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Abstract- Managing the evolution of a complex product 
family that is deployed and maintained in multiple variants 
on various platforms using traditional systems engineering 
tools and processes is a significant challenge.  An example is 
managing the evolution of a common combat system across a 
fleet of submarines.  Due to the realities of budgets and 
operational scheduling, multiple versions of the product 
must be managed for each ship: the currently deployed 
version, the upcoming tech refresh version, and future 
versions in planning and development.  Adding to the 
complexity, the product family has variations for each class 
and flight of submarine, individual ships may vary in 
capabilities and equipment from the flight baseline, ships 
within a flight are upgraded at different times driven by 
maintenance availabilities, and each periodic upgrade may 
introduce new functional capabilities as well as updated 
software and hardware as the combat system evolves. 
To streamline this task, an integrated model based systems 
engineering process is being developed around a collection of 
tightly coupled models built in SysML and UML.  This 
paper provides a preliminary description of the structure of 
those models, and places it in the context of related research. 
General Terms: Systems Engineering, System Evolution 

Additional Key Words and Phrases: Product Family, Model 
Based Systems Development, SysML, Maintenance 

I. INTRODUCTION 

In order to maximize capability and interoperability 
while minimizing development and maintenance costs, a 
common submarine combat system (CS2) is being 
deployed across the entire US and Australian submarine 
fleets.  However, those fleets are composed of multiple 
classes of submarines, each of which typically has 
variations in physical implementations of key equipment 
such as sensors and weapons, along with different 
physical arrangements in spaces such as combat control 
centers, equipment spaces, etc.  Beyond this, ship classes 
are typically composed of sub-classes known as “flights” 
which are sequential groups of ships that are built to the 
same design baseline.  That baseline may vary to greater 
or lesser degrees from other flights within the class.  An 
example of this inter-flight variation is the introduction of 
vertical weapons launchers in Flight 2 of the LOS 
ANGELES class.  In addition, operational needs can 

cause variations ranging from small to quite substantial 
•even within a flight.  A prime example of this is SSN 231, 
which differs from the other two submarines in the single-
flight SEAWOLF class by an additional one hundred feet 
in length and a thirty percent increase in displacement to 
accommodate special operational requirements. 

This host platform variability means that the CS2 is in 
reality a product family with different variants for each 
class, flight, and, sometimes, individual submarine.  
While the core components that make up the product for a 
given release of the CS2 are common across all host 
platforms, there are host-specific variants that have to be 
developed, integrated, installed, supported, and then 
replaced with the next version on a regular upgrade cycle. 

Although it started its evolution as a loosely connected 
collection of legacy military systems hosted on traditional 
military-unique computational platforms, the federated 
CS2 is now based largely on a Commercial Off-The-Shelf 
(COTS) computational and networking platform.  The 
software of the CS2 also contains massive amounts of 
COTS software2 in the form of operating systems, 
database systems, graphics libraries, etc.  While utilizing 
COTS in this way brought the cost of this submarine 
combat system down about an order of magnitude over 
the previous generation3,4, it brought with it the challenge 
of managing the continuous, unsynchronized evolution of 
those COTS products.  The CS2 acquisition program 
handles the hardware side of the COTS management 

                                                
•  Copyright Lockheed Martin 2010.  All rights reserved. 
1 United States Navy Fact File 
http://www.navy.mil/navydata/fact_display.asp?cid=4100&tid=100&ct=4 
2 In this usage, COTS includes Free or Open Source Software (FOSS) 
as well. 
3 

The Advanced Rapid Capability Insertion (ARCI) program reduced the 
cost of the AN/BQQ-10 sonar system by a factor of six in Development 
and Production costs, and a factor of eight in Operating and Support 
costs according to Reference  [1] p. 317.  The CS2 applies the same 
process and approach to the overall submarine combat system as ARCI 
does to the submarine sonar system.
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RADM H. I. Fages, the sponsor for the development of the AN/BQQ-
10 sonar, which is part of the CS2, stated, “ARCI development costs 
were one-tenth (1/10) the cost of BSY-2 and ship set cost was less than 
one-thirtieth (1/ 30)” [2]

 



 

 

problem with biannual baseline updates that allow each 
ship-set of equipment to be state-of-the-market when it is 
installed aboard ship.  This process is referred to as 
Technology Insertion (TI).  These TI baseline changes 
occur in even years, leading to the nomenclature TI10, 
TI12, etc. 

To avoid COTS software obsolescence issues and to 
provide incremental improvements in system capability, 
the application software running on this COTS hardware 
platform is also upgraded biannually.  For historical 
reasons this process is called Advanced Processor Builds 
(APB) [3].  The APB baseline updates occur in odd years, 
leading to the nomenclature APB09, APB11, etc.  This 
TI/APB cycle is in reality a double-helix collaborative 
spiral development life cycle [4] where the hardware and 
software spirals are one year out of phase with each other. 

Given that there is an unavoidable coupling of the 
APBnn and TImm updates, fleet-wide baselines installed 
aboard ship are referred to as TImm/APBnn.  The overlap 
of the TI and APB update cycles leads to an annual 
change in baseline installations.  Thus submarines that are 
upgraded in 2011 will receive TI10/APB09, while those 
upgraded in 2012 will receive TI10/APB11, etc.  These 
annual baselines must go through the full systems 
integration process [5] to ensure that the system installed 
aboard ship is operationally suitable, effective, and 
interoperable. 

Compounding the complexity of managing the 
evolution of the COTS components of the CS2, the 
primary purpose of the APB process is to integrate new 
algorithms and software technologies to enhance the 
operational effectiveness of the submarines.  For the most 
part the enhanced capabilities ride on the steady TI 
technology refreshes, but occasionally they require 
significant new hardware such as new or improved 
sensors.  As such, new capabilities are typically evaluated 
on one submarine before being incrementally introduced 
to some subset of the fleet. This approach adds additional 
variants to the complexity of managing the evolution and 
deployment of the CS2 product family. 

The engineering problem of managing the evolution 
of the CS2 goes beyond simply tracking bills of materials 
for the various baselines.  Since this system is installed on 
a submarine, power, cooling, mass properties, and 
physical layout are tightly constrained and must be 
tailored to the idiosyncrasies of the various host 
platforms.  Other materials characteristics that have safety 
implications for the crew under casualty conditions, such 
as the presence of various hazardous materials, must be 
tracked.  These systems process classified information, 
and so must be documented, tested, and certified to the 
appropriate standards for information assurance (IA).  The 
CS2 has direct impacts on safety of ship, and is a core 
part of a weapons system: both of those things require 

additional documentation, verification, and certifications.  
The CS2 interfaces with larger military command, 
control, communications, computers, and intelligence 
(C4I) networks, which entails interoperability testing and 
certification.   

Beyond these engineering requirements, as military 
platforms the submarines hosting the CS2 are subject to 
the various national acquisition management processes.  
The CS2 development program is required to provide 
informational inputs to those processes, and significant 
portions of that information have to be extracted 
periodically from the CS2 product family integration 
process. 

All of these requirements together imply that a 
product family model of the CS2 encompasses at least 
twenty dimensions of information including Operational 
Capabilities; Requirements; the Conceptual Data Model, 
the Logical Data Model; the Physical Data Model; the 
software bill of materials; the hardware bill of materials; 
network topology; network addressing and routing; 
software allocation; hardware placement; hardware shock 
and acceleration characteristics; hazardous materials 
characteristics; weight; power; cooling; host platform; IA 
parameters; Integration and Test; and time. 

II.   A CONCEPTUAL MODEL 

Before proceeding with the description of the 
submarine product family and the proposed design of a 
submarine data model, a conceptual data model is 
introduced.  There are three processes that change the data 
describing the common submarine combat system: 
Technology Insertion, Systems Engineering, and 
Integration and Testing.  If, conceptually, there existed a 
single data base for all submarine CS2 data, defined here 
as the System Data base, then any one of these three 
processes could cause change in one or more submarines 
and thus change the data in the data base.  This is shown 
graphically in Fig. 1.  The three processes can be 
represented as three services that cause change to the 
actual systems that, in turn, must be reflected in the 
System Data Base. 

The design challenge is twofold: to design a service 
for making changes to the system data base to reflect the 
changes in the systems themselves and to create a data 
extraction and report generation service that is capable of 
producing standard reports and also respond to new 
queries.  This is shown in Fig. 2. 

In section 3, related research in complex product 
family modeling is discussed.  In section 4, the product 
family that is described as “Physical Systems” in Fig. 2 is 
discussed, and the submarine data model is presented (the 
System Data Base in Fig. 2).  Finally, in Section 5 the 
remaining steps in the design of this system are outlined.  



 

 

 

 

Fig. 1. Conceptual Model of System Database 

 

 
Fig. 2. The Conceptual Model 

 
 
III. PRODUCT FAMILY AND LEGACY SYSTEM EVOLUTION 

MODELING 

Over the past two decades considerable research has 
been conducted in the area of modeling product families.  
Reference [6] provides a concise overview of this 
research.  Much of the early work focused on deliberate 
design of a product family [7], although some authors 
have studied the problem of creating a product family 
from a collection of closely related products.  One 
approach taken was the Generic Bill of Materials, 
introduced [8] to address customized manufactured-to-
order products.  This technique was generalized from the 
manufacturing domain to the functional and technological 
domains [9], and further generalized [10] to capture 
business processes associated with mass-customized 
production. 

Several authors have tackled the complexity of 
representing product families by inventing new modeling 
languages [11], or other representations [12], [13].  

Callahan [14], [15] takes a particularly interesting 
approach to this, making a clear distinction between 
product family architecture and product variation.  Both 
[16] and [12] are careful to minimize the amount of 
redundant information required to describe each product 
variation through efficient representations.  Part of their 
concern is to manage the overall size of the data sets 
associated with large product families, which if the model 
were duplicated for each variant would grow 
exponentially for a product platform such as an 
automobile or an airplane that has several variants, each 
of which has many options that can be ordered in many 
combinations.  This concern for efficient reuse [17] of the 
data sets involved is common to mass customization 
problems [18].   

A larger concern addressed in this research is 
avoiding the problem of authority when dealing with 
multiple copies of a complex data set such as that defining 
the product family core platform: whenever multiple 
copies of data are kept, errors can occur.  When instances 



 

 

of the same data disagree, how does one determine which 
is authoritative?  The best solution is to avoid potential 
inconsistencies due to duplication of information: if a 
representation requires duplicated data, authoritative data 
must be uniquely identified, and all copies clearly 
identified as such.  This is non-trivial when complete 
product data sets are duplicated and then modified for 
each member of a large, rambling product family. 

An adjacent problem to modeling product families is 
managing the evolution of a complex legacy system.  
Based on decades of attempts to evolve software-
intensive systems with a disappointingly low success rate, 
[19] proposes that system understanding through systems 
architecture within the larger enterprise context is a key 
factor in economically evolving legacy systems into 
product families to achieve greater functionality and 
maintainability.  This emphasis on architecture for system 
understanding is a common thread across the field, also 
reflected in [20], among others.   

Ulrich [21] provides an overview of standards work 
being done in this area by the Object Management Group 
(OMG) Architecture Driven Modernization (ADM) task 
force.  Ulrich also sees the first step in modernizing 
legacy systems to be the understanding of the 
architectural and implementation structures of those 
systems through modeling. 

Veering away from standards-based architectural 
modeling, [22] approaches the problem of extracting 
architectural information through design structure 
matrices and design rule theory.  Their objective is not 
simply to increase understanding of legacy systems by 
revealing their structure to enable engineers to make 
informed design decisions, but to provide tools for 
evaluating proposed design changes as well.  They 
analyze two web application servers to demonstrate the 
accuracy of their approach.  However, the primary utility 
of this approach seems to lie in retrospective analysis of 
system evolution, rather than forward evolution support. 

 Reference [23] takes a slightly different perspective.  
They argue that conventional configuration management 
systems are not sufficiently powerful to manage 
architectural evolution for complex problems such as 
product families.  They propose instead a new 
architecture modeling and evolution paradigm that 
integrates fine-grained configuration management into the 
architectural modeling tool itself.  Acknowledging that 
this approach violates the fundamental assumption of 
conventional configuration management that the 
management process should be strictly separated from its 
object, they substantiate their argument by implementing 
an integrated architecture modeling and configuration 
management environment called Mae and demonstrating 
its effectiveness on three sample problems.  Interestingly, 
some of their internal representational constructs are 

similar to the constructs of [15], although they are 
addressing superficially different problems. 

Another, rather more ambitious approach is taken by 
[24].  They propose to do away with manual modification 
of legacy system software components in favor of 
automated code generation in a Model-Driven Program 
Transformation approach.  While recognizing that 
constructing the underlying tools is a serious 
technological challenge, they argue that domain-specific 
model interpreters are the key breakthrough to allow an 
integrated toolset to reverse-engineer the modules of a 
legacy application to construct a system architecture 
model.  Domain experts would then modify that model to 
meet new requirements.  Their integrated toolset would 
finally generate the transformed application.   

IV. THE SUBMARINE C5I ENGINEERING DATA MODEL 

Historically, management of the CS2 baselines and 
upgrade process has been done using a variety of 
documents and databases controlled by various Integrated 
Product Teams (IPTs) that manually coordinate their 
efforts.  These IPTs – staffed from the CS2 system 
integrator, numerous independent developer organizations 
in industry, government, and academia, Navy 
procurement and engineering agencies, and the shipyards 
– collaborate in a complex systems integration process.  
In order to streamline this process and to reduce the 
amount of engineering labor dedicated to coordinating the 
various documents and other products used to support the 
CS2 product family and its multitudinous variants, an 
integrated Submarine C5I Engineering Data Model 
(SCEDM) is being constructed. 

Fig. 3 suggests some of the complexity of this 
SCEDM.  It is important to understand that this diagram 
merely hints at the full dimensionality of the problem.  As 
noted in the Introduction, every submarine in the fleet has 
some TImm/APBnn baseline installed, with class and/or 
flight and/or hull variations from that baseline.  While that 
baseline of the CS2 is being supported, the next baseline 
for each submarine is being developed, as is the baseline 
beyond that.  All of this data must be tracked for two 
submarine fleets comprising six classes, eleven flights, 
and almost ninety boats. 

As indicated around the edges of Fig. 3, this SCEDM 
does not exist as an end in and of itself.  Rather, it exists 
to support the engineering process of developing, 
manufacturing, installing, and supporting the CS2 tailored 
for each boat.  Many more products than the figure shows 
will be derived from the model including hardware and 
software baselines for manufacturing to generate new 
installation kits, cabling data packages to support the 
shipyards in installing new hardware (collectively 
represented by the Top Level Interface Functional  



 

 

 
Fig. 3. A Simplified View of the Data Dimensionality of the SCEDM. 

 
Requirements Document (TLIFRD) in the lower right 
corner of the figure), information assurance documents to 
support operational certification of individual submarines 
after installation of a new CS2 baseline (collectively 
represented by the System Security Authorization 
Agreement (SSAA) inputs in the upper left corner of the 
figure), systems requirements verification matrices 
(SRVM), and DoDAF architecture reports to support both 
the acquisition and the evaluation of new operational 
capabilities (collectively represented by the Joint 
Capabilities Integration and Development System 
(JCIDS) inputs in the lower left corner of the figure). 

The information dimensional complexity of this model 
along with the size of the configuration space (roughly 
fifty interface groups defined between up to fifty 
subsystems distributed across approximately three 
hundred computers grouped into nine different network 

enclaves) of the CS2 dictates that industrial-strength tools 
be used to develop this model.   

Where many earlier researchers have defined their 
own idiosyncratic representations for product family 
modeling (as discussed in Section 2), the objective of this 
project is to support the Fleets.  That means the SCEDM 
must be developed using current industry best practices 
for Model Based System Development, which in turn 
means using current industry standard languages such as 
UML5 [25] and SysML6 [26].  Given that the model must 
capture a broad range of information ranging from 
CORBA IDL and WSDL used to define inter-subsystem

                                                
5 The current specification of UML is at 
http://www.omg.org/spec/UML/2.2/ 
6 The current specification of SysML is at 
http://www.omg.org/spec/SysML/ 



 

 

 
Fig. 4. Inheritance Hierarchy of Submarines Employing CS2. 



 

 

 
Fig. 5. Notional Upgrade-Group Structure 

 
software interfaces to physical hardware specifications 
including mass, power, cable runs, etc, a mixture of UML 
to represent the software domain and SysML to capture 
the hardware and systems engineering domains has been 
chosen. 

Following [15], the SCEDM leverages inheritance to 
minimize information redundancy.  As shown in Fig. 4, an 
inheritance hierarchy is defined for all of the submarines 
supported by the CS2.  The second tier of the hierarchy is 
the ship Class, with the Flight below that.  Individual 
ships chain down from the Flight.  CS2 baselines are 
assigned as high up in the hierarchy as possible, with 
individual class / flight / ship variations overriding the 
inherited configuration baseline where necessary. 
Due to both operational and fiscal constraints, not all 
submarines in the fleet are upgraded every year.  Instead, 

groups of ships are scheduled for upgrade each year on a 
rolling basis.  This process is represented by Upgrade 
Groups, as shown in Fig. 5.  The timings of these 
TImm/APBnn installations are driven by operational 
deployments and new construction, and are coordinated 
with shipyard or pier side ship availabilities. 
 Since the CS2 evolved after many of the submarines in 
Fig. 4 were already at sea, back-fitting this common 
submarine combat system to multiple classes of ships has 
driven some configuration compromises.  For example, 
some ship classes have network-enabled navigation 
radars, while others use a serial interface between the 
radar and the navigation subsystem.  This means that on 
some ship classes in some baselines the radar belongs to  



 

 

 
Fig. 6. CS2 Network Enclaves with Navigation Radar Assignments Migrating Across Network Enclaves with Evolving Baselines 

 
 

 
one network enclave, while for other classes of ships 
the radar is part of a separate enclave. 
 Further complicating the problem, future baselines 
include network-enabling the older navigation radars, 
which means that at that point in time the radar will 
move from one network enclave to another.  This kind 
of system evolution is captured in Fig. 6.  In the center of 
the diagram is the RADAR subsystem class with two 
variants, the AN/BPS-15 and the AN/BPS-16, which 
get assigned to different enclave baselines in different 
upgrade cycles. 

Another example of how the SCEDM leverages 
inheritance to minimize data redundancy is show in Fig. 
7.  The network enclaves and their component 
subsystems are collected together in the TI10APB11 
baseline class, but the basic Periods Processing 
LANclave TI10 is specialized in the TI10APB11 VA 
Flight 1 subclass to include a sub-classed Periods 
Processsing LANclave TI10_VA that includes the 
AN/BPS-16 navigation radar.  This structure enables 
the SCEDM to achieve the same kind of 
representational power and efficiency seen in [15] 
while using an industry-standard modeling language. 

An important benefit of the SCEDM is automating 
requirements traceability throughout the product family.  
Currently CS2 requirements are maintained in a 
database, but the allocation of requirements to design 
elements is a matter of manually entering that 

Fig. 7. Organization of CS2 Baseline by Network Enclave, with 
Class Variants 



 

 

information into the database, then integrating it into a 
variety of other products such as software requirements 
specifications, hardware requirement specifications, 
interface specifications, and other engineering 
documents.  This is an inefficient process even for 
developing a new product, but when managing an 
evolving product family it becomes a serious 
impediment.  Typically, it is requirements changes that 
drive the introduction of variants, including the 
TImm/APBnn baselines of the CS2 product family.  
Those requirements changes ripple through the product 
design in ways that are difficult if not impossible to 
predict.  Without automation, each change must be 
manually tracked through the various documents of the 
design.   That is a labor-intensive process, particularly 
since any errors in the requirements can have very 
expensive impacts on the implementation of a new 
member of the product family, dictating careful, 
redundant inspection. 

As shown in Fig. 8, in the SCEDM the requirements 
are directly linked to the appropriate elements of the 

design.  Thus when a requirement changes, the tool 
hosting the SCEDM can generate a report identifying 
everything in the system that is touched by the ripples 
of that change, sidestepping a great deal of error-prone 
manual labor.  When new requirements are introduced 
into the model or old design elements are eliminated, 
similar reports can flag the lack of requirements 
linkages, clearly identifying the gaps that need to be 
addressed by the systems engineering team. 

As the hardware model changes due to TI refreshes 
or the software model changes with APB revisions, 
similar tool-assisted requirements traceability analysis 
can quickly identify all of the impacts that must be 
analyzed.  The linkages are not limited to requirements: 
elements of the software model may have dependency 
linkages to elements of the hardware model, which in 
turn may have linkages to budget allocations, etc.  All 
of these linkages can be traced by the tool hosting the 
SCEDM, and reported to facilitate change impact 
analysis. 

 

 
Fig. 8. SCEDM Requirements Traceability 



 

 

V. CURRENT WORK AND CONCLUSIONS 

The structure of the SCEDM described in this paper is 
preliminary and addresses only the System Data Base 
portion of the overall problem defined in section 2.  As 
more details are worked out and additional dimensions of 
the data are filled in, the detailed structure of the SCEDM 
will evolve.  It is likely that filling in some of the details 
of this evolutionary product family model will stretch the 
bounds of the current UML and SysML language 
standards, and potentially will require inventing 
extensions to those languages.  This will be done in 
collaboration with the developers of the respective 
standards so that those extensions are defined in the spirit 
of the languages, and can be incorporated in future 
versions of those evolving standards. 

Only a few information dimensions have been even 
partially addressed in the SCEDM prototyping that has 
been accomplished to date.  The next dimension that will 
be explored more fully is that of requirements.  Several 
hundred inter-subsystem interface requirements have been 
imported from the current DOORS repository, but while 
some preliminary investigation has been conducted (as 
seen in Fig. 8, the best level at which to link the 
requirements into the model has not yet been determined.  
One problem that has to be addressed is that the 
requirements are currently all at one level, and include 
significant amounts of implementation direction as well 
as performance requirements.  The performance 
requirements and implementation directions need to be 
de-interleaved, and the requirements need to be structured 
into a hierarchy to better facilitate aligning them with the 
other model dimensions.  This de-interleaving will also 
isolate the requirements from the implementation, 
significantly reducing requirements churn and resulting 
cost.  In addition, that hierarchy needs to be extended 
from the current set of inter-subsystem interface 
requirements up the tree to the top level system 
requirements to provide full traceability and to support the 
national acquisition and evaluation processes. 

Similarly, all of the CORBA IDL interfaces that are 
part of the Physical Data Model for current CS2 baseline 
have been imported into the prototype SCEDM.  Efforts 
are currently underway to determine how and where best 
to link those interface implementations into the model to 
support the evolving TImm/APBnn baselines.  

In parallel with the work on requirements, the 
Conceptual and Logical Data Models of the CS2 must be 
constructed.  These data models will provide a framework 
to anchor the Physical Data Model created from the 
imported CORBA IDL and evolved with the 
TImm/APBnn product variants.  The Conceptual and 
Logical Data Models will also help link the product 
implementation model with the higher-level operational 

modeling that supports the acquisition and evaluation 
processes. 

Another way that the SCEDM might increase the 
efficiency of the CS2 product family life cycle is by more 
tightly coupling integration, test, and verification with the 
requirements generation process.  Today use cases, 
scenarios, and various dynamic modeling artifacts 
(activity diagrams, sequence diagrams, etc) are used to 
generate lower level design requirements from the high-
level capabilities requirements levied on the program.  
The derived requirements are entered into the 
requirements database and then manually allocated to 
various design elements, but the analysis that supported 
the requirements generation process is often lost in the 
process.  In the future that analysis and the corresponding 
products may be captured in the SCEDM and associated 
with the corresponding requirements.  When integration 
and test comes around on the spiral those sequence 
diagrams, etc. could be used support development of test 
and verification plans, reducing the communications gap 
between requirements engineers and test engineers and 
closing the requirements-to-verification cycle.   

Another positive impact the SCEDM could have 
would be to leverage the change impact analysis 
discussed at the end of section 3 to focus integration and 
test efforts.  Tracing the ripples of change through the 
model identifies those parts of a new baseline 
implementation that are different from previous variants.  
Since these areas were not tested in the integration of any 
previous system variant, they are most likely to hide new 
bugs.  Where these changes do not represent new or 
improved capabilities (such as the replacement of a COTS 
hardware component with a newer model with the same 
specifications, or the upgrade of device drivers for a 
previously used hardware component), they are excellent 
candidates for targeted regression testing.  Where they 
represent new or improved capabilities, they are a natural 
focus for intensive integration and test.  Either way, the 
overall cost effectiveness of integration and test should be 
improved. 

In addition to building the SCEDM, an ecology of 
tools must be defined and developed around the model to 
make it efficient for the many IPTs that collaboratively 
evolve, implement, and support the CS2 to access those 
portions of the model that they need without requiring all 
of those engineers to become proficient in the tools, 
languages, and schemas used to build the model.  This is 
the problem of efficiently providing the Data Entry, Data 
Extraction, and Report Generation services described in 
section 2.  Most of those engineers are currently using 
various Microsoft Office products to manage their 
specialized nexi of the overall information space that will 
be subsumed into the federated SCEDM.  It is anticipated 
that various web services will be built around the 



 

 

UML/SysML model to provide familiar interfaces to 
those nexi and to eliminate the cost of climbing the 
learning curve that would be necessary if every engineer 
supporting the CS2 were required to become expert in a 
UML/SysML modeling tool.   

Promising research in this direction [18] defines a 
dialect of XML called platform product eXtensible 
Markup Language (ppXML) specifically to support 
lifecycle modeling of platform-based product families to 
support mass customization.  While this XML dialect 
does not map precisely to the problem at hand, there are 
some useful ideas in that work that may be adapted to the 
SCEDM tool ecology. 

Reference [23] also has potentially interesting 
implications for the future SCEDM tool ecology from the 
perspective of configuration management of the SCEDM 
model.  However, the choice of the industry-standard 
representational languages UML and SysML for the CS2 
problem precludes the freedom to invent a new 
representation such as used in Mae, which builds upon 
xADL 2.0 [27], an academic XML-based architecture 
description language.  Furthermore, major UML/SysML 
modeling tools are evolving rapidly towards using 
relational database management systems for heir 
underlying data stores.  It is not yet clear if or how these 
concepts might work together.  Still, there are some 
interesting ideas in this work that warrant further 
consideration. 
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