
Integrating Models and Simulations
of Continuous Dynamics into SysML

Thomas Johnson1 Christiaan J.J. Paredis1 Roger Burkhart2

1Systems Realization Laboratory
The G. W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332

tjohnson6@gatech.edu chris.paredis@me.gatech.edu

2Deere & Company World Headquarters
Moline, Illinois 61265

BurkhartRogerM@johndeere.com

Abstract

In this paper, we combine modeling constructs
from SysML and Modelica to improve the support
for Model-Based Systems Engineering (MBSE).
The Object Management Group has recently devel-
oped the Systems Modeling Language (OMG
SysML™). This visual modeling language provides
a comprehensive set of diagrams and constructs for
modeling many common aspects of systems engi-
neering problems, such as system requirements,
structures, functions, and behaviors. Complementing
these SysML constructs, the Modelica language has
emerged as a standard for modeling the continuous
dynamics of systems in terms of hybrid discrete-
event and differential algebraic equation systems. In
this paper, the synergy between SysML and Mode-
lica is explored at three different levels: the defini-
tion of continuous dynamics models in SysML; the
use of a triple graph grammar to maintain a bi-
directional mapping between these SysML con-
structs and the corresponding Modelica models; and
the integration of simulation experiments with other
SysML constructs to support MBSE. Throughout
the paper, an example of a car suspension is used to
demonstrate these contributions.

Keywords: SysML; Modelica; model-based systems
engineering; continuous dynamics; graph transfor-
mations

1 Introduction

1.1 Managing System Complexity with SysML

Contemporary systems engineering projects are
becoming increasingly complex as they are handled

by geographically distributed design teams, con-
strained by the objectives of multiple stakeholders,
and inundated by large quantities of design informa-
tion. Accordingly, problems encountered during the
system development process generally have more to
do with the organization and management of com-
plexity than with the direct technological concerns
that affect individual subsystems and specific physi-
cal science areas [1]. If engineers cannot efficiently
manage project complexity, they might overlook im-
portant design details and dependencies. Such mis-
takes can compromise stakeholder objectives and
lead to costly design iterations or system failures.

According to the principles of model-based sys-
tems engineering (MBSE) [2], engineers can over-
come these problems by replacing document-centric
design methods with model-based approaches for
representing and investigating their knowledge dur-
ing system decomposition and definition. Models
can be used to represent formally all aspects of a sys-
tems engineering problem, including the structure,
function, and behavior of a system [3]. Additionally,
experiments can be performed on models to elimi-
nate poor design alternatives and to ensure that a pre-
ferred alternative meets the stakeholders’ objectives.
Models also facilitate collaboration by providing a
common, unambiguous protocol for communicating
design information.

To support MBSE, the Object Management
Group has recently developed the Systems Modeling
Language (OMG SysML™). SysML is a general-
purpose systems modeling language that enables sys-
tems engineers to create and manage models of engi-
neered systems using well-defined, visual constructs
[4]. Instead of developing SysML as an original de-
sign, the OMG adapted the successful Unified Mod-
eling Language (UML) to the systems engineering

field. UML is most commonly used during the de-
velopment of large-scale, complex software for vari-
ous domains and implementation platforms [5]. To
support an application base that extends beyond soft-
ware engineering, SysML reuses and extends a sub-
set of UML 2.1 constructs:

• it extends UML classes into blocks;
• it enables requirements modeling;
• it supports parametric modeling;
• it extends UML dependencies into allocations;
• it reuses and modifies UML activities;
• it extends UML standard ports into flow ports.

Through these extensions, SysML is capable of rep-
resenting many common, yet essential aspects of
both system hardware and software.

1.2 Modeling System Behavior with SysML

The knowledge captured in a SysML model is
intended to support the specification, analysis, de-
sign, and verification and validation of any engi-
neered system [4]. As a result, SysML is commonly
used to model system requirements, tests, structures,
functions, behaviors, and their interrelationships.
Although all of these models are important for ensur-
ing project success, behavioral models are arguably
the most important. If the system does not behave in
a way that satisfies stakeholder objectives, then it is
useless regardless of its other aspects.

SysML currently depicts system behavior using
the following language constructs:

• Activity diagrams describe the inputs, outputs,
sequences, and conditions for coordinating
various system behaviors;

• Sequence diagrams describe the flow of
control between actors and a system or its
components;

• State machine diagrams are used for modeling
discrete behavior through finite state transition
systems;

• Parametric diagrams allow users to represent
mathematical constraints amongst system
properties.

The first three of these modeling constructs promote
causal behavioral modeling in terms of discrete
events. The last one enables a user to model equa-
tions (called “constraints” in SysML) that establish
mathematical relationships between system proper-
ties. In this paper, the focus is on parametric dia-
grams and specifically on the representation of the
continuous dynamics of engineered systems within
parametric diagrams. Such models are composed of

differential algebraic equation (DAE) systems that
represent the exchange of energy, signals, or other
continuous interactions between system components.
By relying on Modelica syntax and semantics, we
demonstrate how such DAE systems can be modeled
with only a few extensions to the basic SysML con-
structs (see Section 4). SysML then serves as an in-
tegration framework in which detailed Modelica
models can be related to other types of systems engi-
neering knowledge (see Section 6). The integration
between SysML and Modelica creates a significant
synergy: SysML benefits from the detailed Modelica
semantics for representing DAE systems combined
with discrete events; Modelica benefits from the
broader information modeling context provided in
SysML, a context that is crucial for establishing for-
mal, unambiguous communications between systems
engineers, disciplinary designers and systems ana-
lysts. To maintain consistency between the Mode-
lica models and their corresponding abstractions in
SysML, we introduce the use of triple graph gram-
mars (TGGs) [6] to specify transformations between
the two forms of models (see Section 5).

2 Related Work

The need to describe system behavior in terms
of equations or constraints has been previously rec-
ognized in the work on Constrained Objects (COB’s)
[7, 8]. COBs provide both a graphical and lexical
representation of algebraic relationships that can be
used to tie design models to analysis models in a pa-
rametric fashion. These COBs recently served as the
basis for the development of the SysML parametric
diagrams [4]. By establishing a mapping between
COBs and SysML, the integration and execution of
engineering analyses (such as structural finite ele-
ment analyses) within the context of SysML has
been demonstrated [9]. This paper extends this past
work on COBs by focusing on the modeling and
simulation of the continuous dynamics of systems as
defined in Modelica models.

Recently, Fritzson and Pop [10] have worked on
the integration of UML/SysML and Modelica to
provide support for modeling and simulating con-
tinuous dynamics. They have created a UML profile
called ModelicaML that enables users to depict a
Modelica simulation model graphically alongside
UML/SysML information models. The ModelicaML
profile reuses several UML and SysML constructs,
but also introduces completely new language con-
structs. Such constructs are the Modelica class dia-
gram, the equation diagram, and the simulation dia-
gram.

Nytsch-Geusen [11] developed a specialized ver-
sion of UML called UMLH. This version is used in
the graphical description and model-based develop-
ment of hybrid systems in Modelica. The author
presents hybrid system models as Modelica models
that are based on DAEs combined with discrete state
transitions modeled with the Modelica statechart ex-
tension. Using a UMLH editor and a Modelica tool
that supports code generation, Modelica stubs can be
automatically generated from UMLH diagrams so
that the user must only insert the equation-based be-
havior of the system in question. In this paper, the
capabilities of ModelicaML and UMLH are further
extended by demonstrating the integration of con-
tinuous dynamics models with other SysML con-
structs for requirements, structure, and design objec-
tives, and by demonstrating the translation between
SysML and Modelica through the use of TGGs.

3 An Introduction to SysML: The
Car Suspension Model

Before discussing the approach for modeling
continuous dynamics and simulations in SysML, this
section reviews some important SysML constructs
and introduces the example problem used throughout
this paper.

3.1 SysML Blocks

The primary modeling unit in SysML is the
block. As described in chapter 8 of the SysML
specification [4], a block is a modular unit of a sys-
tem description. A block can represent anything,
whether tangible or intangible, that describes a sys-
tem. For instance, a block could model a system,
process, function, or context. When combined to-
gether, blocks define a collection of features that de-
scribe a system or other object of interest. Hence,
blocks provide a means for an engineer to decom-
pose a system into a collection of interrelated ob-
jects.

All block declarations occur in a Block Defini-
tion Diagram (BDD). A BDD is used to define
block features and the relationships between blocks
or other SysML constructs. Figure 1 depicts the
definition of a car and its suspension. A car is obvi-
ously composed of more subsystems and compo-
nents, but Figure 1 is sufficient for the sake of dem-
onstration. SysML allows a modeler to omit ele-
ments of the underlying information model that de-
tract from the main intent of a diagram.

3.2 SysML Properties

A SysML property describes a part or character-
istic of a block and consists of a named value of a
specified type. In Figure 1, two important categories
of properties are depicted. The first kind of property
is a part property. Part properties represent a sub-
system or component of a system and must be typed
by a block. Part properties can be depicted in the
parts compartment of a block or using a composition
association. A composition association is depicted
using a black diamond with a tail. The property
name appears at the tail end of the association. For
example, the block Car in Figure 1 owns a part prop-
erty named suspension of type WheelSuspension.

The second kind of property is a value property.
A value property appears in a block’s values com-
partment and represents a quantifiable characteristic
of a block (e.g. mass, length, velocity) and must be
typed to a SysML value type. A value type is a spe-
cial modeling element (similar to a block) used to
assign the units of measure and dimension declared
in its definition. For example, Car in Figure 1 has a
value property mass which is typed to the value type
SI.Mass to supply units of kilograms.

3.3 UML Stereotypes

A stereotype is a UML construct used to create
customized classifications of modeling elements.
Stereotypes are defined by keywords that appear in-
side of guillemets. These customization constructs
extend the standard elements to identify more spe-
cialized cases important to specific classes of appli-

Figure 1. The SysML car suspension model.

cations. Most SysML constructs have been defined
as UML stereotypes, and users are allowed to create
additional stereotypes to capture the specialized se-
mantics of a particular application domain. An ex-
ample of a stereotype is illustrated in Figure 1. The
stereotype «moe» applied to the WheelSuspension’s
value property settlingTime indicates that it is a
measure of effectiveness.

3.4 SysML Requirements

A SysML requirement is used to represent a tex-
tual requirement or objective for a system, subsys-
tem, or component. Requirements are shown with
the «requirement» stereotype and optionally have a
compartment for displaying text and identification
fields. Requirements are related to other modeling
elements using various dependencies such as the sat-
isfy and verify dependencies.

4 Modeling Continuous Dynamics in
SysML

In this section, the approach to modeling con-
tinuous dynamics in SysML is presented. The ap-
proach builds on the initial modeling foundation out-
lined in [12]. Rather than elaborating upon every
detail, only the most important modeling constructs
are discussed.

4.1 Objectives

A model is valuable if it increases a decision
maker’s ability to design a better system at an ac-
ceptable cost [13]. As explained later in this section,
the continuous dynamics modeling constructs will
provide value if they meet the following objectives:

• Enable the integration of continuous dynamics
models into broader SysML models;

• Facilitate the execution (i.e., simulation) of
these continuous dynamics models;

• Encourage model reuse;
• Facilitate efficient stakeholder communication.

The intent of these objectives is to strike an appro-
priate balance between the benefits expected from
developing a model and the costs of encoding the
required information.

Model integration is essential for managing sys-
tem complexity through recognition and establish-
ment of dependencies and associations between
models of continuous dynamic system behavior and
other models of system behavior, structure, or func-

tionality. SysML is a language for describing sys-
tems engineering information and knowledge, but is
by itself not executable—model execution is rele-
gated to an editing and execution tool. To be effec-
tive, it is therefore important to establish seamless
connections between SysML and simulation tools.
Model reuse is another imperative for realizing sig-
nificant reductions in project resource expenditures.
Finally, using a unified approach for representing
continuous dynamics in SysML establishes a proto-
col for unambiguous communication of behavioral
information between designers operating in various
engineering disciplines.

4.2 Modelica as a Foundation

When creating a formal approach for represent-
ing continuous dynamics in SysML, Modelica pro-
vides a strong foundation. Modelica has emerged as
the language of choice for expressing continuous
dynamic system behavior. It is better structured and
more expressive than most alternatives such as
VHDL-AMS [14] or ACSL [15]. In addition, both
SysML and Modelica are similar in that they use
base modeling elements that adhere to the principles
of object-oriented modeling. Both languages also
encourage model reuse through acausal equation-
based modeling. Unfortunately, enough differences
exist such that a direct one-to-one mapping is not
possible. Since SysML is intended to be a general
modeling language, some of the specialized seman-
tics of Modelica do not have a direct equivalent in
SysML. To overcome these differences, our ap-
proach has been to find a good balance between con-
verting some implicit Modelica semantics into ex-
plicit constraints in SysML or, when that is not pos-
sible, extending the SysML constructs through
stereotypes.

4.3 Model Declaration

When modeling continuous dynamic system be-
havior, a modeler must first declare the model that
represents the system of interest. This involves
specifying the blocks and properties needed to de-
compose the system to an appropriate level of ab-
straction. The level of abstraction is determined by
the amount of detail needed to perform an acceptable
system analysis. This declaration approach is analo-
gous to creating Modelica classes that own compo-
nents and variables typed to other class definitions.

To illustrate model declaration, Figure 2 displays
the declaration of a continuous dynamics model of a
Mass-Spring-Damper (MSD) system. This model
will be used in Section 6 to perform a behavioral

analysis on the car suspension model from Figure 1.
The MSD system is composed of a mass, spring,
damper, fixed position (i.e. ground fixture), and a
detector that determines system settling time. The
block MSD represents the declaration of the MSD
system while the other blocks (Mass, Spring,
Damper, SteadyStateDetector, Fixed, and MechJunc-
tion) represent the definitions of the system compo-
nents.

Upon declaring the necessary models, their
properties must be identified. Figure 2 depicts the
declaration of both the part and value properties.
MSD is attributed with the mass, spring, damper,
ground, and detect part properties typed to the Mass,
Spring, Damper, Fixed, and SteadyStateDetector
block definitions, respectively. While MSD has no
value properties, most of the block definitions to
which its part properties are typed contain value
properties. For example, Mass contains a value
property m typed to the value type SI.Mass.

4.4 Model Interface

To interact with other models, a given model
must have a well-defined interface. Models used in
the description of a system’s continuous dynamic
behavior generally interact using exposed across and
through variables [16]. Since across and through
variables are the only means of interaction, they
should be encapsulated inside of reusable blocks that
are typed to the part properties of another block.
These part properties are then exposed to other sys-
tem components and subsystems. This type of inter-
face is similar to the usage of Modelica connectors.

To illustrate the declaration of a model interface,
Figure 2 depicts a block named MechJunction. This
is a reusable block that encapsulates position and
force value properties corresponding to translational
across and through variables. To define the inter-
faces for each component of MSD, the appropriate
number of part properties are declared for each com-
ponent and then typed to MechJunction. For exam-
ple, Mass has one part property j typed to MechJunc-
tion.

4.5 DAE-Based Internal Behavior

To define a model’s DAE-based internal behav-
ior, Modelica relies on equations declared in the
equation clause of a given class. Similarly, this is
accomplished by placing SysML constraints on a
given block. A constraint is simply the representa-
tion of an equation that constrains a block’s value
properties. Constraints appear between braces and
are displayed in a block’s constraints compartment.
To model initial conditions, a constraint can be as-
signed the «initial» stereotype. This stereotype is an
extension to SysML; it can only be assigned to con-
straints and implies that the constraint only holds
true at the beginning of a simulation.

Usages of constraints and the «initial» stereotype
are shown in Figure 2. The internal behavior of the
block Mass is defined using four regular constraints
and one initial constraint. Note that the constraints
explicitly refer to the Modelica language, but other
syntax could be used according to the modeler’s pre-
ferred executable language.

4.6 Energy and Signal Flow between System
Components

To model the flow of energy through a system
and its components, a means of interaction must be
provided to the interface part properties described in
Section 4.3. Generally, the flow of energy in a sys-
tem is described using the equivalent of Kirchhoff’s
circuit laws: at a connection, all across variables are
equal, while all the through variables add up to zero.
While this is modeled implicitly in Modelica using
connect clauses, our SysML modeling approach ex-
plicitly models the interaction with reusable con-
straint blocks. As defined in the SysML specifica-
tion [4], a constraint block is a specialized form of
the SysML block and is intended to package com-
monly used equations in a reusable, parameterized
fashion. Constraint blocks can be identified by the
«constraint» stereotype that appears in their name-
space compartment. To use the definition of a con-
straint block, another block or constraint block can

Figure 2. BDD of the MSD continuous dynamic system

behavior model.

declare a constraint property and assign the type to a
constraint block. Using a SysML parametric dia-
gram, the parameters used in the definition of the
constraint can be bound to the properties of another
block or constraint block using binding connectors.
A binding connector implies a pure equality con-
straint between two objects. If the objects are part
properties, then all of the sub-properties belonging to
each part are equal. It is this difference between the
semantics of SysML binding connectors and Mode-
lica connections that necessitates the inclusion of an
explicit node constraint block in SysML.

Figure 2 shows the definition of a constraint
block named MechNode. This constraint block has
three parameters j1, j2, and j3 of type MechJunction.
The across and through variables of these parameters
are subject to the three packaged constraints that de-
scribe Kirchhoff’s circuit laws for a translational
mechanical system. MSD owns three constraint
properties typed to MechNode to enable the interac-
tion of its part properties. Figure 3 displays a para-
metric diagram that depicts the part interactions as a
result of binding usages of MechJunction.

5 SysML and Modelica Integration

Currently, system engineering problems are
solved using a wide range of domain-specific model-
ing languages. Moreover, it is unlikely that a single
unified modeling language will be able to model in
sufficient detail the large number of system aspects
addressed by current domain-specific languages.
One should not “reinvent the wheel” by creating an
all-encompassing systems engineering language ca-
pable of modeling and simulating every aspect of a
system. On the other hand, managing a large num-
ber of models in different languages also poses prob-
lems, including communication ambiguity and the
preservation of information consistency. To allevi-
ate these problems, a model integration framework is
needed for managing the various modeling languages
used to solve systems engineering problems.

SysML can provide an answer to this need for
model integration. Using SysML, a modeler can
abstract a domain-specific language to a level that
permits its interaction with other system models. For
example, a Modelica model is an excellent way to
capture hybrid discrete/DAE-based system behavior,
but is not capable of modeling system structure or
requirements. Using the modeling approach outlined
in Section 4, a modeler can abstract a Modelica

model into SysML syntax to represent dependencies
and associations with other system models1.

While SysML is a valuable integration tool,
much of that value could be detracted if engineers
must manually transform domain-specific models
into SysML and vice-versa. In the case of continu-
ous dynamics models, we need an approach for ac-
complishing automated, bidirectional transforma-
tions between the SysML and Modelica languages.

Many methods exist for completing model trans-
formations between two or more modeling languages
(metamodels). Two common transformation tools
are OMG’s Queries/Views/Transformations (QVT)
[17] and TGGs [6].

The QVT specification provides a set of lan-
guages for querying a source model that complies
with a source metamodel and transforming it into a
target model that complies with a target metamodel.
Two QVT languages, Relations and Core, are used

1 Dependencies and associations are UML constructs

for expressing types of relationships between information
objects.

Figure 3. Parametric diagram of the MSD model.

to declaratively model the relationships between
source and target metamodels at different levels of
fidelity. The Operational Mappings language is then
used to perform imperative transformations based on
the relationships depicted in the Core or Relations
languages. Overall, QVT is a powerful and widely
accepted model transformation tool; however, the
imperative nature of the Operational Mappings lan-
guage hampers bidirectional transformations.

TGGs are similar to QVT in intent but are de-
clarative by nature. Accordingly, TGGs are particu-
larly useful for completing complex, bidirectional
model transformations. In a TGG, the metamodels
for the source and target languages are defined as
graphs. The mapping between the two languages is
then represented as a set of graph transformation
rules applied to a third graph: a correspondence
graph. For example, a SysML block would be re-
lated to a Modelica class using a correspondence
entity named block2class with one relation pointing
to the block entity (in the SysML metamodel graph)
and one to the class entity (in the Modelica
metamodel graph). By querying a model space con-
taining SysML or Modelica models, transformations
are performed until the model space complies with
the specified TGG.

Due to the declarative, bidirectional nature of
TGGs, one set of graph transformation rules can be
used to transform SysML models into Modelica and
vice-versa. Although a TGG is used for this trans-
formation, others have shown that QVT is equally
expressive and capable [18]. The TGG and graph
transformation rules have been encoded in the Visual
Automated Model Transformations (VIATRA) [19]
framework. VIATRA enables modelers to create
models in a declarative fashion and use pattern rec-
ognition to complete graph transformations in a se-
quential fashion using machines. To demonstrate
this TGG, a Java plug-in for Eclipse has been im-
plemented to transform SysML models developed in
the Embedded Plus (E+) modeling environment into
Modelica models using the OpenModelica [20] com-
piler (OMC) and Modelica Development Tooling
(MDT) plug-in for Eclipse. The functionality of this
plug-in is depicted in Figure 4.

6 Modeling Simulations in SysML

In the context of model-based systems engineer-
ing, models and simulations allow systems engineers
to investigate and predict the behavior of system al-
ternatives without the need for physical prototyping.
For example, a continuous dynamics model of a

MSD can be used to simulate and predict the behav-
ior of a car suspension alternative. This section de-
scribes how a continuous dynamics model can be
related to other relevant design information in
SysML: binding of model parameters in a model
context; defining an experiment performed on a
model in a simulation; defining a measure of effec-
tiveness as the result of a simulation; and using an
abstracted simulation in the context of design opti-
mization.

6.1 Defining the Model Context

In systems engineering, a continuous dynamics
model is always used in a particular model context.
Within this model context the elements of the system
structure are bound to the corresponding elements of
the analysis model. In current practice, engineers do
not always distinguish between the physical structure
or system topology and the corresponding system
behavior. For instance, it is common practice to use
an electric circuit diagram as the representation for
defining both the circuit topology as well as the be-
havior of the circuit in a SPICE simulation. As sys-
tems become more complex there often is a need to
represent a system by multiple simulation models,
corresponding to different levels of abstraction or
different disciplinary perspectives. The use of an
explicit model context as suggested here facilitates
the preservation of consistency amongst all the sepa-
rate models.

To relate the structure to the behavior, a model
context block is defined with two part properties: one
usage of the system model and one usage of the
analysis model. If mathematical relationships be-

Figure 4. Functionality of the SysML-to-Modelica

transformation Eclipse plug-in.

yond simple equivalence exist between the known
elements of the system model and the corresponding
elements of the analysis model, additional constraint
blocks can also be defined. Finally, a parametric dia-
gram of the model context block is created to bind
the known system elements to the corresponding
analysis elements.

 In the lower portion of Figure 5, the block
ModelContext is defined as owning usages of MSD,
Car, and a constraint block named MassRelation. In
Figure 6, a corresponding parametric diagram is
shown establishing a relationship between the MSD
and car masses. Inside of this parametric diagram,
msd.mass.m is defined as one quarter of the mass of
mcCar.mass by connecting them to the appropriate
parameters on the constraint property massRel.

6.2 Modeling the Simulation

A simulation is an experiment performed on a
computational model [21]. Before a simulation can
be performed, the experiment needs to be completely
defined: the initial values and boundary values, the
outputs to be observed, and potentially the process
steps one should go through in the experiment (e.g.,
time traces of external inputs). From a modeling
perspective, all of these aspects can be captured in
the model itself or in extensions of the model defined
using the same Modelica/SysML constructs de-
scribed in Section 4. One can therefore assume that
the “model” as defined in the model context is fully
specified — all the parameters are bound to values
and the set of system equations is non-singular.
Under those assumptions, the only additional infor-
mation that needs to be provided is the start and end

time of the simulation.

To make the semantics of a simulation explicit in
SysML, we have defined a «simulation» stereotype.
As is illustrated in Figure 5, this stereotype requires
the inclusion of a time property, which represents the
simulation time; startTime and stopTime properties;
and a simModel block. The meaning of the stereo-
type is then that all the properties in the simModel
are evaluated as a function of time from startTime to
stopTime. Note that this stereotype completely de-
fines a simulation experiment in a fashion that is in-
dependent of any particular simulation solver. In
addition, note that Modelica semantics differ from
SysML semantics which require the explicit defini-
tion of a local simulation time property to which all
time-varying system properties can be bound.

6.3 Abstracting the Simulation

A simulation as defined in the previous section
allows a systems engineer to define an experiment in
which the system behavior can be observed. How-
ever in systems engineering, simulations are often
used to make decisions. In that case, the same ex-
periment is often performed on multiple variations of
the same system — the design or decision alterna-
tives. It then becomes important to abstract this
simulation formally by clearly defining the inputs
(the properties that can take on different values from
one simulation run to the next), and the outputs (the
properties that are of interest to the design, for in-
stance, a measure of effectiveness that drives a de-
sign optimization). The relationship between inputs
and outputs of the simulation can then itself be con-
sidered as a model. Unlike the model of the system,
this input-output model is an algebraic relationship,
albeit a very complex one that requires running the
entire simulation to compute the outputs from the
inputs. When abstracting (or “wrapping”) a simula-
tion in this fashion in support of decision making, it
is justifiable to assume that the outputs of the simula-
tion are scalar quantities (decisions can only be made

Figure 5. BDD of the SuspensionSimulation block.

Figure 6. Parametric diagram of the ModelContext.

based on scalars because vectors cannot be rank-
ordered [22]). Sometimes this requires that one in-
clude additional modeling elements in the continuous
dynamics model to define these scalar measures of
effectiveness. For instance, in the BDD in Figure 5
and the corresponding parametric diagram in Figure
7, the suspension simulation has been abstracted into
an input-output model with inputs as the decision
variables, dInput and kInput (bound to the damping
and stiffness of the suspension), and an output as the
measure of effectiveness, ssTimeOutput (the steady-
state time of the mass-spring-damper system). The
output has been bound to a model property through a
sample and hold constraint property, sample&hold,
making explicit that the output takes on the value of
the time-varying property detect.ssTime when the
simulation time equals stopTime. In general, more
complex models may be necessary to relate scalar
outputs to time-varying simulation properties.

6.4 Embedding a Simulation into an Analysis

Once a simulation has been abstracted into an
input-output model, it can be used in support of ana-
lyzing system alternatives with respect to stakeholder
requirements and measures of effectiveness, as is
illustrated in Figures 8 and 9. Analyses generally
verify that a system alternative meets a certain sys-
tem requirement, which can be modeled explicitly
using the «verify» dependency. A parametric dia-
gram of that block can be used to connect the system
alternative to the simulation, as is illustrated in Fig-
ure 9. Instead of binding the simulation inputs and
outputs directly to the corresponding value properties
of the system alternative, one could also define an
optimization problem in which the stiffness and
damping are optimized with respect to one or more

measures of effectiveness. Whenever there is a need
for repeated evaluation of the simulation with differ-
ent inputs, it is desirable to embed the simulation
explicitly in an analysis context as is shown in Fig-
ure 8.

7 Discussion and Closure

In this paper, we have introduced an approach
for combining SysML and Modelica in a synergistic
fashion. No single language or formalism can possi-
bly capture all of the knowledge and information
needed to solve systems engineering problems.
While Modelica is well-suited for describing the dy-
namic behavior of complex systems, it offers no
support for relating that behavior to stakeholder re-
quirements. Similarly, SysML allows one to define
the high-level relationships between requirements
and functional, physical and operational architectures
of a system, but lacks the detailed semantics to cap-
ture for instance geometry. It is therefore crucial that
capabilities are developed for relating in a formal
framework the different knowledge representations
commonly employed in systems engineering prob-
lems. SysML provides the foundation for making a
first step in that direction. The general-purpose and
adaptable nature of the language enables system en-
gineers to interrelate their preferred knowledge rep-
resentations. In addition, formal metalevel mappings
as described by TGGs provide a promising founda-

Figure 7. Parametric diagram of SuspensionSimulation.

Figure 8. BDD of the SuspensionAnalysis block.

Figure 9. Parametric diagram of SuspensionAnalysis.

tion for bidirectional mappings between the different
knowledge representations.

Using the modeling approaches described in this
paper, engineers will be more capable of managing
system complexity through the modeling of depend-
encies between continuous dynamic system behavior
and other system aspects. Additionally, the mapping
of SysML to Modelica and the resulting transforma-
tion abilities enable engineers to describe their sys-
tems at a higher level of abstraction while still main-
taining the benefits of executable knowledge repre-
sentations.

In this paper, the intent has been to take advan-
tage of SysML’s adaptability and to make a step to-
wards the unification of various modeling formal-
isms. While the continuous dynamics modeling ap-
proach described in this paper builds on the Mode-
lica language, it still maintains a certain language
independence thanks to the general, declarative na-
ture of Modelica. TGGs could be developed to map
SysML to the syntax of other languages, with the
restriction that when mapping to a causal, procedural
modeling language, a compiler must be used to as-
sign causalities and sort the equations.

The ongoing efforts towards the unification of
engineering knowledge representations in SysML are
exciting steps for the systems engineering commu-
nity. Utilizing and increasing the abilities of SysML
promises to improve the current state of systems en-
gineering and bring to fruition the benefits of MBSE.

Acknowledgements

This work has been funded by Deere & Com-
pany. Additional support was provided by the ERC
for Compact and Efficient Fluid Power, supported by
the National Science Foundation under Grant No.
EEC-0540834. The authors would also like to thank
Sandford Friedenthal, Leon McGinnis and Russell
Peak for the discussions that helped crystallize the
ideas presented in this paper.

References

[1] Sage, A. P., and Armstrong Jr., J. E., 2000,
Introduction to Systems Engineering, John
Wiley & Sons, Inc., New York, NY.

[2] Fisher, J., 1998, "Model-Based Systems En-
gineering: A New Paradigm," INCOSE In-
sight, 1(3)

[3] Gero, J. S., 1990, "Design Prototypes: A
Knowledge Representation Schema for De-
sign," AI Magazine, 11(4), pp. 26-36.

[4] Object Management Group, 2007, "OMG
Systems Modeling Language Specification,"
http://www.omg.org/cgi-bin/doc?ptc/07-09-
01.

[5] Booch, G., Jacobson, I., and Rumbaugh, J.,
2005, The Unified Modeling Language User
Guide, Addison-Wesley Professional.

[6] Schürr, A., 1994, "Specification of Graph
Translators with Triple Graph Grammars,"
in WG'94 Workshop on Graph-Theoretic
Concepts in Computer Science.

[7] Peak, R. S., and Wilson, M. W., 2001, "En-
hancing Engineering Design and Analysis
Interoperability Part 2: A High Diversity Ex-
ample," First MIT Conference Computa-
tional Fluid and Structural Mechanics
(CFSM), Cambridge, Massachusetts, USA.

[8] Peak, R. S., Burkhart, R. M., Friedenthal, S.
A., Wilson, M. W., Bajaj, M., and Kim, I.,
2007, "Simulation-Based Design Using
SysML-Part1: A Parametrics Primer," in
INCOSE Intl. Symposium, San Diego, CA.

[9] Peak, R., Friedenthal, S., Moore, A.,
Burkhart, R., Waterbury, S., Bajaj, M., and
Kim, I., 2005, "Experiences Using SysML
Parametrics to Represent Constrained Ob-
ject-Based Analysis Templates," 7th NASA-
ESA Workshop on Product Data Exchange
(PDE), Atlanta, GA, USA.

[10] Pop, A., and Akhvlediani, D., and Fritzson,
P., 2007, "Towards Unified Systems Model-
ing with the ModelicaML UML Profile," in
International Workshop on Equation-Based
Object-Oriented Languages and Tools,
Linköping University Electronic Press, Ber-
lin, Germany.

[11] Nytsch-Geusen, C., 2007, "The Use of UML
within the Modelling Process of Modelica-
Models," in International Workshop on
Equation-Based Object-Oriented Languages
and Tools, Linköping University Electronic
Press, Berlin, Germany.

[12] Johnson, T. A., Paredis, C. J. J., Burkhart, R.
and Jobe, J. M., 2007, "Modeling Continu-
ous System Dynamics in SysML," in 2007
ASME International Mechanical Engineer-
ing Congress and Exposition, ASME, Seat-
tle, WA.

[13] Keeney, R. L., 1994, "Creativity in Decision
Making with Value-Focused Thinking,"
Sloan Management Review, 35(4), pp. 33-
41.

[14] Christen, E., and Bakalar, K., 1999, "VHDL-
AMS - A Hardware Description Language
for Analog and Mixed-Signal Applications,"
IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing,
40(10), pp. 1263-1272.

[15] Mitchell, E. E. L., and Gauthier, J. S., 1976,
"Advanced Continuous Simulation Lan-
guage (ACSL)," SIMULATION, 26(3), pp.
72-78.

[16] Paynter, H., 1961, Analysis and Design of
Engineering Systems, MIT Press, Cam-
bridge, MA.

[17] Object Management Group, 2007, "Meta
Object Facility (MOF) 2.0
Query/View/Transformation Specification,"
http://www.omg.org/docs/ptc/07-07-07.pdf.

[18] Greenyer, J., Kindler, E., 2007, "Reconciling
TGGs with QVT," in Model Driven Engi-

neering Languages and Systems, MoDELS
2007, Springer, Berlin / Heidelberg.

[19] Varró, D., 2003, VIATRA: Visual Automated
Model Transformation, Thesis, Department
of Measurement and Information Systems,
University of Technology and Economics,
Budapest.

[20] Fritzson, P., et al., , 2007, "OpenModelica
System Documentation,"
http://www.ida.liu.se/labs/pelab/modelica/O
penModelica/releases/1.4.3/doc/
OpenModelicaSystem.pdf.

[21] Fritzson, P., 2004, Principles of Object-
Oriented Modeling and Simulation with
Modelica 2.1, IEEE Press, Piscataway, NJ.

[22] Keeney, R. L., and Raiffa, H., 1976, Deci-
sions with Multiple Objectives: Preferences
and Value Tradeoffs, Jon Wiley and Sons,
New York.

