

Model-Based System Development for Managing
the Evolution of a Common Submarine Combat

System

Steven W. Mitchell
Lockheed Martin MS2

9500 Godwin Dr.
Manassas, VA 20110 USA

Abstract- Managing the evolution of a complex product
family that is deployed and maintained in multiple variants
on various platforms using traditional systems engineering
tools and processes is a significant challenge. An example is
managing the evolution of a common combat system across a
fleet of submarines. Due to the realities of budgets and
operational scheduling, multiple versions of the product
must be managed for each ship: the currently deployed
version, the upcoming tech refresh version, and future
versions in planning and development. Adding to the
complexity, the product family has variations for each class
and flight of submarine, individual ships may vary in
capabilities and equipment from the flight baseline, ships
within a flight are upgraded at different times driven by
maintenance availabilities, and each periodic upgrade may
introduce new functional capabilities as well as updated
software and hardware as the combat system evolves.
To streamline this task, an integrated model based systems
engineering process is being developed around a collection of
tightly coupled models built in SysML and UML. This
paper provides a preliminary description of the structure of
those models, and places it in the context of related research.
General Terms: Systems Engineering, System Evolution

Additional Key Words and Phrases: Product Family, Model
Based Systems Development, SysML, Maintenance

I. INTRODUCTION

In order to maximize capability and interoperability
while minimizing development and maintenance costs, a
common submarine combat system (CS2) is being
deployed across the entire US and Australian submarine
fleets. However, those fleets are composed of multiple
classes of submarines, each of which typically has
variations in physical implementations of key equipment
such as sensors and weapons, along with different
physical arrangements in spaces such as combat control
centers, equipment spaces, etc. Beyond this, ship classes
are typically composed of sub-classes known as “flights”
which are sequential groups of ships that are built to the
same design baseline. That baseline may vary to greater
or lesser degrees from other flights within the class. An
example of this inter-flight variation is the introduction of
vertical weapons launchers in Flight 2 of the LOS
ANGELES class. In addition, operational needs can

cause variations ranging from small to quite substantial
•even within a flight. A prime example of this is SSN 231,
which differs from the other two submarines in the single-
flight SEAWOLF class by an additional one hundred feet
in length and a thirty percent increase in displacement to
accommodate special operational requirements.

This host platform variability means that the CS2 is in
reality a product family with different variants for each
class, flight, and, sometimes, individual submarine.
While the core components that make up the product for a
given release of the CS2 are common across all host
platforms, there are host-specific variants that have to be
developed, integrated, installed, supported, and then
replaced with the next version on a regular upgrade cycle.

Although it started its evolution as a loosely connected
collection of legacy military systems hosted on traditional
military-unique computational platforms, the federated
CS2 is now based largely on a Commercial Off-The-Shelf
(COTS) computational and networking platform. The
software of the CS2 also contains massive amounts of
COTS software2 in the form of operating systems,
database systems, graphics libraries, etc. While utilizing
COTS in this way brought the cost of this submarine
combat system down about an order of magnitude over
the previous generation3,4, it brought with it the challenge
of managing the continuous, unsynchronized evolution of
those COTS products. The CS2 acquisition program
handles the hardware side of the COTS management

•  Copyright Lockheed Martin 2010. All rights reserved.
1 United States Navy Fact File
http://www.navy.mil/navydata/fact_display.asp?cid=4100&tid=100&ct=4
2 In this usage, COTS includes Free or Open Source Software (FOSS)
as well.
3

The Advanced Rapid Capability Insertion (ARCI) program reduced the
cost of the AN/BQQ-10 sonar system by a factor of six in Development
and Production costs, and a factor of eight in Operating and Support
costs according to Reference [1] p. 317. The CS2 applies the same
process and approach to the overall submarine combat system as ARCI
does to the submarine sonar system.

4

RADM H. I. Fages, the sponsor for the development of the AN/BQQ-
10 sonar, which is part of the CS2, stated, “ARCI development costs
were one-tenth (1/10) the cost of BSY-2 and ship set cost was less than
one-thirtieth (1/ 30)” [2]

problem with biannual baseline updates that allow each
ship-set of equipment to be state-of-the-market when it is
installed aboard ship. This process is referred to as
Technology Insertion (TI). These TI baseline changes
occur in even years, leading to the nomenclature TI10,
TI12, etc.

To avoid COTS software obsolescence issues and to
provide incremental improvements in system capability,
the application software running on this COTS hardware
platform is also upgraded biannually. For historical
reasons this process is called Advanced Processor Builds
(APB) [3]. The APB baseline updates occur in odd years,
leading to the nomenclature APB09, APB11, etc. This
TI/APB cycle is in reality a double-helix collaborative
spiral development life cycle [4] where the hardware and
software spirals are one year out of phase with each other.

Given that there is an unavoidable coupling of the
APBnn and TImm updates, fleet-wide baselines installed
aboard ship are referred to as TImm/APBnn. The overlap
of the TI and APB update cycles leads to an annual
change in baseline installations. Thus submarines that are
upgraded in 2011 will receive TI10/APB09, while those
upgraded in 2012 will receive TI10/APB11, etc. These
annual baselines must go through the full systems
integration process [5] to ensure that the system installed
aboard ship is operationally suitable, effective, and
interoperable.

Compounding the complexity of managing the
evolution of the COTS components of the CS2, the
primary purpose of the APB process is to integrate new
algorithms and software technologies to enhance the
operational effectiveness of the submarines. For the most
part the enhanced capabilities ride on the steady TI
technology refreshes, but occasionally they require
significant new hardware such as new or improved
sensors. As such, new capabilities are typically evaluated
on one submarine before being incrementally introduced
to some subset of the fleet. This approach adds additional
variants to the complexity of managing the evolution and
deployment of the CS2 product family.

The engineering problem of managing the evolution
of the CS2 goes beyond simply tracking bills of materials
for the various baselines. Since this system is installed on
a submarine, power, cooling, mass properties, and
physical layout are tightly constrained and must be
tailored to the idiosyncrasies of the various host
platforms. Other materials characteristics that have safety
implications for the crew under casualty conditions, such
as the presence of various hazardous materials, must be
tracked. These systems process classified information,
and so must be documented, tested, and certified to the
appropriate standards for information assurance (IA). The
CS2 has direct impacts on safety of ship, and is a core
part of a weapons system: both of those things require

additional documentation, verification, and certifications.
The CS2 interfaces with larger military command,
control, communications, computers, and intelligence
(C4I) networks, which entails interoperability testing and
certification.

Beyond these engineering requirements, as military
platforms the submarines hosting the CS2 are subject to
the various national acquisition management processes.
The CS2 development program is required to provide
informational inputs to those processes, and significant
portions of that information have to be extracted
periodically from the CS2 product family integration
process.

All of these requirements together imply that a
product family model of the CS2 encompasses at least
twenty dimensions of information including Operational
Capabilities; Requirements; the Conceptual Data Model,
the Logical Data Model; the Physical Data Model; the
software bill of materials; the hardware bill of materials;
network topology; network addressing and routing;
software allocation; hardware placement; hardware shock
and acceleration characteristics; hazardous materials
characteristics; weight; power; cooling; host platform; IA
parameters; Integration and Test; and time.

II. A CONCEPTUAL MODEL

Before proceeding with the description of the
submarine product family and the proposed design of a
submarine data model, a conceptual data model is
introduced. There are three processes that change the data
describing the common submarine combat system:
Technology Insertion, Systems Engineering, and
Integration and Testing. If, conceptually, there existed a
single data base for all submarine CS2 data, defined here
as the System Data base, then any one of these three
processes could cause change in one or more submarines
and thus change the data in the data base. This is shown
graphically in Fig. 1. The three processes can be
represented as three services that cause change to the
actual systems that, in turn, must be reflected in the
System Data Base.

The design challenge is twofold: to design a service
for making changes to the system data base to reflect the
changes in the systems themselves and to create a data
extraction and report generation service that is capable of
producing standard reports and also respond to new
queries. This is shown in Fig. 2.

In section 3, related research in complex product
family modeling is discussed. In section 4, the product
family that is described as “Physical Systems” in Fig. 2 is
discussed, and the submarine data model is presented (the
System Data Base in Fig. 2). Finally, in Section 5 the
remaining steps in the design of this system are outlined.

Fig. 1. Conceptual Model of System Database

Fig. 2. The Conceptual Model

III. PRODUCT FAMILY AND LEGACY SYSTEM EVOLUTION

MODELING

Over the past two decades considerable research has
been conducted in the area of modeling product families.
Reference [6] provides a concise overview of this
research. Much of the early work focused on deliberate
design of a product family [7], although some authors
have studied the problem of creating a product family
from a collection of closely related products. One
approach taken was the Generic Bill of Materials,
introduced [8] to address customized manufactured-to-
order products. This technique was generalized from the
manufacturing domain to the functional and technological
domains [9], and further generalized [10] to capture
business processes associated with mass-customized
production.

Several authors have tackled the complexity of
representing product families by inventing new modeling
languages [11], or other representations [12], [13].

Callahan [14], [15] takes a particularly interesting
approach to this, making a clear distinction between
product family architecture and product variation. Both
[16] and [12] are careful to minimize the amount of
redundant information required to describe each product
variation through efficient representations. Part of their
concern is to manage the overall size of the data sets
associated with large product families, which if the model
were duplicated for each variant would grow
exponentially for a product platform such as an
automobile or an airplane that has several variants, each
of which has many options that can be ordered in many
combinations. This concern for efficient reuse [17] of the
data sets involved is common to mass customization
problems [18].

A larger concern addressed in this research is
avoiding the problem of authority when dealing with
multiple copies of a complex data set such as that defining
the product family core platform: whenever multiple
copies of data are kept, errors can occur. When instances

of the same data disagree, how does one determine which
is authoritative? The best solution is to avoid potential
inconsistencies due to duplication of information: if a
representation requires duplicated data, authoritative data
must be uniquely identified, and all copies clearly
identified as such. This is non-trivial when complete
product data sets are duplicated and then modified for
each member of a large, rambling product family.

An adjacent problem to modeling product families is
managing the evolution of a complex legacy system.
Based on decades of attempts to evolve software-
intensive systems with a disappointingly low success rate,
[19] proposes that system understanding through systems
architecture within the larger enterprise context is a key
factor in economically evolving legacy systems into
product families to achieve greater functionality and
maintainability. This emphasis on architecture for system
understanding is a common thread across the field, also
reflected in [20], among others.

Ulrich [21] provides an overview of standards work
being done in this area by the Object Management Group
(OMG) Architecture Driven Modernization (ADM) task
force. Ulrich also sees the first step in modernizing
legacy systems to be the understanding of the
architectural and implementation structures of those
systems through modeling.

Veering away from standards-based architectural
modeling, [22] approaches the problem of extracting
architectural information through design structure
matrices and design rule theory. Their objective is not
simply to increase understanding of legacy systems by
revealing their structure to enable engineers to make
informed design decisions, but to provide tools for
evaluating proposed design changes as well. They
analyze two web application servers to demonstrate the
accuracy of their approach. However, the primary utility
of this approach seems to lie in retrospective analysis of
system evolution, rather than forward evolution support.

 Reference [23] takes a slightly different perspective.
They argue that conventional configuration management
systems are not sufficiently powerful to manage
architectural evolution for complex problems such as
product families. They propose instead a new
architecture modeling and evolution paradigm that
integrates fine-grained configuration management into the
architectural modeling tool itself. Acknowledging that
this approach violates the fundamental assumption of
conventional configuration management that the
management process should be strictly separated from its
object, they substantiate their argument by implementing
an integrated architecture modeling and configuration
management environment called Mae and demonstrating
its effectiveness on three sample problems. Interestingly,
some of their internal representational constructs are

similar to the constructs of [15], although they are
addressing superficially different problems.

Another, rather more ambitious approach is taken by
[24]. They propose to do away with manual modification
of legacy system software components in favor of
automated code generation in a Model-Driven Program
Transformation approach. While recognizing that
constructing the underlying tools is a serious
technological challenge, they argue that domain-specific
model interpreters are the key breakthrough to allow an
integrated toolset to reverse-engineer the modules of a
legacy application to construct a system architecture
model. Domain experts would then modify that model to
meet new requirements. Their integrated toolset would
finally generate the transformed application.

IV. THE SUBMARINE C5I ENGINEERING DATA MODEL

Historically, management of the CS2 baselines and
upgrade process has been done using a variety of
documents and databases controlled by various Integrated
Product Teams (IPTs) that manually coordinate their
efforts. These IPTs – staffed from the CS2 system
integrator, numerous independent developer organizations
in industry, government, and academia, Navy
procurement and engineering agencies, and the shipyards
– collaborate in a complex systems integration process.
In order to streamline this process and to reduce the
amount of engineering labor dedicated to coordinating the
various documents and other products used to support the
CS2 product family and its multitudinous variants, an
integrated Submarine C5I Engineering Data Model
(SCEDM) is being constructed.

Fig. 3 suggests some of the complexity of this
SCEDM. It is important to understand that this diagram
merely hints at the full dimensionality of the problem. As
noted in the Introduction, every submarine in the fleet has
some TImm/APBnn baseline installed, with class and/or
flight and/or hull variations from that baseline. While that
baseline of the CS2 is being supported, the next baseline
for each submarine is being developed, as is the baseline
beyond that. All of this data must be tracked for two
submarine fleets comprising six classes, eleven flights,
and almost ninety boats.

As indicated around the edges of Fig. 3, this SCEDM
does not exist as an end in and of itself. Rather, it exists
to support the engineering process of developing,
manufacturing, installing, and supporting the CS2 tailored
for each boat. Many more products than the figure shows
will be derived from the model including hardware and
software baselines for manufacturing to generate new
installation kits, cabling data packages to support the
shipyards in installing new hardware (collectively
represented by the Top Level Interface Functional

Fig. 3. A Simplified View of the Data Dimensionality of the SCEDM.

Requirements Document (TLIFRD) in the lower right
corner of the figure), information assurance documents to
support operational certification of individual submarines
after installation of a new CS2 baseline (collectively
represented by the System Security Authorization
Agreement (SSAA) inputs in the upper left corner of the
figure), systems requirements verification matrices
(SRVM), and DoDAF architecture reports to support both
the acquisition and the evaluation of new operational
capabilities (collectively represented by the Joint
Capabilities Integration and Development System
(JCIDS) inputs in the lower left corner of the figure).

The information dimensional complexity of this model
along with the size of the configuration space (roughly
fifty interface groups defined between up to fifty
subsystems distributed across approximately three
hundred computers grouped into nine different network

enclaves) of the CS2 dictates that industrial-strength tools
be used to develop this model.

Where many earlier researchers have defined their
own idiosyncratic representations for product family
modeling (as discussed in Section 2), the objective of this
project is to support the Fleets. That means the SCEDM
must be developed using current industry best practices
for Model Based System Development, which in turn
means using current industry standard languages such as
UML5 [25] and SysML6 [26]. Given that the model must
capture a broad range of information ranging from
CORBA IDL and WSDL used to define inter-subsystem

5 The current specification of UML is at
http://www.omg.org/spec/UML/2.2/
6 The current specification of SysML is at
http://www.omg.org/spec/SysML/

Fig. 4. Inheritance Hierarchy of Submarines Employing CS2.

Fig. 5. Notional Upgrade-Group Structure

software interfaces to physical hardware specifications
including mass, power, cable runs, etc, a mixture of UML
to represent the software domain and SysML to capture
the hardware and systems engineering domains has been
chosen.

Following [15], the SCEDM leverages inheritance to
minimize information redundancy. As shown in Fig. 4, an
inheritance hierarchy is defined for all of the submarines
supported by the CS2. The second tier of the hierarchy is
the ship Class, with the Flight below that. Individual
ships chain down from the Flight. CS2 baselines are
assigned as high up in the hierarchy as possible, with
individual class / flight / ship variations overriding the
inherited configuration baseline where necessary.
Due to both operational and fiscal constraints, not all
submarines in the fleet are upgraded every year. Instead,

groups of ships are scheduled for upgrade each year on a
rolling basis. This process is represented by Upgrade
Groups, as shown in Fig. 5. The timings of these
TImm/APBnn installations are driven by operational
deployments and new construction, and are coordinated
with shipyard or pier side ship availabilities.
 Since the CS2 evolved after many of the submarines in
Fig. 4 were already at sea, back-fitting this common
submarine combat system to multiple classes of ships has
driven some configuration compromises. For example,
some ship classes have network-enabled navigation
radars, while others use a serial interface between the
radar and the navigation subsystem. This means that on
some ship classes in some baselines the radar belongs to

Fig. 6. CS2 Network Enclaves with Navigation Radar Assignments Migrating Across Network Enclaves with Evolving Baselines

one network enclave, while for other classes of ships
the radar is part of a separate enclave.
 Further complicating the problem, future baselines
include network-enabling the older navigation radars,
which means that at that point in time the radar will
move from one network enclave to another. This kind
of system evolution is captured in Fig. 6. In the center of
the diagram is the RADAR subsystem class with two
variants, the AN/BPS-15 and the AN/BPS-16, which
get assigned to different enclave baselines in different
upgrade cycles.

Another example of how the SCEDM leverages
inheritance to minimize data redundancy is show in Fig.
7. The network enclaves and their component
subsystems are collected together in the TI10APB11
baseline class, but the basic Periods Processing
LANclave TI10 is specialized in the TI10APB11 VA
Flight 1 subclass to include a sub-classed Periods
Processsing LANclave TI10_VA that includes the
AN/BPS-16 navigation radar. This structure enables
the SCEDM to achieve the same kind of
representational power and efficiency seen in [15]
while using an industry-standard modeling language.

An important benefit of the SCEDM is automating
requirements traceability throughout the product family.
Currently CS2 requirements are maintained in a
database, but the allocation of requirements to design
elements is a matter of manually entering that

Fig. 7. Organization of CS2 Baseline by Network Enclave, with
Class Variants

information into the database, then integrating it into a
variety of other products such as software requirements
specifications, hardware requirement specifications,
interface specifications, and other engineering
documents. This is an inefficient process even for
developing a new product, but when managing an
evolving product family it becomes a serious
impediment. Typically, it is requirements changes that
drive the introduction of variants, including the
TImm/APBnn baselines of the CS2 product family.
Those requirements changes ripple through the product
design in ways that are difficult if not impossible to
predict. Without automation, each change must be
manually tracked through the various documents of the
design. That is a labor-intensive process, particularly
since any errors in the requirements can have very
expensive impacts on the implementation of a new
member of the product family, dictating careful,
redundant inspection.

As shown in Fig. 8, in the SCEDM the requirements
are directly linked to the appropriate elements of the

design. Thus when a requirement changes, the tool
hosting the SCEDM can generate a report identifying
everything in the system that is touched by the ripples
of that change, sidestepping a great deal of error-prone
manual labor. When new requirements are introduced
into the model or old design elements are eliminated,
similar reports can flag the lack of requirements
linkages, clearly identifying the gaps that need to be
addressed by the systems engineering team.

As the hardware model changes due to TI refreshes
or the software model changes with APB revisions,
similar tool-assisted requirements traceability analysis
can quickly identify all of the impacts that must be
analyzed. The linkages are not limited to requirements:
elements of the software model may have dependency
linkages to elements of the hardware model, which in
turn may have linkages to budget allocations, etc. All
of these linkages can be traced by the tool hosting the
SCEDM, and reported to facilitate change impact
analysis.

Fig. 8. SCEDM Requirements Traceability

V. CURRENT WORK AND CONCLUSIONS

The structure of the SCEDM described in this paper is
preliminary and addresses only the System Data Base
portion of the overall problem defined in section 2. As
more details are worked out and additional dimensions of
the data are filled in, the detailed structure of the SCEDM
will evolve. It is likely that filling in some of the details
of this evolutionary product family model will stretch the
bounds of the current UML and SysML language
standards, and potentially will require inventing
extensions to those languages. This will be done in
collaboration with the developers of the respective
standards so that those extensions are defined in the spirit
of the languages, and can be incorporated in future
versions of those evolving standards.

Only a few information dimensions have been even
partially addressed in the SCEDM prototyping that has
been accomplished to date. The next dimension that will
be explored more fully is that of requirements. Several
hundred inter-subsystem interface requirements have been
imported from the current DOORS repository, but while
some preliminary investigation has been conducted (as
seen in Fig. 8, the best level at which to link the
requirements into the model has not yet been determined.
One problem that has to be addressed is that the
requirements are currently all at one level, and include
significant amounts of implementation direction as well
as performance requirements. The performance
requirements and implementation directions need to be
de-interleaved, and the requirements need to be structured
into a hierarchy to better facilitate aligning them with the
other model dimensions. This de-interleaving will also
isolate the requirements from the implementation,
significantly reducing requirements churn and resulting
cost. In addition, that hierarchy needs to be extended
from the current set of inter-subsystem interface
requirements up the tree to the top level system
requirements to provide full traceability and to support the
national acquisition and evaluation processes.

Similarly, all of the CORBA IDL interfaces that are
part of the Physical Data Model for current CS2 baseline
have been imported into the prototype SCEDM. Efforts
are currently underway to determine how and where best
to link those interface implementations into the model to
support the evolving TImm/APBnn baselines.

In parallel with the work on requirements, the
Conceptual and Logical Data Models of the CS2 must be
constructed. These data models will provide a framework
to anchor the Physical Data Model created from the
imported CORBA IDL and evolved with the
TImm/APBnn product variants. The Conceptual and
Logical Data Models will also help link the product
implementation model with the higher-level operational

modeling that supports the acquisition and evaluation
processes.

Another way that the SCEDM might increase the
efficiency of the CS2 product family life cycle is by more
tightly coupling integration, test, and verification with the
requirements generation process. Today use cases,
scenarios, and various dynamic modeling artifacts
(activity diagrams, sequence diagrams, etc) are used to
generate lower level design requirements from the high-
level capabilities requirements levied on the program.
The derived requirements are entered into the
requirements database and then manually allocated to
various design elements, but the analysis that supported
the requirements generation process is often lost in the
process. In the future that analysis and the corresponding
products may be captured in the SCEDM and associated
with the corresponding requirements. When integration
and test comes around on the spiral those sequence
diagrams, etc. could be used support development of test
and verification plans, reducing the communications gap
between requirements engineers and test engineers and
closing the requirements-to-verification cycle.

Another positive impact the SCEDM could have
would be to leverage the change impact analysis
discussed at the end of section 3 to focus integration and
test efforts. Tracing the ripples of change through the
model identifies those parts of a new baseline
implementation that are different from previous variants.
Since these areas were not tested in the integration of any
previous system variant, they are most likely to hide new
bugs. Where these changes do not represent new or
improved capabilities (such as the replacement of a COTS
hardware component with a newer model with the same
specifications, or the upgrade of device drivers for a
previously used hardware component), they are excellent
candidates for targeted regression testing. Where they
represent new or improved capabilities, they are a natural
focus for intensive integration and test. Either way, the
overall cost effectiveness of integration and test should be
improved.

In addition to building the SCEDM, an ecology of
tools must be defined and developed around the model to
make it efficient for the many IPTs that collaboratively
evolve, implement, and support the CS2 to access those
portions of the model that they need without requiring all
of those engineers to become proficient in the tools,
languages, and schemas used to build the model. This is
the problem of efficiently providing the Data Entry, Data
Extraction, and Report Generation services described in
section 2. Most of those engineers are currently using
various Microsoft Office products to manage their
specialized nexi of the overall information space that will
be subsumed into the federated SCEDM. It is anticipated
that various web services will be built around the

UML/SysML model to provide familiar interfaces to
those nexi and to eliminate the cost of climbing the
learning curve that would be necessary if every engineer
supporting the CS2 were required to become expert in a
UML/SysML modeling tool.

Promising research in this direction [18] defines a
dialect of XML called platform product eXtensible
Markup Language (ppXML) specifically to support
lifecycle modeling of platform-based product families to
support mass customization. While this XML dialect
does not map precisely to the problem at hand, there are
some useful ideas in that work that may be adapted to the
SCEDM tool ecology.

Reference [23] also has potentially interesting
implications for the future SCEDM tool ecology from the
perspective of configuration management of the SCEDM
model. However, the choice of the industry-standard
representational languages UML and SysML for the CS2
problem precludes the freedom to invent a new
representation such as used in Mae, which builds upon
xADL 2.0 [27], an academic XML-based architecture
description language. Furthermore, major UML/SysML
modeling tools are evolving rapidly towards using
relational database management systems for heir
underlying data stores. It is not yet clear if or how these
concepts might work together. Still, there are some
interesting ideas in this work that warrant further
consideration.

ACKNOWLEDGMENTS

This research was supported by NAVSEA contract
N00024-06-C-6272. The model design described in this
paper was the result of vigorous discussions with
Professor Alex Levis of George Mason University, with
Mr. Greg Bussiere, Mr. Mark Hassel, and Mr. Rob
Pollack of the Naval Undersea Warfare Center, and with
Mr. Sanford Friedenthal, Mr. Brandon Gibson, and Mrs.
Danielle Robinson of Lockheed Martin. The useful
results are the fruits of that collaboration, while the errors
remain my own.

REFERENCES

1. Ford, David N., and John T. Dillard. “Modeling open
architecture and evolutionary acquisition:
implementation lessons from the ARCI program for
the Rapid Capability Insertion process.” Proceedings
of the Sixth Acquisition Research Symposium:
Defense Acquisition in Transition 2 (Apr 2009): 207-
235.

2. Fages, H I. “Submarine programs: A resource
sponsor’s perspective.” The Submarine Review, (July
1998): 53–59.

3. Jacobus, P., P. Yan, and J. Barrett. “Information
management: the Advanced Processor Build

(Tactical).” JOHNS HOPKINS APL TECHNICAL
DIGEST 23, no. 4 (Jan 2002): 366-372.

4. Boehm, B., and P. Bose. “A collaborative spiral
software process model based on theory W.”
Proceedings, ICSP (Citeseer) 3 (1994).

5. Sage, Andrew P., and Charles L. Lynch. “Systems
integration and architecting: An overview of
principles, practices, and perspectives.” SYSTEMS
INTEGRATION AND ARCHITECTING 1 (Jan 1998):
176–-227.

6. Timothy W. Simpson. “Product platform design and
customization: Status and promise.” Artif. Intell. Eng.
Des. Anal. Manuf. (Cambridge University Press) 18,
no. 1 (Jan 2004): 3-20.

7. Erens, F., and K. Verhulst. “Architectures for product
families.” Computers in Industry (Elsevier) 33, no. 2-
3 (1997): 165-178.

8. Hegge, H. M. H. and Wortmann, J. C. “Generic bill-
of-material: A new product model.” Intl. J. of
Production Economics 23 (1991): 117-128.

9. Erens, Frederik-Jan. “The Synthesis of Variety-
Developing Product Families.” PhD Dissertation (Jun
1996)

10. Jiao, J., MM Tseng, Q. Ma, and Y. Zou. “Generic
bill-of-materials-and-operations for high-variety
production management.” Concurrent Engineering 8,
no. 4 (Nov 2000): 297-322.

11. Medvidovic, N., D. S. Rosenblum, and R. N. Taylor.
“A language and environment for architecture-based
software development and evolution.” Proceedings of
the 21st International Conference on Software
Engineering (ICSE’99), (Nov 1999): 44–53.

12. Jiao, J., and M. M. Tseng. “An information modeling
framework for product families to support mass
customization manufacturing.” CIRP Annals-
Manufacturing Technology (Elsevier) 48, no. 1 (Jul
1999): 93-98.

13. Xuehong Du, Jianxin Jiao, and Mitchell M. Tseng.
“Product family modeling and design support: An
approach based on graph rewriting systems.” Artif.
Intell. Eng. Des. Anal. Manuf. (Cambridge University
Press) 16, no. 2 (2002): 103-120.

14. Callahan, Sean M. “Relating functional schematics to
hierarchical mechanical assemblies.” Proceedings of
the fourth ACM symposium on Solid modeling and
applications, (1997): 229-239.

15. Callahan, Sean M. “Extended generic product
structure: an information model for representing
product families.” Journal of Computing and
Information Science in Engineering (ASME) 6 (Nov
2006): 263-275.

16. Callahan, Sean M. “Extended Generic Product
Structure: An Information Model for Representing
Product Families.” (Nov 2005): 1-68.

17. Briere-Cote, Antoine, Louis Rivest, and Alain
Desrochers. “Adaptive generic product structure
modelling for design reuse in engineer-to-order
products.” Comput. Ind. (Elsevier Science Publishers
B. V.) 61, no. 1 (Jul 2010): 53-65.

18. Huang, George Q., Li Li, and Xin Chen. “ppXML: A
generic and extensible language for lifecycle
modelling of platform products.” Computers in
Industry (Elsevier) 59 (Aug 2008): 219-230.

19. Weiderman, Nelson H., John K. Bergey, Dennis B.
Smith, and Scott R. Tilley. “Approaches to Legacy
System Evolution.” (Dec 1997): 1-42.

20. Gerber, A., E. Glynn, A. MacDonald, M. Lawley,
and K. Raymond. “Modelling for Knowledge
Discovery.” Proceedings of the 2004 EDOC
Workshop on Model-Driven Evolution of Legacy
Systems (MELS), (Aug 2004): 1-5.

21. Ulrich, William. “A Status on OMG Architecture-
Driven Modernization Task Force.” Proceedings of
the 2004 EDOC Workshop on Model-Driven
Evolution of Legacy Systems (MELS), (Sep 2004): 1-
4.

22. LaMantia, Matthew J., Yuanfang Cai, Alan D.
MacCormac, and John Rusnak. “Evolution Analysis
of Large-Scale Software Systems Using Design
Structure Matrices & Design Rule Theory.” (Apr
2007): 1-11.

23. Roshandel, R., A. V. D. Hoek, M. Mikic-Rakic, and
N. Medvidovic. “Mae---a system model and
environment for managing architectural evolution.”
ACM Transactions on Software Engineering and
Methodology (TOSEM) (ACM) 13, no. 2 (Apr 2004):
240-276.

24. Zhang, Jing, and Jeff Gray. “Legacy System
Evolution through Model-Driven Program
Transformation.” Proceedings of the 2004 EDOC
Workshop on Model-Driven Evolution of Legacy
Systems (MELS), (Aug 2004): 1-5.

25. Gomaa, Hassan. Designing Concurrent, Distributed,
and Real-Time Applications with UML. Addison
Wesley, (2000).

26. Friedenthal, Sanford et al. A Practical Guide to
SysML: The Systems Modeling Language. Morgan
Kaufmann, (2008)

27. Dashofy, E. M., Van Der Hoek, A., and Taylor, R. N.
“An infrastructure for the rapid development of
XML-based architecture description languages.”
Proceedings of the 24th International Conference on
Software Engineering (ICSE2002), ACM, New York,
NY, USA. (2002): 266-276.

