Modeling & Simulation of CubeSat Mission

Model-Based Systems Engineering (MBSE) Behavioral Modeling and Execution
Integration of MagicDraw, Cameo Simulation Toolkit, STK, and Matlab using ModelCenter

Sara Spangelo¹
Jet Propulsion Laboratory (JPL), California Institute of Technology

Hongman Kim²
Grant Soremekun³
Phoenix Integration, Inc.

May 29/30, 2013

¹spangelo.sara@gmail.com, ²hkim@phoenix-int.com, ³grant@phoenix-int.com
System Engineering Challenges

Conventional approaches:

- Focus on subset of subsystems
 - Over-simplified, low fidelity
 - Neglect subsystem interactions
- Requirements verification using average/best/worst-cases
 - Fail to capture realistic “dynamic” nature of missions
- Models and simulations are not integrated!
 - “Hacked” together for one-off cases
 - Not modular, extensible, reusable

Why? Lack of integrated modeling/simulation tools to enable system-level engineering design/analysis.
System Engineering Challenges

Particularly an issue for CubeSats\(^1\) because:

- Physical components physically integrated
- Extremely constrained:
 - Limited ability to collect and store energy (e.g. batteries)
- Operational constraints/ decisions coupled
 - When to collect data versus download data?
- Orbits are unknown/ dynamic
 - Little/ no control over launch orbit
 - Experience variation in eclipse duration, may de-orbit
- Operate in inefficient/ stochastic environments

Integrated models and tools are critical to design and plan for these missions!

\(^1\)Type of miniature spacecraft (1U = 10cm\(^3\), <1 kg)
Model-Based Systems Engineering (MBSE\(^1\))

Why MBSE?

1) Enables system-level model capture
 - Formal, accurate, authoritative single source
 - Contains elements, relationships, interactions
 - Multiple compatible views, e.g. physical/functional
 - Requirements verification and traceability

\(^1\) "Formal" model to support requirements, design, analysis, verification
Model-Based Systems Engineering (MBSE)

Why MBSE?

2) Enables integration of models and simulations
 • Connect system-level model to analytical tools (STK, Matlab)
 • Execute dynamic simulation of end-to-end mission
 • Identify failure to satisfy requirements, sub-optimal designs
 • Accommodates re-evaluation when design changes occur
 • Enables co-simulation: simultaneous vehicle/mission design
Motivating Mission Example

- Radio Aurora Explorer (RAX) CubeSat mission
- Science target: plasma irregularities in ionosphere
- Experimental zone in Poker Flat, Alaska
- Global ground station network
- Vehicle constraints: solar panels, battery, data buffer
Motivating Mission Example

Systems engineering questions:
- How do satellite states evolve throughout mission?
- Does the vehicle design/operations meet all mission requirements?
- How do changes in spacecraft mission parameters impact performance and requirements satisfaction?
Project: “Model” Operational CubeSat

Mission goals....

Goal #1: Develop fundamental systems model of CubeSat mission
Capture structure, function, relationships, requirements, traceability.

Pretty clear-cut if you know what you’re modeling. Accomplished by SSWG\(^1,2\).*

Goal #2: Execute realistic behavioral CubeSat scenarios
Capture operational opportunities, state evolution, mission performance.

No clear way to do this in March 2013.

Project: “Model” Operational CubeSat

Mission accomplished...

Project Deliverables:

- Systems-level SysML model (in MagicDraw)
 - Structure of mission architecture and vehicle
 - Requirements definition and traceability
 - Parametric diagrams to capture analytical relationships
 - Evaluated using MBSE Analyzer
 - Behavioral diagrams to capture dynamic operations
 - Executed using Cameo Simulation Toolkit and MBSE Analyzer

- Analytical models for describing behavior
 - STK, Matlab, Java
 - ModelCenter enabled integration with SysML and automated execution of dynamic scenarios

1 A prototype capability was developed for this work that allows CST to execute parametric diagrams via MBSE Analyzer
Modeling Philosophies

For usability/ extensibility:

- **Modularity**: re-usable libraries of parts

 \[e.g. \text{constraint block modules are re-used in many parametric diagrams} \]

- **Patterning**: re-use of modeling patterns

 \[e.g. \text{common pattern in Power and Data Management subsystems} \]

- **Nomenclature**: simple and sufficiently descriptive

 \[e.g. \text{subsystem naming codes used for data rate and power values} \]
CubeSat System Model Architecture

The system model captures requirements, structure, behavior, and parametrics.
Structural Diagrams

Mission Level

Vehicle Level
Mission Requirements

Drive systems design

Defines constraint on lowest battery level throughout mission

Defines constraint on minimum download

Defines constraint on lowest data storage level throughout mission
Parametric Diagram

.Constraint blocks defines opportunities

Pointing to a ModelCenter model with STK and Matlab
ModelCenter Model
STK and Matlab Plug-Ins

- Analysis models (STK, Matlab) wrapped and integrated with ModelCenter
- ModelCenter models imported into SysML model constraint blocks with MBSE Analyzer
Systems Tool Kit (STK)

Analytic simulation tool used to propagate orbit & compute:

- Solar state: sun/eclipse, solar panel angles
- Access to experimental zone
- Access to ground stations
Parametric Diagrams

Constraint blocks computes total power

Pointing to a ModelCenter model with Matlab plug-in
Parametric Diagrams

Constraint blocks update satellite states

- Compute energy level at the next time step
- Similar parametric diagrams for experiment data and data download
MBSE Analyzer: Parametric Diagram Solver

- Solves linked parametric diagrams (all 3) simultaneously
- Automated requirements verification (green: pass, red: fail)
Bringing the Model to Life

Main State Machine Diagram

- Entry point of Cameo Simulation Toolkit (CST) behavioral simulation
- Starts “RunOperation” activity diagram that steps through mission simulation
- Updates solar, experiment, and download states according to signals
Main Simulation Loop

Motivation
Overview
Modeling
Simulating
Design Trades
Reflections
Future Work
A prototype capability was developed for this work that allows CST to execute parametric diagrams via MBSE Analyzer.
How are Mission Simulations Performed?

- MagicDraw CST (Behavioral diagrams)
- MBSE Analyzer/ModelCenter (Parametric diagrams)
- STK, Matlab, etc. (Analytical models)
Each column contains updated state at time step

- During CST simulation, MBSE Analyzer is called at each time step
- Data Explorer automatically stores time history of the simulation data
Mission Simulation Results

- Combined simulation SysML behavioral diagrams to STK, Matlab using MBSE Analyzer
- MBSE Analyzer is called at each time step during CST simulation
- Time history of energy level, experiments, and data download is stored

Energy drop in eclipse

Energy drop during download

Motivation
Overview
Modeling
Simulating
Design Trades
Reflections
Future Work
Final Step: Requirements Verification

Full end-to-end (dynamic) scenario

- Post-CST simulation: final state stored in an instance specification
- Use MBSE Analyzer to verify requirements with visual tool!
Mission and Design Trade-Offs

Battery Capacity

Nominal Battery Capacity

1/8 Battery Capacity

Requirements defined in SysML model

Infeasibility: Failure to satisfy requirements
Mission and Design Trade-Offs

Orbit Altitudes

<table>
<thead>
<tr>
<th>Orbit Type</th>
<th>Semi-Major Axis</th>
<th>Apogee Altitude</th>
<th>Perigee Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>7012 km</td>
<td>811.69 km</td>
<td>457.57 km</td>
</tr>
<tr>
<td>High</td>
<td>7500 km</td>
<td>1311.22 km</td>
<td>932.50 km</td>
</tr>
<tr>
<td>Low</td>
<td>6800 km</td>
<td>593.55 km</td>
<td>250.18 km</td>
</tr>
</tbody>
</table>

Motivation

Overview

Modeling

Simulating

Design Trades

Reflections

Future Work
Mission and Design Trade-Offs

Ground Station Locations

Downloaded Data, MBytes vs. Time, hours

- Ann Arbor and Menlo Park (Nominal)
- Ann Arbor and Fairbanks
- Fairbanks and Menlo Park
- Minimum Requirement

Location and Description Of Ground Stations In Network

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Latitude (degrees)</th>
<th>Longitude (degrees)</th>
<th>Altitude (km)</th>
<th>Minimum Elevation (degrees)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnnArbor</td>
<td>MI</td>
<td>42.271</td>
<td>-83.73</td>
<td>0.256</td>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td>Fairbanks</td>
<td>AK</td>
<td>64.88</td>
<td>-147.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MenloPark</td>
<td>CA</td>
<td>37.457</td>
<td>-122.2</td>
<td>0.022</td>
<td>0</td>
<td>0.95</td>
</tr>
</tbody>
</table>
Reflecting on Project Experience

How did MBSE enable us to overcome challenges?
• Coupled analytic models with simulation capabilities
• Demonstrated dynamic behavioral modeling
• Achieved requirements verification for full end-to-end missions
• Extensible by use of standards, libraries, patterns, etc.

Lessons Learned
• Working with many tools is challenging (license, versions, etc.)
• STK has a lot of flexibility: exploit use vectors/angles
• Best to automate repeated tasks
• Working with vendors is necessary/advantageous
• Always ask: “Am I using the right modeling/simulation tool?”
Future Work

- Extend the system-level model
 - Higher fidelity models of the spacecraft subsystems
 - Include communication and experimental link budgets
- Extend and refine the behavioral and analysis models
 - Add spacecraft scheduling for optimal use of resources
 - Improve approach for data extraction at specific time (e.g. from STK)
- Automate system and mission parameters trade-offs
 - Extend MBSE Analyzer to drive simulations by CST
 - Enable sensitivity analysis and design optimization
- Generalize the model for applicability to a variety of mission concepts
Acknowledgements

• Mike Bruchanski, Greg Haun, Dave Kaslow from Analytical Graphics, Inc. (AGI)

• Chris Delp, Louise Anderson, Bjorn Cole, James Smith from JPL

• Radio Aurora eXplorer (RAX) Team, Prof. James Cutler

• CubeSat and Amateur Radio Communities

• Dr. Derek Dalle (graphics)