELOPMENT 
Our aim in this effort has been to provide a 
modeling framework for future applications of 
State Analysis. that enables us to leverage recent 
advances in graphical modeling tools, while also 
enabling us to perform formal analyses of 
consistency and correctness with respect to State 
Analysis domain relationships and constraints. 
Ontology is the study or analysis of the 
fundamental concepts and relationships in a 
domain. Here, the domain is that of software-
intensive control systems. The State Analysis 
domain is defined as an ontology in OWL2 [6] 
using the open-source Protégé ontology tool [7]. 

The mapping of the State Analysis ontology into a 
profile extension of SysML is defined as a 
mapping ontology that relates concepts from the 
domain ontology onto SyML elements that will be 
used to represent them in SysML models. This 
integration of OWL2 and SysML facilitates using 
OWL2 as a language and formalism for 
representing heterogenous conceptual domains, 
for reasoning about properties of the domains, and 
for simplifying the model-to-model 
transformation workflow required for projecting 
information from one domain into another 
[10,11]. Not only does this process allow us to 
cleanly separate the ontology from the semantics 
of SysML, it also allows us more flexibility to 
change the mapping of domain concepts (as 
stereotypes) into SysML entities or relations 
without affecting the concepts themselves. This is 
important as the SysML standard continues to 
evolve. The mapping flexibility allows us to 
maximize the usability of a State Analysis 
extension of SysML given the evolving 
constraints and limitations of the SysML abstract 
syntax language and of the SysML concrete 
syntax diagrams. 

The State Analysis ontology described here is 
constructed on top of a set of related ontologies 
describing the organizational and engineering 
context in which State Analysis is performed. 
Ultimately, the product of State Analysis is a 
specification for a deliverable control system 
product. It is beyond the scope of this paper to 
describe them here, but these base ontologies 
describe and relate the concepts of project, 
mission (that is, the mission the system is 
designed to perform), and deliverable 
components. Building upon these common base 
concepts makes it easier in the long run to relate 
discipline-specific models built using the State 
Analysis ontology with models from other 
domains such as software, electrical, or 
mechanical design that share the base concepts. 

5. ONTOLOGY SUMMARY 
The State Analysis ontology is divided into two 
layers, one for the fundamental concepts of 
physical system modeling, and a second layer 
defining the fundamental concepts of control 
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system modeling. This layering enables modeling 
of the physical system (the “plant” in control 
system terminology, or “system under control” in 
State Analysis) to be independent of any 
influences of the control system design, enforcing 
the methodological emphasis on completing the 
analysis of the physical system before beginning 
control system design. As described in the 
previous section, these mapping to SysML is then 
defined in another separate layer in order to help 
decouple the semantics of the State Analysis 
ontologies from those of SysML, and allow the 
mappings to evolve with the SysML standard. In 
this section we will discuss key concepts in both 
layers. Note that the diagrams presented in this 
section were generated from the OWL2 model 
and a documentation generation transformation. 

Physical System Modeling Concepts 

 

Figure 2 Affected Concept 

A fundamental concept in State Analysis is the 
modeling of state effects, or physical (causal) 
relationships between state variables of the system 
under control, the commands, and the 
measurements of the system. To model this 
relationship we used the abstract entities Affector 
and Affected. A StateVariable of the system under 
control can be both the source and target of an 
effect, and so derives from both. A Measurement 
can only be affected, and a Command can only 
cause an effect as shown in Figure 2 and Figure 3. 
The base concept Thing is simply an anonymous 
abstract container used as an OWL convention to 
keep our model distinct from other ontology 
models in the same system of models. Thus, there 
is one base Thing from which all of the State 
Analysis concepts derive, for the sole purpose of 

identifying that they are all part of the same 
ontology. 

Figure 3 Affector Concept 

The state effect relation is reflected in the named 
filled-in arrow (representing an OWL2 property) 
in Figures 2 and 3. The square brackets indicate 
the multiplicity of the relationship. In this case it 
says that an Affector can affect zero or more 
Affected elements.  

The StateVariableGroup entity is a modeling 
concept intended merely as a container for an 
arbitrary group of state variables, measurements, 
or commands in a diagram so that the model need 
not express every single state effect in a single 
diagram. This allows diagrams to express effects 
between groups that can then be detailed in 
separate diagrams for each group. In large 
complex systems this enables a more 
understandable and incremental presentation of 
the model details. 

Control System Modeling Concepts 

In State Analysis, the control system is specified 
in terms of estimators and controllers that are 
associated with the state variables of the system. 
Estimators and Controllers are the main “active” 
elements that the ontology represents in the 
abstract concept ControlSystemComponent (see 
Figure 5). A ControlSystemComponent can be 
hardware or software that actively performs a 
function (i.e., in software this would be a function 
that is scheduled to execute). An Achiever can 
actively perform the function of achieving a goal. 
A Controller achieves control goals (goals that 
constrain state variables of the physical system), 
whereas an Estimator achieves knowledge goals 
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that specify constraints on the quality of state 
knowledge (level of acceptable uncertainty in the 
estimated values of state variables) needed to 
achieve given control goals. 

 
Figure 5 Achiever 

A FunctionalStateVariable is a control system 
artifact responsible for representing the value of a 
state variable from the system under control. As 
depicted in Figure 4, there are several kinds 
reflecting distinct relationships with other 
elements in the control system2. Two we will 
describe here are ControllableStateVariable and 
BasisStateVariable.  As laid out in Figure 6, a 
BasisStateVariable has a relation with one 
Estimator (i.e., it provides the knowledge basis 
for control), and a ControllableStateVariable 
(Figure 7) has a relation with one Controller.  

 
2  Functional state variables are also described as software state variables in 
previous work. The new name recognizes that they do not have to be 
implemented in code; for instance they could alternatively be implemented 
as switches in hardware or registers on an FPGA board. 

 

Figure 6 Basis State Variable 

Note that a functional state variable can perform 
both of these roles. That is, a given 
implementation state variable can be both 
controllable (representing a controllable state 
variable of the system under control, and having 
an associated controller to effect control), and 
basis (having an associated estimator to provide 
updates).  

 

Figure 7 Goal Associations 

In the process of developing this ontology and its 
associated mapping to SysML, a few refinements 
to basic concepts were added as a result of the 

Figure 4 Implementation State Variable Types 
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need to remove ambiguities or overloaded 
meanings of certain concepts. One in particular 
had to do with the concept of a Goal. As shown in 
Figure 4, the concept of a Goal was divided into 
separate concepts for scheduled and unscheduled 
goals. ScheduledActivities3 are those that have 
been coordinated on a timeline with all of the 
other goals and sub-goals needed to accomplish a 
plan, whereas Goals more abstractly specify intent 
through elaboration dependencies on other goals 
[1].  

6. MAPPING TO SYSML 

In general, our strategy for mapping the 
ontologies into SysML is to define the ontological 
concepts and relationships as SysML stereotypes 
that can be applied to appropriate modeling 
entities: concepts to blocks, and relationships to 
semantically compatible SysML relationships. In 
a SysML tool such as MagicDraw, this can be 
accomplished by creating a profile module to 
define the stereotypes and any associated diagram 
and tooling customizations.  In other attempts 
[3,4] the translation from ontology to profile had 
to be performed by hand, which is not only 
tedious, but also prone to error because they were 
not based on a semantically verifiable ontology. 

 
Figure 8 Controllable State Variable 

Thanks to some advanced model transformations 
developed by JPL’s Integrated Model-Centric 

 
3 Also called executable goals, or XGoals in earlier papers. 

Engineering [10] team, the SysML profiles can 
now be generated automatically from the OWL2 
ontologies, and validated in the process against a 
set of consistency assertions derived from the 
semantic relationships defined in the ontologies. 
Furthermore, similar transformations, in the 
inverse direction, can then be applied to the 
SysML models to verify that any models that use 
these stereotypes conform to the semantics 
expressed in the ontologies, and thus conform to 
the rules of the architecture that they express. 

One of the key challenges in this entire effort was 
finding appropriate mappings of the domain 
concepts defined in our ontology concepts onto 
SysML modeling entities (Block, Port, etc.). 
Although the basic entities in SysML are defined 
with very abstract semantics, so that they can be 
specialized to model a wide variety of systems (by 
specializing the SysML stereotypes or 
specializing UML meta-classes), one must be 
aware of these meanings and relationships in 
order to avoid using them with domain semantics 
that conflict with the SysML abstract semantics. 
This is not something SysML itself would or 
could enforce, but is something that could cause 
problems for semantic reasoners attempting to 
apply formal methods to verify model correctness. 
Keeping the mappings to SysML distinct from the 
domain ontology makes it easier to refine the 
mappings or to define alternate mappings without 
affecting the domain semantics. 

Context diagram 

A concept that came to State Analysis through 
SysML is that of a modeling context. State 
Analysis establishes the need to formally 
distinguish between the control system being 
designed and the plant, or system under control, 
that it will interact with. SysML convention 
further requires that the combination of control 
system and plant be defined in a containing 
context in order to establish the extent of what is 
being modeled using an internal block diagram. 
We model the context in SysML as a block 
stereotyped as a modeling context (see Figure 11), 
which will then contain the models for control 
system and system under control. The diagram 
depicting this relationship is called the context 
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diagram. The line between control system and 
plant is depicted in the context diagram through 
the containment of model elements into either 
control system or plant parts of the model. The 
plant model can then be further decomposed, for 
example into a physical system and an 
environment, or into multiple elements of a 
distributed physical system. 

State Effects Diagram as ibd 

The SA concept of a state effects diagram (SED) 
is implemented in SysML using an internal block 
diagram (ibd) associated with the modeling 
context block (see example in Figure 12). Using 
an ibd associated with the modeling context 
allows the model to express relations between 
specific state variables contained within the 
context. Different modeling context blocks can be 
created if it is necessary to consider different 
effect models for the same physical model (e.g., 
models of different fidelity might be used at 
different times in a development process), or 
different configurations of the system as is likely 
to be the case during concept studies. A block 
definition diagram (bdd) would only express 
relations between state variable types, and 
although one can define very context-specific 
types, it seems more appropriate to express 
relations between specific instances defined 
within a context.  

State Effects Models as Parametrics 

The use of an ibd to represent state effects is 
basically just an abstraction of SysML’s concept 
of parametrics.  The state effect relation is 
modeled as a stereotyped dependency arrow that 
indicates a causal effect. The behaviors behind 
these relations can then be specified in SysML 
parametric (par) diagrams (or possibly state charts 
or activity diagrams, depending on the nature of 
the behaviors) to document the details of the 
relations in the form of mathematical formulae or 
algorithms. 

Goal Elaborations 

In State Analysis, goals express user intent as 
explicit constraints on state variables of the 
system under control over time. Goals are usually 

defined abstractly so that the time domain, and 
often the specific constraint, is expressed 
parametrically as a goal type rather than as a 
specific goal instance. This concept of a goal type 
can readily be expressed in SysML as a 
stereotyped block. We have also tried modeling 
goal types as use cases, with distinct properties 
and diagrams. The use case “includes” relation, 
where one use case depends on another is 
semantically quite similar to the SA “elaborates” 
relation (see Figure 9). Thus, applying the SA 
stereotypes to these SysML elements makes it 
possible to express certain aspects of goal 
elaboration directly in use case diagrams (those 
stereotypes extend the SysML UseCase Meta-
Class). 

 

Figure 9 Simple Goal Elaboration 

The main drawback of this approach is that use 
case diagrams have no notion of time. Goal 
elaboration diagrams must indicate the temporal 
dependencies between elaborated sub-goals and 
their parent goals. Our solution to this was to add 
stereotyped dependency relations between goals 
to express a few simple temporal relations 
including “concurrent,” and “prerequisite.” In the 
State Analysis theory such relations are expressed 
in the form of a mini temporal constraint network 
(TCN). SysML use case diagrams have no such 
notion of time. This problem could be addressed 
by using parametric diagrams and SysML 
Constraint Blocks to express temporal constraints 
in such networks.  

Use case diagrams also permit the use of 
generalization to model goals that have alternate 
tactics as shown in Figure 10. This clearly 
expresses the notion that there are two ways the 
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parent goal can be achieved, but does not provide 
a simple way to formally express the selection 
criteria, or specification of which tactic to choose 
in a given set of conditions. 

 

Figure 10 Representing Alternate Tactics 

Architectural Diagrams 

Goal-oriented control systems are constructed 
using Estimator and Controller components that 
associate with state variables to achieve 
knowledge and control goals. The functional 
architecture of the system can be modeled in 
SysML using block definition diagrams (bdd) to 
define Estimator, Controller, and 
FunctionalStateVariable types as parts of the 
Control System context block, and then using ibds 
to model the internal connections between them 
(see example in Figure 16). The stereotypes for 
these entities defined in our ontology constrain the 
kinds of information flow relations they can have 
with each other. For example, an Estimator can 
have an update relation with a State Variable, but 
a controller cannot. A Controller can issue 
commands to a hardware adapter, but an 
Estimator cannot.  

SA defines the concept of Hardware Adapter as 
an interface between the control system and 
system under control. In SysML we can model 
hardware adapters as interface blocks and nested 
ports. Ports are all that is necessary to document 
simple interfaces; aggregating several of them 
into an interface block allows the model to 
express a little more design intent, or detail about 
how the system constrains the interfaces. 

7. APPLYING THE PROFILE 

For the purpose of exposition we define a simple 
system we can model using the concepts 

described in the previous section. Our system 
consists of a controllable valve in a pipeline. 
Figure 11 depicts the context diagram for this 
system. We have defined a Physical System State 
Analysis block and a separate Control System 
block, both contained in an Analysis Context 
block (those stereotypes specialize the SysML 
<<Block>> stereotype). 

 
Figure 11 System Context Diagram 

 
The Analysis Context block provides a context in 
which we can model relations between the control 
system and the system under control it interacts 
with. The diagram indicates that the system under 
control is a characterization of the actual physical 
system and its environment, using a stereotyped 
dependency relationship (alternatively this could 
be expressed with a realization or specialization 
relationship). Similarly, the control system 
context characterizes the actual software 
implementation. This separation between an 
analysis context and the thing being analyzed can 
be important in a larger modeling environment in 
which there may be multiple characterizations of 
the same physical thing. Note that the order of 
creation may be different in these two cases. 
Whereas the physical system may exist prior to its 
characterization, the software implementation 
may be created after conceiving the State Analysis 
functional architecture. 

The System Under Control block is shown 
containing a number of State Variable part 
properties. The types of these State Variable part 
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properties are defined in separate diagrams (not 
shown), and stereotyped as State Variables. 

The next step in the State Analysis process is to 
define abstract state effects. Figure 12 shows how 
this is done using an ibd. State effects are 
indicated using dependency arrows stereotyped 
with the Affects stereotype. Also shown are the 
TapPressure measurement, and SetValvePos 
command that have been defined to enable 
communication between the physical and control 
systems. State effect relationships identified in 
this diagram must subsequently be elaborated into 
detailed state effect models, or measurement 
models using parametric diagrams or other 
behavior representations. 

 
Figure 12 State Effects Diagram 

Parametric diagrams provide a good way to 
document state effect and measurement models as 
shown in Figure 13 and Figure 14. The constraint 
function inside of the constraint block can be in 
the form of a mathematical relationship, or 
pseudo-code logic (SysML does not currently 
specify the details of constraints).   

 
Figure 13 State Effects Model as Parametric 

Figure 14 elaborates the measurement model for 
the TapPressure measurement. This diagram 
preserves the abstract Affects relationship from the 
State Effects Diagram in order to show how this 
abstract relation is realized in a parametric model.  

The measurement model constraint block details 
how actual pressure in the pipe, as represented by 
the Pressure state variable, causes a particular 
measurement value to be produced. In State 
Analysis, measurement models are important 
because they document factors such as sensor 
sensitivity and range, noise, and latency that must 
be compensated for in the estimation process. 

 
Figure 14 Measurement Model as Parametric 

Once the system under control has been 
sufficiently modeled, the design of the control 
system can begin. In this system we define 
functional state variables to represent each of the 
state variables identified in the state analysis (see 
Figure 15). Stereotyped dependencies indicate 
that each functional state variable implements one 
or more state variables in the system under control 
(the control system design can opt to aggregate 
closely-related state variables into a single data 
structure, particularly if they are all updated at the 
same time). Estimator components are defined for 
each state variable, and a controller is defined for 
the Valve Position (similar relations are defined 
for the Flow state variable, not shown). All of 
these elements are defined as part properties in the 
control software context block described above. 
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Figure 15 Control Component Definitions 

Finally, we can describe the architecture of the 
control system in terms of its information flow 
using another ibd (Figure 16). Note that the 
interface between the elements inside the control 
software context (the content of the diagram) and 
the system under control is depicted using an 
interface block described as a HardwareAdapter. 
This block is defined elsewhere in the model 
containing typed ports for each of the command 
and measurement types that the control system 
will exchange with the system under control. 
Command and Measurement elements are 
modeled in SysML as signals that flow through 
flow ports. The flow ports indicate the direction of 
the flow (in SysML 1.3 this will be modeled with 

flow properties). Measurements always flow from 
the system under control into the control system. 
Commands normally flow from the control 
system to the system under control, but we define 
our hardware adapter so that it can buffer one or 
more previously sent commands for reference by 
the control system. In our very simple example, 
the valve position estimator has no direct sensing 
of the valve position (see Figure 13), so it uses the 
last sent command to infer the valve position. 

The profiles for MagicDraw are constructed so 
that the stereotype menus will only offer those 
stereotypes that apply to the selected SysML 
entities or relations. For example, to create the 
state effect relations in Figure 12, the part blocks 
(whose types are already stereotyped as <<state-
analysis.StateVariable>>) are automatically added 
when the diagram is created. An effect is modeled 
by drawing a dependency arrow from the 
affecting state variable block to the affected state 
variable block, and then applying the <<state-
analysis.Affects>> stereotype. If an effect arrow 
had been drawn from a measurement to a state 
variable the stereotype would not have been 
offered as an option because this is an invalid 
relation according to the ontology. In this way the 
semantics of the ontology inform the modeling 
tool to help enforce model consistency with the 
rules of the domain. Similarly, these underlying 
constraints are available to MagicDraw’s built-in 
validation tool, or to external tools that can parse 
the model and assess consistency of relations. 
This improves significantly the usability for the 
modeler, and the ability to validate models during 
modeling. 
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8. CONCLUSIONS AND FUTURE WORK  
Applying stereotyped relations in models allows 
the model to be analyzed to compare the 
semantics and constraints expressed in the 
stereotype definitions with the details of the 
model, in order to verify that the model conforms 
to the semantics of the domain expressed in the 
ontology.  This work has demonstrated that it is 
possible to define meaningful domain-specific 
stereotypes using a model transformation from 
OWL2, apply them in a SysML modeling tool, 
and then use those stereotypes to verify 
correctness properties in the model. When 
complete, the State Analysis ontology and SysML 
profile should enable control system engineers to 
model system behaviors, specify control 
behaviors and intent, and have the model enforce 
semantic consistency rules established by the 
principles of State Analysis. 

This work improves on previous efforts to enable 
the use of SysML to perform State Analysis by 
providing a set of tool-specific customizations and 
modeling patterns that achieve much of the intent 
of State Analysis. However, some SA concepts 

have yet to be modeled and mapped, and we 
continue to refine others as our technique evolves 
(several concepts evolved significantly over the 
course of writing this paper). Because this 
remains a work in progress we have only 
described the modeling and mapping of a few key 
concepts from SA. In particular, we have yet to 
find entirely satisfactory representations for 
intent, including goals and goal networks in 
SysML. Consequently, our current effort is 
focused on formalizing the modeling concepts 
related to intent and behavior, including goals, 
scheduled activities, temporal constraints, and the 
ways these concepts associate with state variables 
and the flow of time. The modeling of behaviors 
is the focus of significant effort in the modeling 
community and at JPL [5, 12]. While much of the 
standards-focused effort focuses on descriptive 
modeling of behaviors, our work also intends to 
model the relationships between intent (goals) and 
behavior that explains, through State Analysis, 
how the behaviors satisfy the specified intent. 

We have experimented with using activity 
diagrams (stereotyping activities as “scheduled 

Figure 16 Functional Architecture 
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goals”), and using fork-join relations to represent 
time points. This is problematic in that activity 
diagrams cannot easily express temporal 
constraints on the activities, and because the 
token-passing semantics expressed in the SysML 
standard are inconsistent with those of goal 
networks. More recently we have begun 
developing a separate timeline ontology [5] and 
applying its concepts as stereotypes to these 
activity diagrams, to express temporal semantics 
distinct from those of SysML This is a focus of 
current work.  

Considerable work remains to formalize the graph 
state variable concept [8] in SA. Graph state 
variables relate position, orientation, or other 
relative states within frames of reference. 
Describing these relations formally requires 
defining frames of reference, coordinate systems, 
and the mathematical structures for representing 
multidimensional quantities. Since those concepts 
are meaningful outside the domain of SA it seems 
best to define those in a separate ontology and 
reference them in the SA ontology. As of this 
writing that work remains incomplete. 

We continue to reconcile and refine our JPL 
ontology and SysML mappings with ones 
developed separately by our colleagues at the 
European Southern Observatory. While the 
concepts and relations defined in our separate 
ontologies are mostly consistent, small differences 
remain to be resolved. Most of the refinements at 
this point involve deep relations within base 
ontologies that will help to relate concepts across 
modeling domains. 
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