
1

Maestro – A model-based systems engineering
environment for complex electronic systems

Copyright © 2012 InterCAX LLC and Sandia National Laboratories. Published and used by INCOSE with permission.

Manas Bajaj
1*

, Andrew Scott
1
, Douglas Deming

2
, Gregory Wickstrom

2
, Mark De Spain

2
,

Dirk Zwemer
1
, Russell Peak

1

1. InterCAX LLC

75 5
th
 Street, Suite 312,

Atlanta, GA 30308 USA

www.intercax.com

2. Sandia National Laboratories

1515 Eubank SE

Albuquerque, NM 87123 USA

www.sandia.gov

Abstract

In this paper we present Maestro, a model-based systems engineering (MBSE) environment for

design and simulation of complex electronic systems using Orchestra—a simulation tool

developed at Sandia National Laboratories. Maestro is deployed as a plugin for MagicDraw and

uses Orchestra domain-specific language (DSL) which is based on SysML. Maestro enables a

model-based design and analysis approach that replaces the traditional document-based systems

engineering process. It provides a unified graphical modeling environment to domain experts

who have had to depend on drawing tools for defining system architecture and manual

transcription of system topology in creating complex simulation models.

1 Introduction

The OMG Systems Modeling Language (SysML) has provided a solid foundation for model-

based engineering of complex systems. However, every system domain is different. The

stakeholders are different. Adoption of model-based systems engineering (MBSE) in different

system domains will depend on the availability of rich domain-specific MBSE applications that

provide stakeholders the tools to architect and analyze systems in that domain.

An example of such a domain is the design and simulation of complex electronic systems.

Orchestra is a general-purpose system-level modeling tool developed at Sandia National

Laboratories for discrete event simulation of embedded systems. It captures system functionality

in multiple formalisms, including software, microcode and digital logic.

Maestro is an MBSE environment for design and simulation of complex electronic systems using

Orchestra. Maestro is being developed by InterCAX as part of a collaboration effort with Sandia

National Laboratories. The goal of Maestro is to provide a rich, model-based design and analysis

environment that replaces the traditional document-based systems engineering (DBSE) approach.

* Corresponding author: Dr. Manas Bajaj, email: manas.bajaj@intercax.com, phone: +1-404-592-6897, x101.

INCOSE International Symposium, Jul 9-12 2012, Rome, Italy

Paper ID 219

http://www.intercax.com/
http://www.sandia.gov/
mailto:manas.bajaj@intercax.com

2

A critical advantage of MBSE in this application is knowledge capture of the process of

converting graphical design information into executable Java code. The need for close

familiarity with a Java design environment is a barrier to wider adoption of the simulation tool.

The facilitation of this process, however, must not obstruct the analyst’s ability to modify the

design for analysis, e.g. to substitute lower or higher fidelity component models where

appropriate. A graphical MBSE language supports this step effectively.

In this paper, we present our technical effort leading to the development of Maestro in the

following manner. In section 2, we present the DBSE approach that was the motivation for

developing Maestro; in section 3, we present the MBSE challenge problem as a precursor to

Maestro; in section 4 we present the use cases, design flow, and the features of Maestro; and in

section 5, we present a summary of this paper and next steps in our ongoing effort.

2 Document-based Systems Engineering (DBSE) Approach

Figure 1 illustrates a simple view of the document-based systems engineering process for design

and analysis of complex electronic systems before Maestro. The figure shows the process as a

SysML activity model. Actions represent the different steps in the process, vertical swim lanes

represent the stakeholder (designer, analyst) or the software responsible for the actions in the

swim lanes, and the object flows indicate model/data flow between different steps.

Figure 1: Document-based systems engineering of electronic systems before Maestro

The process started with the definition of the system as a drawing in Visio or PowerPoint by the

system designer. Figure 2 illustrates drawings of an electronic system created by the system

designer. System model defined in a drawing tool has little intelligence about the components,

interfaces, connections, behavior, and requirements. For example, attributes of components,

interfaces, and connection are available as text-based notes and connections between components

cannot be validated for compatibility of connected ends (interfaces) and the types of signal

flowing at the connections. Lack of an integrated model-based system design description makes

it impossible to define and automate model transformations for generating analysis and

optimization models in different electrical and mechanical analysis tools, generating reports for

design reviews, and performing topological and parametric trades at the system-level. Multiple

3

disconnected views of the system model in different design and analysis environment often leads

to miscommunication among the domain experts potentially risking system failure and scheduled

delivery and maintenance for mission-critical applications.

Figure 2: Drawings of an electronic system created by the system designer. The internal structure of the

Hypothetical Machine sub-system (top) is shown (bottom).

The second step in the traditional DBSE process is the manual creation of Orchestra analysis

models (Java-based) from the system design drawings. An Orchestra analyst manually reviews

each of the components, their interfaces, and the interconnections presented across several design

drawing documents and creates a corresponding Java class structure for the Orchestra analysis

model. This approach poses significant challenges:

1. The Orchestra Java API has a significant learning curve for potential Orchestra users,

esp. because not all analysts are programmers. To some extent, this inhibits wider

adoption of Orchestra’s high-end simulation capabilities.

2. For specific sub-systems, Orchestra analysts refine the design description directly in Java.

So, there are portions of detailed system design that are non-existent in the system design

4

definition but have a corresponding simulation model. This problem of inconsistencies

between design and simulation models is further aggravated when other simulation

models are derived from the system model.

3. The design-analysis change cycle is significantly large. System designers modify design

drawings and describe these changes in ad-hoc forms such as documents, emails, and

drawing notes, which may be potentially misinterpreted. Analysts view these updates and

manually modify Java code to update the Orchestra simulation model.

4. In the absence of a detailed design-analysis transformation specification, managing

simulation models of different fidelities and scope is extremely challenging.

The third step in the process is to execute the simulation models in Orchestra and provide

feedback to designers on system performance. Based on the results, designers manually modify

the system-level design drawings, spending significant time and resources in maintaining

consistencies between views of the same sub-system/component in different drawings. Further,

domain-specific detailed design models, such as ECAD and MCAD models, and other

corresponding analysis models have to be manually updated. This process iterates until a

satisfactory set of design alternatives is selected for further refinement (next design phase).

3 Challenge Problem: Model-Based Systems Engineering
(MBSE) Approach for Electronic Systems

In the context of our effort, the DBSE approach outlined above was not suitable for dealing with

increasing system complexity and stringent requirements for system performance and reliability.

It was evident that a model-based systems engineering approach has to be developed. Rich

model-based representation of system design drawings was the first challenge problem that we

took on. The goal of this challenge problem was to investigate the use of OMG Systems

Modeling Language (SysML) as a foundation for model-based representation of complex

electronic systems, and to investigate approaches for generating Orchestra simulation models

from SysML-based design models. Figure 3 and Figure 4 illustrate SysML models of the

Hypothetical Machine system (Figure 2) developed as part of our challenge problem in

MagicDraw SysML modeling tool. Figure 3 is a SysML internal block diagram showing the

internal structure (components, ports, connectors) of the Hypothetical Machine block, and Figure

4 illustrates the successive decomposition of the Hypothetical Machine system from the top-level

system block to the leaf level sub-system.

5

Figure 3: Internal structure of the Hypothetical Machine system in SysML – shown as an IBD in MagicDraw.

Figure 4: System decomposition is an integral part of the unified and consistent SysML model as opposed to a set

of isolated drawings. The figure shows successive decomposition of components (top left to bottom right).

6

In contrast to the traditional DBSE approach, representation of the electronic system design

using SysML offered immediate advantages as stated below.

1. The SysML-based design model is a single integrated and consistent model of the

electronic system. A SysML model contains definitions of the system and sub-system

components and their interconnections, as shown in the LHS model tree in Figure 5

below, in addition to multiple diagrams (views) of the system model, as shown on the

RHS of Figure 5. Unlike system drawings in the DBSE approach, diagrams are views of

the system model and hence self-consistent. Changes made to system and sub-system

components are reflected across all diagrams (views). Part are defined once in the model

and reused multiple times in the definition of the system. As a result system engineers do

not have to spend valuable resources in maintaining consistency across drawings or

representing the same part multiple times in same or different drawings.

Figure 5: Hypothetical Machine system model in MagicDraw – model and diagram views

2. The decomposition of the system into sub-systems and eventually to leaf-level

components is inherent in the system definition itself. System engineers can

automatically explore the design model across the hierarchy without having to co-relate

symbols in multiple drawing documents. As illustrated in Figure 4, system engineers can

bring up the internal structure of any system component and explore recursively.

3. Characteristics (parts, references, attributes) of system components are captured as part of

the system model—see characteristics for the Hypothetical_Machine_System block in the

LHS model tree in Figure 5.

4. System and component interfaces and connections can be modeled explicitly, as shown in

the zoomed view in Figure 4. SysML provides strong rules for compatibility of

7

connections between ports. As a result, SysML modeling tools (e.g. MagicDraw) can

automatically check for compatibility of signal/data flows on the connections and the

ports involved in the connection as the model is being created. A document-based

definition of the system model does not lend itself to such automated validation.

5. Unlike drawings, the system design model has rich model semantics that make it possible

to generate engineering analysis models from design models. As part of the challenge

problem, we were successful in generating SysML, XML, and Java-based analysis

models from the SysML-based design model, using pre-defined model transformations.

The SysML-based representation of the analysis model provides Orchestra analysts the

ability to visualize the analysis model structure and compare design and analysis model

topologies, especially for cases where design components are ignored, grouped together,

or exploded into sub-components for analysis purposes. Further, SysML provides a

strong foundation to explicitly capture model-based relationships between design and

analysis model elements using qualitative relationships (allocations) or quantitative

relationships (parametrics). This offers a significant advantage for model traceability and

exploring “what-if” scenarios.

Figure 6: Generating analysis models (SysML, XML, and Java-based) from the SysML-based design model

System Design

Representation (SysML)

SysML-based Analytical Model +

design-analysis relationships

XML-based analytical model structure

Java-based simulation model

8

4 Maestro – a DSL environment for MBSE of electronic
systems

Maestro is a domain-specific language (DSL) environment for model-based systems engineering

of complex electronic systems in the context of our effort. Maestro is deployed as a DSL plugin

for MagicDraw. The primary goal of Maestro (at this stage of our effort) is to provide a modeling

and simulation environment for system designers and Orchestra analysts. While the SysML

standard and MagicDraw tool provide the foundational language and modeling environment

respectively for general purpose systems modeling, Orchestra DSL profile (section 4.2) and

Maestro provide a domain-specific layer on top for model-based design of complex electronic

systems with detailed simulation in Orchestra. In this section, we present Maestro in the

following manner. In section 4.1 we present the use cases and overall design-analysis flow using

Maestro; in section 4.2 we present the Orchestra DSL profile; and in section 4.3 we illustrate the

end user capabilities of Maestro.

4.1 Use Cases

Figure 7 illustrates the use cases of Maestro design-analysis environment. The system designers

and Orchestra analyst are the main stakeholders. Maestro provides system designers the

capability to define and update SysML-based system design model, generate Orchestra

simulation models from the SysML-based design model, execute Orchestra models, and verify

system requirements in an automated manner. For the Orchestra analyst, Maestro provides a

graphical modeling environment for creating Orchestra analysis models (based on Orchestra

DSL), generate executable Java-based Orchestra analysis models, and visualize and verify

simulation results.

Figure 7: Maestro use cases

9

Figure 9 below illustrates a simple view of the MBSE process (as a SysML activity diagram)

for designing complex electronic systems using Maestro. System designers create SysML-

based design model based on requirements, which are then used to generate Orchestra models

in the Maestro environment and XML and Java-based representation of Orchestra models. The

Java-based models are executed using Orchestra and the simulation results are used to refine

the system model or move to the next design phase. Alternatively, the process can initiate

directly with the Orchestra analyst using Maestro to manually create Orchestra analysis models

from which Java-based models are generated and executed using Orchestra. In this scenario,

Maestro provides a graphical modeling environment for creating Orchestra analysis models.

Figure 8: MBSE of electronic systems with Maestro – simple view

4.2 Orchestra DSL profile

The Orchestra DSL profile provides the high-level concepts and related constraints for

representing Orchestra analysis models as well as the symbols for visualizing the concepts. The

concepts in the Orchestra DSL profile are represented using stereotypes specializing SysML

stereotypes. Figure 9 shows the high-level concepts in the Orchestra DSL profile used by

Maestro. Module is an atomic concept in Orchestra and is represented by a stereotype that

specializes the SysML block stereotype. PortType concept is used for classifying ports, and

SimpleConnectionType and ComplexConnectionType concepts are used for classifying

connectors between module components. An Orchestra Port concept represents an interaction

point for a module through which it communicates with other modules in the context of a system

module. An Orchestra Port specializes the SysML FlowPort concept. A ModuleComponent is the

usage of a module in the context of another module. Hence, the ModuleComponent concept

specializes the SysML PartProperty concept. For Orchestra modeling, we have identified two

main types of connections that can be created between module components, namely

10

SimpleConnection and ComplexConnection. The SimpleConnection concept represents binary

connectors, i.e. connectors between ports of two module components, and the

ComplexConnection concept represents n-ary connectors, i.e. connectors between ports of three

or more module components.

Figure 9: Orchestra DSL profile used by Maestro. The figure shows the

The Orchestra DSL profile provides the basic language constructs for representing Orchestra

elements. The DSL profile is used for developing libraries of modules, port types, simple and

complex connection types that can be shared as modules and used by system designers in

developing problem-specific Orchestra analysis models. The ability to develop and share

libraries of commonly used concepts is a key capability provided by Maestro. The Orchestra

DSL profile also defines two diagram types, namely the Module Hierarchy Diagram (MHD)

and the System Builder Diagram (SBD). MHD specializes the SysML block definition diagram

(BDD) and is used for defining and viewing the hierarchy (decomposition and specialization)

of modules, and module attributes and ports. SBD specializes the SysML internal block

diagram (IBD) and is used for defining and viewing the connections and related data flows

between ports of module components. Like an IBD, a SBD is defined in the context of a

module and represents the internal structure of that module.

11

4.3 Maestro DSL Plugin - Modeling and Simulation Environment

In this section, we illustrate the end user capabilities of Maestro, deployed as a DSL plugin for

the MagicDraw SysML modeling environment.

After installing the Maestro plugin for MagicDraw, users can create a new Orchestra model, as

shown in Figure 10. Maestro provides project initialization templates as well perspectives that

control the specific toolbars that a user can view in a perspective.

Figure 10: Creating a new Orchestra modeling project using Maestro

Figure 11 illustrates a module hierarchy diagram (MHD) created using Maestro. As illustrated in

the figure, Maestro provides a diagram toolbar for MHDs that contains menu items for defining

Orchestra concepts, such as Module, Port, and Composition. The Common toolbar contains

menu items for defining concepts common to all Orchestra diagrams, such as Note and Text

Box.

12

Figure 11: Module Hierarchy Diagram (MHD) showing the decomposition of an example System module

Figure 12 below illustrates a system builder diagram (SBD) created for the System module. The

diagram shows four module components (usages of modules), their ports, and the connections

(SimpleConnection and ComplexConnection) between the ports. The data flows on the

connections are not shown. Similar to MHDs, Maestro provides diagram toolbars that contain

menu items for creating Orchestra concepts on SBDs, such as Module Component, Input/Output

ports, SimpleConnection and ComplexConnection.

Figure 12: System Builder Diagram (SBD) showing the connections between ports of module components in the

context of the example System module.

13

Figure 13 illustrates the XML-based representation of the Orchestra analysis model generated

from the Maestro model.

Figure 13: XML-based representation of the Orchestra analysis model generated from the Maestro model

Maestro provides a simple way to edit values of attributes owned by module, port, and simple

and complex connections. Figure 14 below illustrates the Maestro value editor which when

invoked on a module lists the attributes of component modules, ports, and connections through

the entire decomposition hierarchy. If the value field is left blank, Maestro uses the value in the

default value field.

Figure 14: Maestro value editor

<!--
 Orchestra Maestro XML (O2)
 Generated: 31/04/2011 at 02:29 PM
 Maestro v1.0
-->
<OrchestraXML
xsi:schemaLocation="http://sandia.gov/ns/O2 O2.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns="http://sandia.gov/ns/O2">
 <Module name="System_IO" id="Sytem::System_IO">
 <Generalization module="Sytem::DatInDataOutComp"></Generalization>
 <Port type="" name="io"></Port>
 </Module>
 <Module name="System" id="Sytem::System">
 <ModuleComponent type="Sytem::System_IO" name="sIO"></ModuleComponent>
 <ModuleComponent type="Sytem::Memory" name="mem"></ModuleComponent>
 <ModuleComponent type="Sytem::OR_Gate" name="or"></ModuleComponent>

14

Maestro makes it easy to share module packages as libraries which can be imported in other

projects and used for creating more complex modules. As shown in Figure 15, users can easily

select a module package and share it as a library which can then be imported in a new Orchestra

project.

Figure 15: Sharing module package as a library (LHS) and importing a library in a new Orchestra project

When imported in a project, Orchestra library elements are visible in the MHD and SBD toolbars

and ready to be used in composing complex modules (systems). For example, Figure 16 shows

the OR_Gate, System, and Hypothetical_Machine_System modules available in the System

library imported in the current project.

Figure 16: Orchestra modules in imported libraries can be viewed in the diagram toolbar and are ready to be

composed into more complex modules (systems)

15

5 Summary and Next Steps

In this paper, we have presented Maestro as a MBSE environment for design and simulation of

complex electronic systems using Orchestra, a simulation tool developed at Sandia National

Laboratories. Maestro provides a model-based design environment, replacing the traditional

document-based systems engineering process. The Orchestra DSL profile in Maestro provides

the high-level Orchestra concepts, diagram definitions, and symbols for graphical modeling

using these concepts. Maestro provides an easy and intuitive user interface that allows system

designers and Orchestra analysts to work in their own perspectives and develop system design

models (based on SysML) and Orchestra analysis models (based on Orchestra DSL). With

Maestro, Orchestra DSL-based models can be automatically generated from system design

models, and XML and Java-based representations of Orchestra analysis models can be generated

from the Orchestra DSL-based models.

So far our technical effort with Maestro has primarily focused on structural aspects of the

system, for both design and analysis models. We are actively working to include behavior and

requirements modeling capabilities in Maestro. With behavior modeling, Orchestra analysts will

be able to define abstract behaviors and allocate them to structural elements, such as Orchestra

modules, ports, and connections. The implementation of these abstract behaviors can be done in

the Java-based simulation model generated by Maestro. System designers can allocate property-

based requirements to structural or behavioral elements which can then be verified based on the

simulation results from Orchestra.

Broader applications of DSL approach for MBSE include

 bridging the design-manufacturing for vehicles and heavy equipment,

 development of a space sciences DSL for end-to-end mission planning, and

 modeling of communications networks for capacity and latency simulation.

References

Bajaj, M., Zwemer, D., Peak, R., Phung, A., Scott, A. and Wilson, M. (2011). Satellites to

Supply Chains, Energy to Finance — SLIM for Model-Based Systems Engineering, Part 1:

Motivation and Concept of SLIM. 21st Annual INCOSE International Symposium, Denver, CO,

June 20-23, 2011.

Bajaj, M., Zwemer, D., Peak, R., Phung, A., Scott, A. and Wilson, M. (2011). Satellites to

Supply Chains, Energy to Finance — SLIM for Model-Based Systems Engineering, Part 2:

Applications of SLIM. 21st Annual INCOSE International Symposium, Denver, CO, June 20-23,

2011.

Bajaj, M. (2008). Knowledge Composition Methodology for Effective Analysis Problem

Formulation in Simulation-based Design. G.W.Woodruff School of Mechanical Engineering,

PhD, Georgia Institute of Technology; PhD Dissertation: http://hdl.handle.net/1853/26639.

InterCAX - Melody (2010). "Melody - SysML Parametric Solver and Integrator for Rational

Rhapsody." Retrieved Oct 24, 2010, from http://www.intercax.com/melody.

http://hdl.handle.net/1853/26639
http://www.intercax.com/melody

16

InterCAX - ParaMagic (2010). "ParaMagic
®

 - SysML Parametric Solver and Integrator for

MagicDraw." Retrieved Oct 24, 2010, from http://www.intercax.com/sysml

http://www.magicdraw.com/paramagic.

InterCAX - ParaSolver (2011). "Artisan Studio ParaSolver ". Retrieved Jan 31, 2011, from

www.atego.com/products/artisan-studio-parasolver/

www.intercax.com/sysml.

InterCAX - Shape (2011). "Shape plugin for MagicDraw." Retrieved Mar 30, 2011, from

www.intercax.com/sysml.

InterCAX - Solvea (2011). "Solvea
TM

 - SysML Parametric Solver and Integrator for

MagicDraw." Retrieved Mar 28, 2011, from www.intercax.com/solvea.

Microsoft (2010). "PowerPoint." Retrieved Oct 24, 2010, from http://office.microsoft.com/en-

us/powerpoint/.

Microsoft (2010). "Visio." Retrieved Oct 24, 2010, from http://office.microsoft.com/en-us/visio/.

No Magic (2010). "MagicDraw SysML modeling tool, version 16.9." Retrieved Oct 24, 2010,

from http://www.magicdraw.com/sysml.

Object Management Group (2010). "Systems Modeling Language." Retrieved Oct 24, 2010, from

http://www.omgsysml.org

Biography

Manas Bajaj, PhD is the Chief Systems Officer at InterCAX (www.InterCAX.com). He has successfully

led several government and industry-sponsored projects, including prestigious SBIR awards from NIST

and NASA. Dr. Bajaj’s research interests are in the realm of SysML and model-based systems

engineering (MBSE), computer-aided design and engineering (CAD/CAE), advanced modeling and

simulation methods, and open standards for product and systems lifecycle management (PLM/SLM). He

is the originator of the Knowledge Composition Methodology for simulation-based design of complex

variable topology systems. At INCOSE, he is a core team member of three MBSE Challenge Teams –

Space Systems, Modeling and Simulation, and Smart Grid. He has authored several publications and won

best paper awards. Dr. Bajaj earned his PhD (2008) and MS (2003) in Mechanical Engineering from the

Georgia Institute of Technology, and B.Tech. (2001) in Ocean Engineering and Naval Architecture from

the Indian Institute of Technology (IIT), Kharagpur, India. He has been actively involved in the

development, implementation, and deployment of the OMG SysML standard and the ISO STEP AP210

standard for electronics. He is a Content Developer (author) for the OMG Certified Systems Modeling

Professional (OCSMP) certification program, and coaches organizations on SysML and MBSE. Dr. Bajaj

is a member of INCOSE and a contributor in OMG and PDES Inc. working groups.

Andrew Scott is a research engineer at InterCAX LLC. He is an experienced SysML modeler and

software developer. Mr. Scott earned his B.S. in Mechanical Engineering at Georgia Institute of

Technology.

http://www.intercax.com/sysml
http://www.magicdraw.com/paramagic
http://www.atego.com/products/artisan-studio-parasolver/
http://www.intercax.com/sysml
http://www.intercax.com/sysml
http://www.intercax.com/solvea
http://office.microsoft.com/en-us/powerpoint/
http://office.microsoft.com/en-us/powerpoint/
http://office.microsoft.com/en-us/visio/
http://www.magicdraw.com/sysml
http://www.intercax.com/

17

Dirk Zwemer, PhD is President and CEO of InterCAX (www.InterCAX.com). Dr. Zwemer has over

thirty years experience in the electronics industry with Bell Labs, Exxon, ITT, SRI Consulting and other

organizations. He is the author of three patents and multiple technical papers, trade journal articles, and

market research reports. Prior to joining InterCAX, he held positions as VP Technology, VP Operations,

and President of AkroMetrix LLC, a leader in mechanical test equipment and services for the global

electronics industry, where he was actively engaged in market channel development, advertising and

tradeshows, and licensing. He received a PhD in Chemical Physics from UC Berkeley and an MBA from

Santa Clara University. Dr. Zwemer provides strategic consulting for customers and shows how to apply

SysML in a wide variety of domains. He is certified systems modeling professional (OCSMP Model

Builder Advanced) and a member of the Smart Grid Challenge Team within the INCOSE MBSE

Initiative.

Russell Peak, PhD is a Senior Researcher at the Georgia Institute of Technology where he serves as

Director of the Modeling & Simulation Lab (www.msl.gatech.edu) and Associate Director of the Model-

Based Systems Engineering Center (MBSE-C) (www.mbse.gatech.edu). Dr. Peak specializes in

knowledge-based methods for modeling & simulation, standards-based product lifecycle management

(PLM) frameworks, and knowledge representations that enable complex system interoperability. Dr. Peak

originated the multi-representation architecture (MRA)—a collection of patterns for CAD-CAE

interoperability—and composable objects (COBs)—a non-causal object-oriented knowledge

representation. Dr. Peak leads the INCOSE MBSE Challenge Team for Modeling & Simulation

Interoperability
†
 with applications to mechatronics (including mobile robotics testbeds) as a

representative complex systems domain. He is a Content Developer (author) for the OMG Certified

Systems Modeling Professional (OCSMP) program, and coaches organizations on SysML and MBSE. Dr.

Peak earned his Ph.D., M.S., and B.S. in Mechanical Engineering from Georgia Institute of Technology.

Douglas Deming, Gregory Wickstrom, and Mark De Spain (retired) are system engineers at

Sandia National Laboratories, Albuquerque NM.

† http://www.omgwiki.org/MBSE/doku.php?id=mbse:modsim

http://www.intercax.com/
http://www.msl.gatech.edu/
http://www.mbse.gatech.edu/
http://www.omgwiki.org/MBSE/doku.php?id=mbse:modsim

