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Abstract 

In this paper, we combine modeling constructs 
from SysML and Modelica to improve the support 
for Model-Based Systems Engineering (MBSE).  
The Object Management Group has recently devel-
oped the Systems Modeling Language (OMG 
SysML™).  This visual modeling language provides 
a comprehensive set of diagrams and constructs for 
modeling many common aspects of systems engi-
neering problems, such as system requirements, 
structures, functions, and behaviors.  Complementing 
these SysML constructs, the Modelica language has 
emerged as a standard for modeling the continuous 
dynamics of systems in terms of hybrid discrete- 
event and differential algebraic equation systems.  In 
this paper, the synergy between SysML and Mode-
lica is explored at three different levels:  the defini-
tion of continuous dynamics models in SysML; the 
use of a triple graph grammar to maintain a bi-
directional mapping between these SysML con-
structs and the corresponding Modelica models; and 
the integration of simulation experiments with other 
SysML constructs to support MBSE.  Throughout 
the paper, an example of a car suspension is used to 
demonstrate these contributions. 

Keywords: SysML; Modelica; model-based systems 
engineering; continuous dynamics; graph transfor-
mations 

1 Introduction 

1.1 Managing System Complexity with SysML 

Contemporary systems engineering projects are 
becoming increasingly complex as they are handled 

by geographically distributed design teams, con-
strained by the objectives of multiple stakeholders, 
and inundated by large quantities of design informa-
tion.  Accordingly, problems encountered during the 
system development process generally have more to 
do with the organization and management of com-
plexity than with the direct technological concerns 
that affect individual subsystems and specific physi-
cal science areas [1].  If engineers cannot efficiently 
manage project complexity, they might overlook im-
portant design details and dependencies.  Such mis-
takes can compromise stakeholder objectives and 
lead to costly design iterations or system failures. 

According to the principles of model-based sys-
tems engineering (MBSE) [2], engineers can over-
come these problems by replacing document-centric 
design methods with model-based approaches for 
representing and investigating their knowledge dur-
ing system decomposition and definition.  Models 
can be used to represent formally all aspects of a sys-
tems engineering problem, including the structure, 
function, and behavior of a system [3].  Additionally, 
experiments can be performed on models to elimi-
nate poor design alternatives and to ensure that a pre-
ferred alternative meets the stakeholders’ objectives.  
Models also facilitate collaboration by providing a 
common, unambiguous protocol for communicating 
design information. 

To support MBSE, the Object Management 
Group has recently developed the Systems Modeling 
Language (OMG SysML™).  SysML is a general-
purpose systems modeling language that enables sys-
tems engineers to create and manage models of engi-
neered systems using well-defined, visual constructs 
[4].  Instead of developing SysML as an original de-
sign, the OMG adapted the successful Unified Mod-
eling Language (UML) to the systems engineering 



field.  UML is most commonly used during the de-
velopment of large-scale, complex software for vari-
ous domains and implementation platforms [5].  To 
support an application base that extends beyond soft-
ware engineering, SysML reuses and extends a sub-
set of UML 2.1 constructs: 

• it extends UML classes into blocks; 
• it enables requirements modeling; 
• it supports parametric modeling; 
• it extends UML dependencies into allocations; 
• it reuses and modifies UML activities; 
• it extends UML standard ports into flow ports. 

Through these extensions, SysML is capable of rep-
resenting many common, yet essential aspects of 
both system hardware and software. 

1.2 Modeling System Behavior with SysML 

The knowledge captured in a SysML model is 
intended to support the specification, analysis, de-
sign, and verification and validation of any engi-
neered system [4].  As a result, SysML is commonly 
used to model system requirements, tests, structures, 
functions, behaviors, and their interrelationships.  
Although all of these models are important for ensur-
ing project success, behavioral models are arguably 
the most important.  If the system does not behave in 
a way that satisfies stakeholder objectives, then it is 
useless regardless of its other aspects. 

SysML currently depicts system behavior using 
the following language constructs: 

• Activity diagrams describe the inputs, outputs, 
sequences, and conditions for coordinating 
various system behaviors; 

• Sequence diagrams describe the flow of 
control between actors and a system or its 
components; 

• State machine diagrams are used for modeling 
discrete behavior through finite state transition 
systems; 

• Parametric diagrams allow users to represent 
mathematical constraints amongst system 
properties. 

The first three of these modeling constructs promote 
causal behavioral modeling in terms of discrete 
events.  The last one enables a user to model equa-
tions (called “constraints” in SysML) that establish 
mathematical relationships between system proper-
ties.  In this paper, the focus is on parametric dia-
grams and specifically on the representation of the 
continuous dynamics of engineered systems within 
parametric diagrams.  Such models are composed of 

differential algebraic equation (DAE) systems that 
represent the exchange of energy, signals, or other 
continuous interactions between system components.  
By relying on Modelica syntax and semantics, we 
demonstrate how such DAE systems can be modeled 
with only a few extensions to the basic SysML con-
structs (see Section 4).  SysML then serves as an in-
tegration framework in which detailed Modelica 
models can be related to other types of systems engi-
neering knowledge (see Section 6).  The integration 
between SysML and Modelica creates a significant 
synergy: SysML benefits from the detailed Modelica 
semantics for representing DAE systems combined 
with discrete events; Modelica benefits from the 
broader information modeling context provided in 
SysML, a context that is crucial for establishing for-
mal, unambiguous communications between systems 
engineers, disciplinary designers and systems ana-
lysts.  To maintain consistency between the Mode-
lica models and their corresponding abstractions in 
SysML, we introduce the use of triple graph gram-
mars (TGGs) [6] to specify transformations between 
the two forms of models (see Section 5). 

2 Related Work 

The need to describe system behavior in terms 
of equations or constraints has been previously rec-
ognized in the work on Constrained Objects (COB’s) 
[7, 8].  COBs provide both a graphical and lexical 
representation of algebraic relationships that can be 
used to tie design models to analysis models in a pa-
rametric fashion.  These COBs recently served as the 
basis for the development of the SysML parametric 
diagrams [4].  By establishing a mapping between 
COBs and SysML, the integration and execution of 
engineering analyses (such as structural finite ele-
ment analyses) within the context of SysML has 
been demonstrated [9]. This paper extends this past 
work on COBs by focusing on the modeling and 
simulation of the continuous dynamics of systems as 
defined in Modelica models. 

Recently, Fritzson and Pop [10] have worked on 
the integration of UML/SysML and Modelica to 
provide support for modeling and simulating con-
tinuous dynamics.  They have created a UML profile 
called ModelicaML that enables users to depict a 
Modelica simulation model graphically alongside 
UML/SysML information models.  The ModelicaML 
profile reuses several UML and SysML constructs, 
but also introduces completely new language con-
structs.  Such constructs are the Modelica class dia-
gram, the equation diagram, and the simulation dia-
gram. 



Nytsch-Geusen [11] developed a specialized ver-
sion of UML called UMLH.  This version is used in 
the graphical description and model-based develop-
ment of hybrid systems in Modelica.  The author 
presents hybrid system models as Modelica models 
that are based on DAEs combined with discrete state 
transitions modeled with the Modelica statechart ex-
tension.  Using a UMLH editor and a Modelica tool 
that supports code generation, Modelica stubs can be 
automatically generated from UMLH diagrams so 
that the user must only insert the equation-based be-
havior of the system in question.  In this paper, the 
capabilities of ModelicaML and UMLH are further 
extended by demonstrating the integration of con-
tinuous dynamics models with other SysML con-
structs for requirements, structure, and design objec-
tives, and by demonstrating the translation between 
SysML and Modelica through the use of TGGs. 

3 An Introduction to SysML: The 
Car Suspension Model 

Before discussing the approach for modeling 
continuous dynamics and simulations in SysML, this 
section reviews some important SysML constructs 
and introduces the example problem used throughout 
this paper. 

3.1 SysML Blocks 

The primary modeling unit in SysML is the 
block.  As described in chapter 8 of the SysML 
specification [4], a block is a modular unit of a sys-
tem description.  A block can represent anything, 
whether tangible or intangible, that describes a sys-
tem.  For instance, a block could model a system, 
process, function, or context.  When combined to-
gether, blocks define a collection of features that de-
scribe a system or other object of interest.  Hence, 
blocks provide a means for an engineer to decom-
pose a system into a collection of interrelated ob-
jects. 

All block declarations occur in a Block Defini-
tion Diagram (BDD).  A BDD is used to define 
block features and the relationships between blocks 
or other SysML constructs.  Figure 1 depicts the 
definition of a car and its suspension.  A car is obvi-
ously composed of more subsystems and compo-
nents, but Figure 1 is sufficient for the sake of dem-
onstration.  SysML allows a modeler to omit ele-
ments of the underlying information model that de-
tract from the main intent of a diagram. 

3.2 SysML Properties 

A SysML property describes a part or character-
istic of a block and consists of a named value of a 
specified type.  In Figure 1, two important categories 
of properties are depicted.  The first kind of property 
is a part property.  Part properties represent a sub-
system or component of a system and must be typed 
by a block.  Part properties can be depicted in the 
parts compartment of a block or using a composition 
association.  A composition association is depicted 
using a black diamond with a tail.  The property 
name appears at the tail end of the association.  For 
example, the block Car in Figure 1 owns a part prop-
erty named suspension of type WheelSuspension. 

The second kind of property is a value property.  
A value property appears in a block’s values com-
partment and represents a quantifiable characteristic 
of a block (e.g. mass, length, velocity) and must be 
typed to a SysML value type.  A value type is a spe-
cial modeling element (similar to a block) used to 
assign the units of measure and dimension declared 
in its definition.  For example, Car in Figure 1 has a 
value property mass which is typed to the value type 
SI.Mass to supply units of kilograms. 

3.3 UML Stereotypes 

A stereotype is a UML construct used to create 
customized classifications of modeling elements.  
Stereotypes are defined by keywords that appear in-
side of guillemets.  These customization constructs 
extend the standard elements to identify more spe-
cialized cases important to specific classes of appli-

 
Figure 1.  The SysML car suspension model. 



cations.  Most SysML constructs have been defined 
as UML stereotypes, and users are allowed to create 
additional stereotypes to capture the specialized se-
mantics of a particular application domain.  An ex-
ample of a stereotype is illustrated in Figure 1. The 
stereotype «moe» applied to the WheelSuspension’s 
value property settlingTime indicates that it is a 
measure of effectiveness.  

3.4 SysML Requirements 

A SysML requirement is used to represent a tex-
tual requirement or objective for a system, subsys-
tem, or component.  Requirements are shown with 
the «requirement» stereotype and optionally have a 
compartment for displaying text and identification 
fields.  Requirements are related to other modeling 
elements using various dependencies such as the sat-
isfy and verify dependencies. 

4 Modeling Continuous Dynamics in 
SysML 

In this section, the approach to modeling con-
tinuous dynamics in SysML is presented.  The ap-
proach builds on the initial modeling foundation out-
lined in [12].  Rather than elaborating upon every 
detail, only the most important modeling constructs 
are discussed. 

4.1 Objectives 

A model is valuable if it increases a decision 
maker’s ability to design a better system at an ac-
ceptable cost [13].  As explained later in this section, 
the continuous dynamics modeling constructs will 
provide value if they meet the following objectives: 

• Enable the integration of continuous dynamics 
models into broader SysML models; 

• Facilitate the execution (i.e., simulation) of 
these continuous dynamics models; 

• Encourage model reuse; 
• Facilitate efficient stakeholder communication. 

The intent of these objectives is to strike an appro-
priate balance between the benefits expected from 
developing a model and the costs of encoding the 
required information. 

Model integration is essential for managing sys-
tem complexity through recognition and establish-
ment of dependencies and associations between 
models of continuous dynamic system behavior and 
other models of system behavior, structure, or func-

tionality.  SysML is a language for describing sys-
tems engineering information and knowledge, but is 
by itself not executable—model execution is rele-
gated to an editing and execution tool.  To be effec-
tive, it is therefore important to establish seamless 
connections between SysML and simulation tools.  
Model reuse is another imperative for realizing sig-
nificant reductions in project resource expenditures.  
Finally, using a unified approach for representing 
continuous dynamics in SysML establishes a proto-
col for unambiguous communication of behavioral 
information between designers operating in various 
engineering disciplines. 

4.2 Modelica as a Foundation 

When creating a formal approach for represent-
ing continuous dynamics in SysML, Modelica pro-
vides a strong foundation.  Modelica has emerged as 
the language of choice for expressing continuous 
dynamic system behavior.  It is better structured and 
more expressive than most alternatives such as 
VHDL-AMS [14] or ACSL [15].  In addition, both 
SysML and Modelica are similar in that they use 
base modeling elements that adhere to the principles 
of object-oriented modeling.  Both languages also 
encourage model reuse through acausal equation-
based modeling.  Unfortunately, enough differences 
exist such that a direct one-to-one mapping is not 
possible.  Since SysML is intended to be a general 
modeling language, some of the specialized seman-
tics of Modelica do not have a direct equivalent in 
SysML.  To overcome these differences, our ap-
proach has been to find a good balance between con-
verting some implicit Modelica semantics into ex-
plicit constraints in SysML or, when that is not pos-
sible, extending the SysML constructs through 
stereotypes.  

4.3 Model Declaration 

When modeling continuous dynamic system be-
havior, a modeler must first declare the model that 
represents the system of interest.  This involves 
specifying the blocks and properties needed to de-
compose the system to an appropriate level of ab-
straction.  The level of abstraction is determined by 
the amount of detail needed to perform an acceptable 
system analysis.  This declaration approach is analo-
gous to creating Modelica classes that own compo-
nents and variables typed to other class definitions. 

To illustrate model declaration, Figure 2 displays 
the declaration of a continuous dynamics model of a 
Mass-Spring-Damper (MSD) system.  This model 
will be used in Section 6 to perform a behavioral 



analysis on the car suspension model from Figure 1.  
The MSD system is composed of a mass, spring, 
damper, fixed position (i.e. ground fixture), and a 
detector that determines system settling time.  The 
block MSD represents the declaration of the MSD 
system while the other blocks (Mass, Spring, 
Damper, SteadyStateDetector, Fixed, and MechJunc-
tion) represent the definitions of the system compo-
nents. 

Upon declaring the necessary models, their 
properties must be identified.  Figure 2 depicts the 
declaration of both the part and value properties.  
MSD is attributed with the mass, spring, damper, 
ground, and detect part properties typed to the Mass, 
Spring, Damper, Fixed, and SteadyStateDetector 
block definitions, respectively.  While MSD has no 
value properties, most of the block definitions to 
which its part properties are typed contain value 
properties.  For example, Mass contains a value 
property m typed to the value type SI.Mass. 

4.4 Model Interface 

To interact with other models, a given model 
must have a well-defined interface.  Models used in 
the description of a system’s continuous dynamic 
behavior generally interact using exposed across and 
through variables [16].  Since across and through 
variables are the only means of interaction, they 
should be encapsulated inside of reusable blocks that 
are typed to the part properties of another block.  
These part properties are then exposed to other sys-
tem components and subsystems.  This type of inter-
face is similar to the usage of Modelica connectors.  

To illustrate the declaration of a model interface, 
Figure 2 depicts a block named MechJunction.  This 
is a reusable block that encapsulates position and 
force value properties corresponding to translational 
across and through variables.  To define the inter-
faces for each component of MSD, the appropriate 
number of part properties are declared for each com-
ponent and then typed to MechJunction.  For exam-
ple, Mass has one part property j typed to MechJunc-
tion. 

4.5 DAE-Based Internal Behavior 

To define a model’s DAE-based internal behav-
ior, Modelica relies on equations declared in the 
equation clause of a given class.  Similarly, this is 
accomplished by placing SysML constraints on a 
given block.  A constraint is simply the representa-
tion of an equation that constrains a block’s value 
properties.  Constraints appear between braces and 
are displayed in a block’s constraints compartment.  
To model initial conditions, a constraint can be as-
signed the «initial» stereotype.  This stereotype is an 
extension to SysML; it can only be assigned to con-
straints and implies that the constraint only holds 
true at the beginning of a simulation. 

Usages of constraints and the «initial» stereotype 
are shown in Figure 2.  The internal behavior of the 
block Mass is defined using four regular constraints 
and one initial constraint.  Note that the constraints 
explicitly refer to the Modelica language, but other 
syntax could be used according to the modeler’s pre-
ferred executable language. 

4.6 Energy and Signal Flow between System 
Components 

To model the flow of energy through a system 
and its components, a means of interaction must be 
provided to the interface part properties described in 
Section 4.3.  Generally, the flow of energy in a sys-
tem is described using the equivalent of Kirchhoff’s 
circuit laws: at a connection, all across variables are 
equal, while all the through variables add up to zero.  
While this is modeled implicitly in Modelica using 
connect clauses, our SysML modeling approach ex-
plicitly models the interaction with reusable con-
straint blocks.  As defined in the SysML specifica-
tion [4], a constraint block is a specialized form of 
the SysML block and is intended to package com-
monly used equations in a reusable, parameterized 
fashion.  Constraint blocks can be identified by the 
«constraint» stereotype that appears in their name-
space compartment.  To use the definition of a con-
straint block, another block or constraint block can 

 
Figure 2.  BDD of the MSD continuous dynamic system 

behavior model. 



declare a constraint property and assign the type to a 
constraint block.  Using a SysML parametric dia-
gram, the parameters used in the definition of the 
constraint can be bound to the properties of another 
block or constraint block using binding connectors.  
A binding connector implies a pure equality con-
straint between two objects.  If the objects are part 
properties, then all of the sub-properties belonging to 
each part are equal.  It is this difference between the 
semantics of SysML binding connectors and Mode-
lica connections that necessitates the inclusion of an 
explicit node constraint block in SysML.  

Figure 2 shows the definition of a constraint 
block named MechNode.  This constraint block has 
three parameters j1, j2, and j3 of type MechJunction.  
The across and through variables of these parameters 
are subject to the three packaged constraints that de-
scribe Kirchhoff’s circuit laws for a translational 
mechanical system.  MSD owns three constraint 
properties typed to MechNode to enable the interac-
tion of its part properties.  Figure 3 displays a para-
metric diagram that depicts the part interactions as a 
result of binding usages of MechJunction. 

5 SysML and Modelica Integration 

Currently, system engineering problems are 
solved using a wide range of domain-specific model-
ing languages.  Moreover, it is unlikely that a single 
unified modeling language will be able to model in 
sufficient detail the large number of system aspects 
addressed by current domain-specific languages.  
One should not “reinvent the wheel” by creating an 
all-encompassing systems engineering language ca-
pable of modeling and simulating every aspect of a 
system.  On the other hand, managing a large num-
ber of models in different languages also poses prob-
lems, including communication ambiguity and the 
preservation of information consistency.  To allevi-
ate these problems, a model integration framework is 
needed for managing the various modeling languages 
used to solve systems engineering problems. 

SysML can provide an answer to this need for 
model integration.  Using SysML, a modeler can 
abstract a domain-specific language to a level that 
permits its interaction with other system models.  For 
example, a Modelica model is an excellent way to 
capture hybrid discrete/DAE-based system behavior, 
but is not capable of modeling system structure or 
requirements.  Using the modeling approach outlined 
in Section 4, a modeler can abstract a Modelica 

model into SysML syntax to represent dependencies 
and associations with other system models1. 

While SysML is a valuable integration tool, 
much of that value could be detracted if engineers 
must manually transform domain-specific models 
into SysML and vice-versa.  In the case of continu-
ous dynamics models, we need an approach for ac-
complishing automated, bidirectional transforma-
tions between the SysML and Modelica languages. 

Many methods exist for completing model trans-
formations between two or more modeling languages 
(metamodels).  Two common transformation tools 
are OMG’s Queries/Views/Transformations (QVT) 
[17] and TGGs [6]. 

The QVT specification provides a set of lan-
guages for querying a source model that complies 
with a source metamodel and transforming it into a 
target model that complies with a target metamodel.  
Two QVT languages, Relations and Core, are used 

                                                      
1 Dependencies and associations are UML constructs 

for expressing types of relationships between information 
objects. 

 
Figure 3.  Parametric diagram of the MSD model. 



to declaratively model the relationships between 
source and target metamodels at different levels of 
fidelity.  The Operational Mappings language is then 
used to perform imperative transformations based on 
the relationships depicted in the Core or Relations 
languages.  Overall, QVT is a powerful and widely 
accepted model transformation tool; however, the 
imperative nature of the Operational Mappings lan-
guage hampers bidirectional transformations. 

TGGs are similar to QVT in intent but are de-
clarative by nature.  Accordingly, TGGs are particu-
larly useful for completing complex, bidirectional 
model transformations.  In a TGG, the metamodels 
for the source and target languages are defined as 
graphs.  The mapping between the two languages is 
then represented as a set of graph transformation 
rules applied to a third graph: a correspondence 
graph.  For example, a SysML block would be re-
lated to a Modelica class using a correspondence 
entity named block2class with one relation pointing 
to the block entity (in the SysML metamodel graph) 
and one to the class entity (in the Modelica 
metamodel graph).  By querying a model space con-
taining SysML or Modelica models, transformations 
are performed until the model space complies with 
the specified TGG. 

Due to the declarative, bidirectional nature of 
TGGs, one set of graph transformation rules can be 
used to transform SysML models into Modelica and 
vice-versa.  Although a TGG is used for this trans-
formation, others have shown that QVT is equally 
expressive and capable [18].  The TGG and graph 
transformation rules have been encoded in the Visual 
Automated Model Transformations (VIATRA) [19] 
framework.  VIATRA enables modelers to create 
models in a declarative fashion and use pattern rec-
ognition to complete graph transformations in a se-
quential fashion using machines.  To demonstrate 
this TGG, a Java plug-in for Eclipse has been im-
plemented to transform SysML models developed in 
the Embedded Plus (E+) modeling environment into 
Modelica models using the OpenModelica [20] com-
piler (OMC) and Modelica Development Tooling 
(MDT) plug-in for Eclipse.  The functionality of this 
plug-in is depicted in Figure 4. 

6 Modeling Simulations in SysML 

In the context of model-based systems engineer-
ing, models and simulations allow systems engineers 
to investigate and predict the behavior of system al-
ternatives without the need for physical prototyping.  
For example, a continuous dynamics model of a 

MSD can be used to simulate and predict the behav-
ior of a car suspension alternative.  This section de-
scribes how a continuous dynamics model can be 
related to other relevant design information in 
SysML: binding of model parameters in a model 
context; defining an experiment performed on a 
model in a simulation; defining a measure of effec-
tiveness as the result of a simulation; and using an 
abstracted simulation in the context of design opti-
mization. 

6.1 Defining the Model Context 

In systems engineering, a continuous dynamics 
model is always used in a particular model context.  
Within this model context the elements of the system 
structure are bound to the corresponding elements of 
the analysis model.  In current practice, engineers do 
not always distinguish between the physical structure 
or system topology and the corresponding system 
behavior.  For instance, it is common practice to use 
an electric circuit diagram as the representation for 
defining both the circuit topology as well as the be-
havior of the circuit in a SPICE simulation.  As sys-
tems become more complex there often is a need to 
represent a system by multiple simulation models, 
corresponding to different levels of abstraction or 
different disciplinary perspectives. The use of an 
explicit model context as suggested here facilitates 
the preservation of consistency amongst all the sepa-
rate models. 

To relate the structure to the behavior, a model 
context block is defined with two part properties: one 
usage of the system model and one usage of the 
analysis model.  If mathematical relationships be-

 
Figure 4.  Functionality of the SysML-to-Modelica 

transformation Eclipse plug-in. 



yond simple equivalence exist between the known 
elements of the system model and the corresponding 
elements of the analysis model, additional constraint 
blocks can also be defined. Finally, a parametric dia-
gram of the model context block is created to bind 
the known system elements to the corresponding 
analysis elements. 

 In the lower portion of Figure 5, the block 
ModelContext is defined as owning usages of MSD, 
Car, and a constraint block named MassRelation.  In 
Figure 6, a corresponding parametric diagram is 
shown establishing a relationship between the MSD 
and car masses.  Inside of this parametric diagram, 
msd.mass.m is defined as one quarter of the mass of 
mcCar.mass by connecting them to the appropriate 
parameters on the constraint property massRel. 

6.2 Modeling the Simulation 

A simulation is an experiment performed on a 
computational model [21].  Before a simulation can 
be performed, the experiment needs to be completely 
defined: the initial values and boundary values, the 
outputs to be observed, and potentially the process 
steps one should go through in the experiment (e.g., 
time traces of external inputs).  From a modeling 
perspective, all of these aspects can be captured in 
the model itself or in extensions of the model defined 
using the same Modelica/SysML constructs de-
scribed in Section 4.  One can therefore assume that 
the “model” as defined in the model context is fully 
specified — all the parameters are bound to values 
and the set of system equations is non-singular.   
Under those assumptions, the only additional infor-
mation that needs to be provided is the start and end 

time of the simulation. 

To make the semantics of a simulation explicit in 
SysML, we have defined a «simulation» stereotype.   
As is illustrated in Figure 5, this stereotype requires 
the inclusion of a time property, which represents the 
simulation time; startTime and stopTime properties; 
and a simModel block. The meaning of the stereo-
type is then that all the properties in the simModel 
are evaluated as a function of time from startTime to 
stopTime.  Note that this stereotype completely de-
fines a simulation experiment in a fashion that is in-
dependent of any particular simulation solver.  In 
addition, note that Modelica semantics differ from 
SysML semantics which require the explicit defini-
tion of a local simulation time property to which all 
time-varying system properties can be bound. 

6.3 Abstracting the Simulation 

A simulation as defined in the previous section 
allows a systems engineer to define an experiment in 
which the system behavior can be observed.  How-
ever in systems engineering, simulations are often 
used to make decisions.  In that case, the same ex-
periment is often performed on multiple variations of 
the same system — the design or decision alterna-
tives.  It then becomes important to abstract this 
simulation formally by clearly defining the inputs 
(the properties that can take on different values from 
one simulation run to the next), and the outputs (the 
properties that are of interest to the design, for in-
stance, a measure of effectiveness that drives a de-
sign optimization).  The relationship between inputs 
and outputs of the simulation can then itself be con-
sidered as a model.  Unlike the model of the system, 
this input-output model is an algebraic relationship, 
albeit a very complex one that requires running the 
entire simulation to compute the outputs from the 
inputs.  When abstracting (or “wrapping”) a simula-
tion in this fashion in support of decision making, it 
is justifiable to assume that the outputs of the simula-
tion are scalar quantities (decisions can only be made 

 
Figure 5.  BDD of the SuspensionSimulation block. 

 
Figure 6.  Parametric diagram of the ModelContext. 



based on scalars because vectors cannot be rank-
ordered [22]).  Sometimes this requires that one in-
clude additional modeling elements in the continuous 
dynamics model to define these scalar measures of 
effectiveness.  For instance, in the BDD in Figure 5 
and the corresponding parametric diagram in Figure 
7, the suspension simulation has been abstracted into 
an input-output model with inputs as the decision 
variables, dInput and kInput (bound to the damping 
and stiffness of the suspension), and an output as the 
measure of effectiveness, ssTimeOutput (the steady-
state time of the mass-spring-damper system).  The 
output has been bound to a model property through a 
sample and hold constraint property, sample&hold, 
making explicit that the output takes on the value of 
the time-varying property detect.ssTime when the 
simulation time equals stopTime.  In general, more 
complex models may be necessary to relate scalar 
outputs to time-varying simulation properties. 

6.4 Embedding a Simulation into an Analysis 

Once a simulation has been abstracted into an 
input-output model, it can be used in support of ana-
lyzing system alternatives with respect to stakeholder 
requirements and measures of effectiveness, as is 
illustrated in Figures 8 and 9.  Analyses generally 
verify that a system alternative meets a certain sys-
tem requirement, which can be modeled explicitly 
using the «verify» dependency. A parametric dia-
gram of that block can be used to connect the system 
alternative to the simulation, as is illustrated in Fig-
ure 9.  Instead of binding the simulation inputs and 
outputs directly to the corresponding value properties 
of the system alternative, one could also define an 
optimization problem in which the stiffness and 
damping are optimized with respect to one or more 

measures of effectiveness.  Whenever there is a need 
for repeated evaluation of the simulation with differ-
ent inputs, it is desirable to embed the simulation 
explicitly in an analysis context as is shown in Fig-
ure 8. 

7 Discussion and Closure 

In this paper, we have introduced an approach 
for combining SysML and Modelica in a synergistic 
fashion.  No single language or formalism can possi-
bly capture all of the knowledge and information 
needed to solve systems engineering problems.  
While Modelica is well-suited for describing the dy-
namic behavior of complex systems, it offers no 
support for relating that behavior to stakeholder re-
quirements.  Similarly, SysML allows one to define 
the high-level relationships between requirements 
and functional, physical and operational architectures 
of a system, but lacks the detailed semantics to cap-
ture for instance geometry.  It is therefore crucial that 
capabilities are developed for relating in a formal 
framework the different knowledge representations 
commonly employed in systems engineering prob-
lems. SysML provides the foundation for making a 
first step in that direction.  The general-purpose and 
adaptable nature of the language enables system en-
gineers to interrelate their preferred knowledge rep-
resentations.  In addition, formal metalevel mappings 
as described by TGGs provide a promising founda-

 

Figure 7. Parametric diagram of SuspensionSimulation. 

 
Figure 8. BDD of the SuspensionAnalysis block. 

 

 
Figure 9. Parametric diagram of SuspensionAnalysis. 



tion for bidirectional mappings between the different 
knowledge representations. 

Using the modeling approaches described in this 
paper, engineers will be more capable of managing 
system complexity through the modeling of depend-
encies between continuous dynamic system behavior 
and other system aspects.  Additionally, the mapping 
of SysML to Modelica and the resulting transforma-
tion abilities enable engineers to describe their sys-
tems at a higher level of abstraction while still main-
taining the benefits of executable knowledge repre-
sentations. 

In this paper, the intent has been to take advan-
tage of SysML’s adaptability and to make a step to-
wards the unification of various modeling formal-
isms.  While the continuous dynamics modeling ap-
proach described in this paper builds on the Mode-
lica language, it still maintains a certain language 
independence thanks to the general, declarative na-
ture of Modelica.  TGGs could be developed to map 
SysML to the syntax of other languages, with the 
restriction that when mapping to a causal, procedural 
modeling language, a compiler must be used to as-
sign causalities and sort the equations.   

The ongoing efforts towards the unification of 
engineering knowledge representations in SysML are 
exciting steps for the systems engineering commu-
nity.  Utilizing and increasing the abilities of SysML 
promises to improve the current state of systems en-
gineering and bring to fruition the benefits of MBSE.  
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