
26th Annual INCOSE International Symposium (IS 2016)
Edinburgh, Scotland, UK, July 18-21, 2016

A Representative Application of a Layered
Interface Modeling Pattern

Peter M. Shames
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91009

+1 818-354-5740
Peter.M.Shames@jpl.nasa.gov

Marc A. Sarrel
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91009

+1 818-393-7786
Marc.A.Sarrel@jpl.nasa.gov

Sanford Friedenthal
SAF Consulting

Affiliate, Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91009

Sanford.Friedenthal@gmail.com
Copyright 2016 California Institute of Technology. Permission granted to INCOSE to publish and use.

Abstract. Model-based systems engineering (MBSE) is intended to improve how systems
engineering is performed compared with a more traditional document-based approach by
effectively using models to analyze, specify, design, and verify systems. The OMG Systems
Modeling Language (OMG SysML™) enables the practice of MBSE by providing a robust
and expressive language for representing systems.

Several MBSE methods are available [3], and have continued to mature over the last several
years which include model-based practices for requirements flow-down, architecture-design,
trade-off analysis, verification planning, and others. One of the critical systems engineering
practices is interface modeling. This paper describes a layered interface pattern for modeling
data and communications interfaces using SysML. The pattern spans logical to physical
interface definition, and includes software and electrical interfaces.

Each layer in a stack describes a portion of the interface functionality. The concept of a
layered interface is borrowed from computer networking [8] [10]. The layered interface
pattern described in this paper enables the specification and design of connections and
behavior between interfacing systems at a given layer, and between the adjacent layers of a
single system. This pattern may also be applied recursively. That is, communication within a
single layer may itself be realized by a multi-layer stack. The level of detail of the model to
describe a layered interface should be adapted to the need, and can vary from highly abstract
logical flows across a system to highly detailed protocol specifications and message
structures.

This paper builds on work that was documented in a previous paper entitled "A modeling
pattern for layered system interfaces" [5]. Aspects of this pattern have been demonstrated in
various project applications including Exploration Flight Test 1 (EFT-1), Space
Communication and Navigation (SCaN) Trade Studies, and the SCaN Network Integration
Project (SNIP).

Introduction
This paper is organized into six sections. The Introduction, section 1, describes some of the
challenges associated with interface specification and design. This section then introduces
some basic definitions and concepts that the layered interface pattern uses and provides a
simple example. It concludes with a brief overview of SysML.

The System Example, section 2, uses a spacecraft example to describe a logical data flow
through a system, and how data interface requirements can be specified and allocated to
various parts of a system.

The Interface Realization, section 3, describes how a particular interface from the spacecraft
example can be realized by a layered protocol stack that converts the data contained in
communication packets to electrical signals on a physical connector, which are exchanged
through a physical medium. The modeling pattern defines each vertical layer of the stack, the
data structure that is transformed from one vertical layer to the next, the behavior
specification for an example layer, and the interaction between peer layers at each side of the
interface. The sections ends with an example of how to show compliance with a standard that
defines a protocol.

Related Work, section 4, discusses some related work. Applications, section 5, then discusses
how this pattern can be applied more generally to other types of interfaces, and finishes with
the Summary, section 6.

This pattern is capable of representing multi-layer interfaces at varying levels of detail. The
level of detail should be adapted to the need. Sometimes, only abstract end to end flows may
be appropriate to describe the interfaces. In other cases, the level of detail may include some
combination of detailed message structure, pin to pin connection, and protocol behavior
specification. This is often dependent on the phase of development, and whether the interface
is using well understood interface standards or new or modified interfaces are being
developed.

The Interface Challenge
Well-defined interfaces are essential to specify how a system can interact with the external
world, and how the system elements can interact to achieve the objectives of the whole
system. Specifying and designing interfaces is a critical and challenging aspect of systems
engineering due to the number of interfaces, diversity of interfaces, and the inherent
complexity of individual interfaces. For example, electrical harnesses can contain thousands
of wires and connectors and perhaps millions of messages. Many system failures have been
attributed to inadequate interface specification and design. [20]

A typical system, subsystem, and component interface is often specified in an interface
requirements document (IRD) or similar document. An example of a partial table of contents
from a NASA interface control document for a C-9B aircraft in support of the Reduced
Gravity Program [4] is included in Figure 1.

This interface control document includes many different types of interfaces including
electrical power, high-pressure gas, cabin environment, display interfaces, physical
dimensions, and others. These interfaces are realized by many different engineering
disciplines using many different technologies. A systems engineer must be able to specify,

analyze, and verify interfaces that span the
various engineering disciplines and technologies
to ensure the elements of the system can work
together to achieve the system requirements.

Interface specification and design is not only
complex because of the number of interfaces and
the many different kinds of interfaces, but any
given interface can be complex in its own right.
For example, the interface for a “simple” USB
device is defined by the Universal Serial Bus
revision 2 (USB 2) specification [6] that is 650
pages long, and includes specification of the data
flow model, mechanical and electrical interface,
and protocol layer.

A model-based approach provides an opportunity
to address the challenges of specifying, analyzing,
designing, and verifying interfaces over a more
traditional document based approach by
enhancing consistency, precision, traceability,
conformance to standards, reuse, and managing
the inherent complexity of interfaces.

Definitions and Concepts
The following definition of interface is from the Glossary of Terms in the Guide to the
Systems Engineering Body of Knowledge [7].

Interface:

1. A shared boundary between two functional units, defined by various characteristics
pertaining to the functions, physical signal exchanges, and other characteristics.
(ISO/IEC 1993)
2. A hardware or software component that connects two or more other components for the
purpose of passing information from one to the other. (ISO/IEC 1993)
3. To connect two or more components for the purpose of passing information from one to
the other. (ISO/IEC/IEEE 2009)

The first definition is the most general of the three definitions above because it does not limit
interface to the exchange of information. An interface provides the means for systems and
system elements to interact, which may include the exchange of information, material, forces,
and energy. To specify an interface, one must specify the connection points on the
components (i.e. ports) on either side of the interface, the items that are exchanged, the
constraints and/or rules that govern the exchange, and the medium for the exchange (i.e.,
link). An interface definition sometimes refers to one side of an exchange, but more generally
refers to both sides of the exchange and the exchange medium. The system, subsystem or
other system element (e.g. component) behaviors realize the interface to achieve the
exchange. These interface concepts are illustrated in Figure 2.

This paper also uses the term protocol, where a protocol at layer (N) can be defined as a set
of rules and formats (semantic and syntactic) which determines the communication behavior

1.0 INTRODUCTION
1.1 Purpose
1.2 Scope
2.0 FACILITIES PROVIDED
2.1 Aircraft
2.1.1 Cabin Environment
2.1.2 Cabin Dimensions
2.1.3 Cabin Provisions
2.1.4 Electrical Power and Interface
2.1.5 Aircraft Lighting
2.1.6 High Pressure Gas System
2.1.7 Overboard Vent System
2.1.8 Aircraft G-Load Display
2.1.9 Accelerometer Signal
2.1.10 On-Board Tools
2.1.11 On-Board Storage Containers

Figure 1. Partial Table of Contents
for a NASA Interface Control
Document [4]

of (N)-entities in the performance of (N)-functions. [10] The protocol would be most strongly
reflected in the Behavior and the Constraint.

Simple Example of a Layered Interface
Figure 3, shows a set of components: a USB digital audio interface between an Audio Player
component such as a CD player, an Amplifier component that amplifies the audio electrical
signals and converts the digital signal to an analog signal, and a Speaker that converts the
analog audio electrical signals to acoustic waves (sound). Each of these interfaces is shown
with their protocol stack.

The ability to describe interfaces at different levels of abstraction is essential to address
interface complexity. An interface layer1 is an abstraction approach to help deal with this
complexity where each interface layer provides specific functionality associated with the
interface. A Protocol Stack is a set of layers that transforms items to enable their exchange,
such as for purposes of communication.

A fundamental principle of an interface layer is that the layer below is independent of the
layer above. Consider the connection between the Audio Player and the Amplifier for the
USB Digital Audio I/F layer. That layer encodes the digital audio with a certain number of
bits per sample, samples per second, number of channels (mono or stereo), etc. The USB
Protocol I/F layer below does not know or care about those details. The USB Digital Audio
I/F layer will impose quality-of-service constraints on the USB Protocol I/F layer, in

1NOTE: The terminology that is used for interface layer is adopted from the ISO/IEC Basic Reference Model (ISO BRM), reference [16] as
included below:
5.2.1.2 (N)-layer: A subdivision of the OSI architecture, constituted by subsystems of the same rank (N).
5.2.1.9 (N)-protocol: A set of rules and formats (semantic and syntactic) which determines the communication behavior of (N)-entities in1
the performance of (N)-functions.

Interface Concepts
Interface Between Components

Port LinkComponent Exchanged
Item

ConstraintBehavior

presents connects [2]

ha
s

flows over

go
ve

rn
s

ex
ec

ut
es

pr
od

uc
es

co
ns

um
es

Figure 2. Interface Concepts

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip Audio Context Mar 12, 2016 2:51:27 PM

Audio Context

Speaker

 : Acoustic
Audio
Stack

 : Acoustic
Audio Physical

I/F (air)

 : Acoustic
Audio Sound

Waves I/F

 : Analog
Audio
Stack

 : Analog Audio
Electrical Signal

I/F

 : Analog Audio
Physical I/F

Audio Player

 : USB
Audio
Stack

 : USB Digital Audio I/F

 : USB Physical I/F

 : USB Protocol I/F

 : USB Link I/F

Listener

 : Acoustic
Audio
Stack

 : Acoustic
Audio Sound

Waves I/F

 : Acoustic
Audio Physical

I/F (air)

Amplifier

 : USB
Audio
Stack

 : USB Digital Audio I/F

 : USB Physical I/F

 : USB Protocol I/F

 : USB Link I/F

 : Analog
Audio
Stack

 : Analog Audio
Electrical Signal

I/F

 : Analog Audio
Physical I/F

Digital Audio Acoustic AudioAnalog Audio

Figure 3: Example of Audio System interfaces

particular constraints related to isochrony, minimum throughput constraints, and other
constraints. But, the content and format of the audio data is opaque to the USB Protocol I/F
layer.

Each of the four layers of the Audio Player and the Amplifier USB Audio Stack performs an
orthogonal part of the functions needed to transfer the Digital Audio data. For example, the
USB Digital Audio I/F layer is responsible for encoding the audio. The USB Protocol I/F
layer is responsible for complete and isochronous delivery of the data. The USB Protocol I/F
layer may simultaneously handle types of data other than Digital Audio from different higher
level protocols. These top two layers do not allow the presence of intermediate systems
between the Audio Player and the Amplifier. The lower two layers, however, would allow
such systems. The USB Link I/F layer transmits data between one USB device and another,
but with no regard for retransmission or completeness. It may allow intermediate devices like
USB hubs. But, those hubs are transparent to the upper two layers. The USB Physical I/F
layer is concerned simply with the cable. It may allow intermediate systems like USB
extension cords that are not visible to the upper layers.

In this example the Audio Player can handle stored audio data in several formats, for example
audio CDs, .mp3 files and .wav files. The format in which the audio data is stored, however,
is not relevant to the format in which it is transmitted. In each case, the Audio Player
transforms the audio from the original storage format into the USB Digital Audio format for
transmission.

An interface view is another abstraction approach to deal with interface complexity. For
example, in the digital audio interface above, noise immunity and component proximity may
be important concerns for the design of this interface, which can drive specific design choices.
The separation between the Audio Player and the Amplifier that is tens of meters instead of
1-2 meters may require a different interface design using a digital audio TOS link fiber optic
cable instead of USB. The design decisions must be considered from the perspective of
different stakeholder viewpoints that may include different engineering disciplines such as
electrical, mechanical, and software perspectives. An interface view presents the interface
information that addresses a particular stakeholder viewpoint.

In this paper, we present a modeling pattern that applies to data and communication
interfaces that includes logical interfaces, software interfaces, signal interfaces, and physical
connections. Although this is applied to communication interfaces in this paper, the pattern
can be applied to other kinds of interfaces as well.

Describing the layered interface modeling pattern using SysML is the subject of this paper.
However, the pattern reflects layered interface concepts that are well established and have
been applied many times to data and communications interfaces. These include the ISO Basic
Reference Model [10] and the Reference Architecture for Space Data Systems (RASDS) [14],
and the entire Internet protocol suite. RASDS is particularly relevant for the primary
spacecraft example used in this paper.

RASDS defines five architectural viewpoints. Three of the RASDS viewpoints are related to
the layered interface concept. The Connectivity view shows the lowest physical layer
physical view of the nodes and links in the system over which data is routed. The
Communications view shows in detail the protocol stacks in detail that perform data
communication over the physical medium. The Information view shows the details of how
data is packaged. Multiple system views modeled from these viewpoints provide the overall
description of the system components, their communications, and behaviors.

SysML Overview
SysML is a general purpose modeling language for modeling systems and their environment
that may include hardware, software, data, people, facilities, and natural objects. The
language is often characterized in terms of four pillars as indicated in Figure 4 that represent
the system requirements, structure, behavior, and parametrics.

The four pillars of the language include the capability to represent:

• Structure: Structural composition, interconnection, and classification
• Behavior: Function-based, message-based, and state-based behavior
• Parametrics: Constraints on the physical and performance properties
• Requirements: Requirements and relationship to other requirements, design, analysis,

and test cases

SysML includes the nine kinds of diagrams. The diagrams provide pre-defined ways to
present the design of a system in terms of the four pillars and the associated capabilities
described above. A major advantage of this modeling approach is that the model of a system
contains model elements that are defined once in the model, but can appear on zero, one, or
many diagrams. This provides a flexible means to present multiple views of the same system
that are self consistent.

Many of these diagram types are used to reflect specific requirements, design, and
implementation views of the system in alignment with ISO 42010 [13] and RASDS [14].
Detailed information on SysML can be found in several books on this topic including 'A
Practical Guide to SysML' [2].

System Example
In this section, a simplified Spacecraft and Ground System end-to-end system design example
is introduced to provide the context for the layered interface modeling pattern. A critical

Figure 4. Four Pillars of SysML
From 'A Practical Guide to SysML, 3rd Edition' (Figure 2.1)

Copyright © 2015, 2012, 2009 Elsevier Inc. All rights reserved.

system interface requirement is specified, along with some of the considerations for
allocating this requirement to other subsystem interfaces. In Section 3, the layered interface
modeling pattern is applied to a particular subsystem interface from this example, and is
described in more detail. Model elements that are referenced in the text are shown in italics.

End-to-End System Design
An end-to-end view of the Spacecraft and Ground System example is shown in Figure 5. The
overall system function is to provide the observed Temperature Data of the Thermal Sources
to the User. The Spacecraft transforms Thermal Emissions from the Thermal Sources into RF
Signals that are transmitted to the Ground System, and the Ground System transforms the RF
Signals to Temperature Data which is provided to the User.

Specifically, the observed Thermal Sources on the Earth’s surface emit Thermal Emissions,
which propagate through the Earth's Atmosphere. The Spacecraft Payload includes a Sensor
that senses the Thermal Emissions. The Sensor Signal is processed by an On-board Computer
in the Avionics Subsystem and converted to Thermal Packets. The Telecom Subsystem
transforms the incoming Thermal Packets into space data link units, modulates the data, and
transmits RF Signals through the Earth's Atmosphere to the Ground System. The Ground
System Receiver Subsystem receives and demodulates the RF Signal, processes the space data
link units, and extracts the Thermal Packets. The Thermal Packets are processed by the
Ground Computer to derive the Temperature Data that can be stored as text files, MPEG
videos, or other file formats. This data is also transformed to Digital Video to send to the
Display, which is presented to the User.

System Data Interface Requirements and Allocation Approach
The basic top-level requirement for the end-to-end system as noted in the previous section is
to provide Temperature Data of the Thermal Sources to the User. The Temperature Data
provided to the User should be specified as an interface requirement for the end-to-end
system. The Temperature Data is a logical abstraction of the physical signals provided
directly to the User, which in this example, are photons emitted from the Display. The
interface requirement should specify the temperature of the Thermal Source in units, such as

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-13/Ports & Flows 2016-03-13.mdzip Mission Context-Logical Mar 13, 2016 3:41:57 PM

Mission Context-Logical

«Subsystem»
 : Ground Computer

«Subsystem»
 : Ground Station

«Subsystem»
 : Display

«System»
 : Ground System

«Subsystem»
 : Avionics Subsystem

«Subsystem»
 : Telecom Subsystem

«Subsystem»
 : Payload

«System»
 : Spacecraft-Physical

temperature

«External»
 : Thermal Source

«External»
 : Atmosphere

«External»
 : Atmosphere

«External»
 : User

Temperature
 Data

Thermal
Packet

Digital
Video

Thermal
Packet

Dgital
Stream

rf1 : Radiated
RF Signal

t2 : Thermal
Emissions

rf2 : Radiated
RF Signal

t1 : Thermal
Emissions

Figure 5: Example End-to-End View of Spacecraft and Ground System

degrees Celsius, and include the estimated time when the temperature was measured. There
are many derived requirements to achieve the desired measurement quality and satisfy the
user need including requirements related to sample rate, latency, range, accuracy, precision,
reliability, and security. The requirement for this example may be stated as: The end to end
system shall provide estimated Temperature Data in degrees Celsius of the thermal sources
located within the specified coverage area to the Users at the XYZ Facility every 4 hours with
an accuracy of 1 °C over a temperature range from 0 °C to 300 °C.

The data interface requirements must be satisfied by the end-to-end system. This in turn
imposes requirements on all the system elements and associated interfaces that contribute to
the end-to-end data flow. Latency is allocated to each system element in the data flow path.
For example, accuracy may drive sensor resolution requirements. Precision and range
requirements may drive the number of bits to be transmitted. The coverage area, accuracy,
precision, and range requirement may drive the amount of data to be collected and
transmitted, and the associated storage and downlink data rates. Reliability may drive
selection of the communication protocols and the associated packet loss rate. Security
confidentiality, integrity and availability may drive the need for encryption, access control,
and firewalls.

Requirements are allocated to the system elements and their interfaces as the design process
progresses. This process includes several design and implementation choices such as whether
hardware or firmware is required to meet the performance goals, or does software suffice;
and whether coax cables are sufficiently noise free or must fiber optics be used.

Interface Realization
The previous section introduced the end-to-end spacecraft system that is used as an example
to illustrate the application of the layered interface modeling pattern. This system includes
several components, both in the Spacecraft and the Ground System as shown in Figure 5. The
process for moving from requirements to realization at each level of design involves further
decomposing the system and its elements, defining the interfaces between them, and
allocating the requirements to the next lower level elements. In order to ensure the system
satisfies its requirements, the characteristics of the elements and their interfaces must be
specified, designed, and verified.

In this section, the layered interface modeling pattern is applied to the On-board Avionics
Subsystem and Telecom Subsystem interfaces shown in Figure 6. In this figure, the subsystem
interfaces are shown as a single Packet Port that are connected by a connector that supports
the exchange of Thermal Packets. The tilde symbol (~) on the Packet Port of the Telecom

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-13/Ports & Flows 2016-03-13.mdzip Black Box Mar 13, 2016 6:00:53 PM

Black Box[]

«Software»
 : Communication SW

 : ~Packet Port

«Component»
 : Transceiver-S

 : ~Packet Port

«Subsystem»
 : Telecom Subsystem

 : ~Packet Port

«Software»
 : C&DH SW

 : Packet Port

«Component»
 : On-board Computer

 : Packet Port

«Subsystem»
 : Avionics Subsystem

 : Packet Port

«System»
 : Spacecraft-Physical

Thermal
Packet

Figure 6: Overview of Component Interface (Black Box)

Subsystem indicates the port is conjugated to enable the flow direction to be reversed from
out to in. Note that the subsystem ports are also connected to the ports on its internal
components. This enables the subsystem interface to be specified as a black box that is
realized by its internal components. As in the earlier example of the Audio Player to
Amplifier interface in Figure 3, there may be several ways to realize this interface, which
may have very different performance and behavioral characteristics. Furthermore,
system-wide design decisions may constrain these choices.

Stack Definition
To fully specify the interfaces on a component, the protocol elements that make up the
“stack” must be defined. Figure 7 shows the Avionics and Communication components from
Figure 6 and defines the protocol stack for the Packet Ports on the two components. In more
traditional spacecraft, this protocol stack might use MIL Std1553, LVDS, or even Spacewire.
This example assumes the use of TCP/IP on-board to network together the sub-systems, and
uses 1 Gigabit Ethernet and RJ-45 plugs. Although this sort of physical layer is not a typical
spacecraft deployment, it is used for illustration purposes because it may be more familiar to
many readers.

The top level flow is still shown as Thermal Packet, but now the layers of the protocol stack
are defined, and each layer has the «Protocol Entity» stereotype applied. The stack consists of
the following:

1. Application protocol layer: packet transfer protocol, manages exchange of packet data
between applications.

2. Transport layer: Transmission Control Protocol (TCP), provides end-to-end, once
only, in order, complete delivery of data.

3. Network layer: Internet Protocol (IP), provides network layer routing over any
number of intermediate network nodes.

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-13/Ports & Flows 2016-03-13.mdzip White Box Mar 13, 2016 6:02:05 PM

White Box[]

«Application»
 : Packet Processor

 : Packet Port

«Software»
 : C&DH SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : Packet Port

«Component»
 : On-board Computer

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«Hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted
Pair I/F

 : 1GbE I/F

 : Packet Port

«Subsystem»
 : Avionics Subsystem

 : Packet Port

«Application»
 : Packet to Frame Processor

 : ~Packet Port

«Software»
 : Communication SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : ~Packet Port

«Component»
 : Transceiver-S

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«Hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted
Pair I/F

 : 1GbE I/F

 : ~Packet Port

«Subsystem»
 : Telecom Subsystem

 : ~Packet Port

«System»
 : Spacecraft-Physical

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

Space Packet

«PDU Link»

«PDU Link»

«PDU Link»

«Hardware»

«PDU Link»

«PDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«Hardware»

«SDU Link»

Thermal
Packet

Figure 7. Protocol Stacks Inside Component Interface (White Box)

4. Data link layer: 1 Gb Ethernet, provides data link layer services that may involve a
fabric of switches and hubs.

5. Physical layer: twisted pair cable (Cat-5) and RJ-45 plug terminations.

The application above the protocol stack is responsible for processing the contents of the
packets, and the protocol stack is responsible for transferring the packets. The top three
protocol layers are responsible for the encoding and transfer of the data and are implemented
in software. The bottom two layers are responsible for the physical and electrical connection,
and are implemented in the computer.

The type of data flowing between the On-board Computer and the Transceiver-S in Figure 7
is Thermal Packets. That is, packets that contain the thermal measurements of interest. Stack
X however, can accommodate any kind of Space Packet, including Thermal Packets. Thermal
packets are, in the model, a specialization of Space Packets, see Figure 10. It’s not shown in
Figure 7 but many types of packets are routed through the same Stack X, not just Thermal
Packets. This is an example of how the modeling can support re-use of the interface.

The data flows down the stack on one side and up the stack on the other. A protocol entity
performs the appropriate behavior to support the transformation and exchange of data at that
layer. Each layer is typically described by a single protocol specification that defines the
behavior for that layer. Service Units (SDU's) are input to each layer from the layer above or
below. The protocol behavior for a particular layer transforms its input SDU to an output
SDU.

A protocol entity also interacts with its peer-level protocol entity at the same layer on the
other side of the interface by exchanging Protocol Data Units (PDU's). The protocol behavior
also specifies the transformation of the input SDU to an output PDU. The protocol entities
are shown with dashed lines, which indicates that the protocol entities can be implemented
elsewhere within the system.

Figure 8 extends concepts from our previous paper [5]. The figure shows elements of the
protocol stack defined with stereotypes in a SysML profile that are used in the examples in
this paper.

• A Component contains other Components, Protocol Entities and hosts Applications.
• Components perform Behavior.
• There are three types of Ports, Required I/F and Provided I/F (for SDU) and PDU I/F.
• SDU Links connect Provided I/F and Required I/F.
• PDU Links connect PDU I/Fs. Finally, PDU Data flows over PDU Links.
• Constraints govern PDU Links and SDU Links.

Each port on a system component has an interface binding signature that describes each layer
of the protocol stack that interfaces with the peer interfacing component. Depending upon the
nature of the component, the interface binding signature may have multiple layers, each with
its own internal protocol stack, but there is always a physical layer and a link layer for
communications. And, in some circumstances such as space communication, there may also
be sub-layers. For example, in the Consultative Committee for Space Data Systems (CCSDS),
the link layer is defined to include both data link and error encoding, and the physical layer is
defined to include modulation and free space radiation.

Specifying subsystem and component interfaces by their interface binding signatures allows
the design more flexibility. As technology evolves, the component design may also evolve

from a set of elements built from discrete components to elements based upon FPGA
firmware, to a single integrated package of software running on a high performance COTS
CPU.

There are two related, but somewhat disjoint statements about how protocol stacks operate:

1. The behavior of each protocol entity is carefully specified at each layer by describing
how the two peer protocol entities in each interfacing component behave. This
involves careful definition of the PDUs and behaviors within the layer.

2. The data does not flow directly between peer entities; it actually flows down one
stack, across the physical connection, and up the other stack. The SDU interfaces
between layered protocol entities are only abstractly defined.

One consequence of this approach is that the implementation details in two connected, but
interoperable, components that share an interface may be entirely different. They may use
different languages, run on different operating systems, and even allocate functionality very
differently. However, they will interoperate as long as the protocol specifications are
implemented faithfully.

The functions at each layer may be implemented in one component or they may be allocated
to different components, depending on design choices. For example, in many space systems,
the RF, modulation, encoding, and data link functions may be allocated to separate

components. The Transceiver shown in Figure 7 includes
link layer, encoding and modulation functions. However,
the Transceiver can be implemented as three separate
components, a link layer processor, an encoder, and a
modulator. In this case, each of these sub-components also
have their own top level interfaces, passing application
data, data link frames, and encoded data blocks. In a
recursive fashion, the interfaces themselves each have an
interface binding signature that typically include one or
more layers.

Each of the protocol entities in the stack may be left as
abstract or further elaborated, as needed. The interface
between IP and the 1 gigabit Ethernet data link may be
important to define, along with the CSMA/CD behavior.
The RJ45 plug and Cat5e Ethernet cable may be
elaborated to show its electrical pin out as shown in
Figure 9. The plug specification may include electrical

Interface Concepts
Interface Between Components

Protocol Stack Concepts

Port LinkComponent Exchanged
Item

ConstraintBehavior

PDU I/FProtocol
Entity ApplicationComponent Provided I/FRequired I/F PDU LinkSDU Link

Over

SDU DataPDU Data

ha
s

ho
st

s

presents

pr
es

en
ts

pr
es

en
ts

pr
es

en
ts

pr
es

en
ts

connects [2]

co
nn

ec
ts

co
nn

ec
ts

co
nn

ec
ts

jo
in

s

ha
s

flows over

flo
ws

 o
ve

r

flo
ws

 o
ve

r

go
ve

rn
s

ex
ec

ut
es

Interface
Medium

pr
od

uc
es

co
ns

um
es

Figure 8. Concrete Protocol Stack Interface Concepts

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-13/Ports & Flows 2016-03-13.mdzip RJ45 Description Mar 13, 2016 4:29:25 PM

RJ45 Description

«Hardware»
RJ45 Plug

«PDU I/F»
 : Twisted Pair I/F

pin 3 DB+ white/orange

pin 7 DD+ white/brown

pin 1 DA+ white/green

pin 2 DA- green

pin 4 DC+ blue

pin 5 DC- white/blue

pin 6 DB- orange

pin 8 DD- brown

Figure 9. RJ45 Pinout

and mechanical properties, such as impedance. Each pin can be specified individually, with
whatever additional information is needed.

Packet Data Structures
The data objects that are exchanged (i.e. data flows) must have a well defined data structure
down to the octet and bit level, and have well defined relationship with other data objects.
The data structure definitions are constructed using defined building blocks. All data
structures, including PDUs and SDUs at each layer, must be defined in unambiguous terms to
ensure interoperable exchange of information between applications. Figure 10 shows the data
structure definition for a CCSDS Space Packet [16], which is the highest-level data structure
for Stack X shown in Figure 7. It also shows the Thermal Packet that flows on Figure 7. The
Thermal Packet is contained in the CCSDS Space Packet. This Packet Data structure may be
used to carry many different types of application data, and it may also carry application layer
signal information as well as provide limited functions for data assembly and/or
fragmentation.

The application data at the packet transfer layer may have explicit structure known to the
application, but that data is treated as bits that are only meaningful to the layer above. The
data structure in this example is the Space Packet, which is defined as a data structure with
two parts, the Packet Primary Header and the Packet Data Field. Both of these are defined in
a way that promotes re-use. The example shows the specialization of Packet Data to carry
typical thermal data in the Thermal Packet, redefining the generic Packet Data as Thermal
Packet Data Field that specifies the structure of the specific application data. Other packet
data types may be specified in a similar way.

Protocol Entity Behavior
Accurately characterizing the behavior and performance of each interface requires an
understanding of the protocol stack, and understanding the stack requires an understanding of
the behavior of the protocol entities at each layer. This section and the next provide a method
for describing that behavior.

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip Packets Mar 12, 2016 3:08:05 PM

Packets

constraints
{packet primary header.packet identification.application process identifier = 0x37}
{packet primary header.packet identification.secondary header flag = 0b1}
{packet primary header.packet identification.packet type = 0b0}

parts
packet data field : Thermal Packet Data Field [1]{redefines packet data field}

«PDU Data»
Thermal Packet

parts
packet timestamp : octet [6]{subsets packet secondary header}
telemetry packet type : octet [1]{subsets packet secondary header}
timestamp : octet [3]{subsets user data field}
temperature : octet [2]{subsets user data field}

«block»
Thermal Packet Data Field

parts
packet version number : bit [3]
packet identification : Packet Identification [1]
packet sequence control : Packet Sequence Control [1]
packet data length : octet [2]

constraints
{packet version number = 0b000}

«block»
Packet Primary Header

parts
packet primary header : Packet Primary Header [1]
packet data field : Packet Data Field [1]

«PDU Data»
Space Packet

parts
packet type : bit [1]
secondary header flag : bit [1]
application process identifier : bit [11]

«block»
Packet Identification

constraints
{size(packet secondary header) +
size(user data field)
>= 1 octet}
{size(packet secondary header) +
size(user data field)
<= 65536 octets}

parts
packet secondary header : octet [0..*]
user data field : octet [0..*]

«block»
Packet Data Field

parts
sequence flags : bit [2]
packet sequence count : bit [14]

«block»
Packet Sequence Control

«Specification»
RFC 793

«block»
Temperature

parts
bits : bit [8]

«block»
octet

«block»
bit

«allocate»

«satisfy»

Figure 10. Packet Data Structure definition

Within the stack, the SDU at each layer (N) is a sequence of octets that is provided by the
upper layer (N+1) transformed by the (N) layer protocol and then passed to the lower layer
(N-1). It is a function of the upper layer to send the SDU in a form that is acceptable to the
(N) layer service interface. The (N) layer may transform that SDU in a variety of ways,
including cutting it into smaller pieces, aggregating it into larger units, or performing a
transformation to encode or encrypt the SDU. It is a function of the (N) layer to send the (N)
SDU it constructs to the (N-1) layer service interface in a form that is acceptable to that layer.

Figure 11 shows one of the protocol entities, the Transmission Control Protocol (TCP), that is
part of the stack in Figure 7. The TCP protocol entity has ports like the other protocol stack
elements. Each protocol entity has three ports, the interface that provide services to the upper
(N+1) layer, the interface that requires services of the lower (N-1) layer, and the interface
with the peer protocol entity at the same layer:

1. Provided service port: the services offered to any upper layer (N+1) protocol, defined
as an abstract service and using a layer N Service Data Unit (SDU)

2. Required service port: the services required from any lower layer (N-1) protocol,
defined as an abstract service and using a layer N-1 Service Data Unit (SDU)

3. Peer protocol port: the port that enables the protocol entity to interact with its peer
entity at the same layer, defined by the protocol specification and using the layer N
Protocol Data Units (PDU)

There may also be a separate control or management
interface within the protocol, or via a separate port on
the component.

The provided service interface accepts layer (N) Service
Data Units (SDU) from the upper (N+1) layer, and it is
the upper layer entity’s job to match the implementation
characteristics of the layer (N) provided interface.
Similarly, the interface to the lower layer (N-1) protocol
entity must provide (N-1) SDUs in the form that entity
expects. Within each protocol entity is a transformation
engine that accepts (N) SDUs, creates (N) PDUs that
contain all or part of each (N) SDU, and then forms
(N-1) SDUs for the lower layer. This sending side
process, of course, works in reverse in the peer protocol
stack on the receiving end.

One (or more) state machines and/or activity diagrams may be used within the protocol
specification to define the protocol entity’s behavior. While some protocol specifications will
contain carefully constructed state machines, or state tables, some of them use English prose
to specify the behavior. The SysML modeling approach used here provides explicit state
machine, sequence, and activity diagrams to describe the behavior.

One or more state machines are needed to describe peer level protocol behavior; and how the
protocol entity responds when PDUs arrive, and what PDUs are sent. This behavior may
involve establishing a connection, authentication, performing mono- or bi- directional data
exchanges, handling reliability & error conditions (re-transmission), sending and responding
to quality of service (QoS) signals, and other behavior. There may also be data
transformation behavior within the protocol entity that can be described using a separate state
machine or functional model (activity diagram). This describes the transformation of (N)

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip Black Box Mar 12, 2016 3:14:10 PM

Protocol Entity

«Protocol Entity»
TCP

«Provided I/F»
 : TCP Provided I/F

«Required I/F»
 : IP Required I/F

«PDU I/F»
 : TCP I/F

Usual TCP Paths

Client

Server

CLOSED

LISTEN

ESTABLISHED

SYN RECEIVED SYN SENT

FIN WAIT 1

FIN WAIT 2

CLOSING

TIME WAIT

CLOSE WAIT

LAST ACK

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYNRST

FIN / ACK

FIN / ACK

ACKACK CLOSE() / FIN

PASSIVE OPEN() CLOSE()

Figure 11. Protocol Entity

(Black Box)

SDUs into (N-1) SDUs, which may require data fragmentation, re-assembly, caching, and
even data transformation to encode or encrypt.

Figure 12 shows the canonical State Machine for TCP connection establishment and tear
down. This diagram combines the state transitions for both the sender and the receiver. Either
TCP entity may send and/or receive. In support of the sender / receiver roles, it is useful to
think of one TCP entity as the server and the other as the client. From this point of view, the
server leaves the Closed state using the blue path, performs a passive open, and enters the
Listen state. When a client is ready to communicate, it exits the Closed state via the red path,
performs an active open, and sends a SYN PDU. The PDU exchanges continue until the
connection is Established, at which point the two peer entities may exchange data in either
direction. The bottom part of Figure 12 describes the process for closing the connection and
returning to the Closed state. A very similar diagram is included in RFC 793 [8] that defines
the TCP protocol.

Figure 13 is a sequence diagram that depicts a part of the PDU interchange between the client
and the server, showing the PDUs sent by the client (TCP 2) in red, and PDUs sent by the
server (TCP 1) in blue. As mentioned, the server does a passive open and the client does an

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip TCP Connection Establishment] Mar 12, 2016 3:20:23 PM

TCP Connection Establishment]

Usual TCP Paths

Client

Server

LAST ACK

SYN RECEIVED

CLOSING

CLOSED

ESTABLISHED

FIN WAIT 1

TIME WAIT

CLOSE WAIT

FIN WAIT 2

LISTEN

SYN SENT

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYNRST

FIN / ACK

FIN / ACK

ACK ACK CLOSE() / FIN

PASSIVE OPEN() CLOSE()

Figure 12. TCP Protocol state machine – connection establishment

active open. The top part of the diagram shows the exchanges to achieve the Established state.
Those on the bottom are the exchanges to return to the Close state.

Much of the behavior of a protocol entity behavior may be captured within the state machines,
but the dynamics of the interactions between the two cooperating state machines can be
further described using a sequence diagram. The sequence diagram can show both the
interchanges of PDUs and also the timing relationships as the protocol entity interacts with its
peer entity at the same level. Particularly for space data link protocols, where there may be
long round trip light time delays (tens of minutes to tens of hours), understanding the timing
dynamics of the protocol becomes very important. One approach to dealing with long delays
is to use a networking approach like Delay/Disruption Tolerant Networking (DTN) that uses
the delay tolerant Bundle Protocol [12] rather than TCP and IP. Understanding the dynamics
of interactions is important when there is a high bandwidth / delay product (> 107 bits).
Sequence diagrams that describe these interactions and timing considerations are useful in
understanding protocol behavior in the face of data errors, data loss, weather based channel
fades, and other conditions.

Once the connection is established, the TCP operates to provide reliable end-to-end exchange
of a stream of bytes, in order, once only, and without omission. That behavior takes place
within the Established state in Figure 12. In RFC 793, this description is many pages of clear,
but rather dense, prose. Specifying this behavior as behavioral models facilitates
understanding, and the translation of this behavior into code. It is even possible to
automatically transform well specified state machines directly into executing code. [17]

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip TCP Connection Establishment Protocol Mar 12, 2016 3:22:50 PM

TCP Connection Establishment Protocol

«interfaceBlock»
TCP 1 : TCP I/F

«interfaceBlock»
TCP 2 : TCP I/F

TCP Established
ref

CLOSE()
comes through
TCP Provided I/F

Reference to the
interaction for
data exchange.

TIMEOUT
happens
internally to TCP
protocol entity

ACTIVE OPEN()
comes through
TCP Provided I/F

CLOSE()
comes through
TCP Provided I/F

PASSIVE OPEN()
comes through
TCP Provided I/F

FIN6:

SYN+ACK2:

ACK5:

ACK3:

SYN1:

ACK7:

FIN4:

Figure 13. TCP Protocol connection establishment sequence diagram

The behavior of TCP to accomplish these reliable exchanges is complex and it must handle
start up, shut down, retransmission, and error cases. It is a testament to the quality of the
original spec that it has persisted in essentially an unchanged form since 1981, leaving aside
extensions like SACK and RENO.

Figure 14 shows the sequence
diagram from Figure 13 which
constrains the interaction between
the client and server, which are
peer-level entities on each side of
the connection.

Figure 15 provides a structured
description of a part of the TCP
Established state behavior. This
describes the behavior of the
sending protocol entity when it
receives SEND Call on its (N+1)
service interface. The behavior is
described using an activity diagram.
The figure re-casts in SysML a
figure from a paper modeling TCP
and the RENO congestion control
extensions using EFSM/SDL [9].
The diagram shows both the
calculations done within the
protocol entity to manage the sliding
acknowledgement window (rounded
ovals) and the protocol behavior to
send a PDU with a segment of data
and with the SND, ACK, and CTL
signal field settings (right facing
arrow).

The defined behavior and PDU
exchanges in each state are defined
in Figure 12. In the cited paper the
full description of the protocol
behavior in EFSM is documented in
many pages.

Compliance with RFC 793
Figure 16 gives an overview of all the elements in the model that must comply with RFC 793.
The same pattern will be found for any other protocol as well. RFC 793 governs the PDU
link at the TCP layer, the two TCP Protocol Entities, the two SDU Links above, and all six
Interfaces to which those links connect. This compliance includes data, structure, connections
and behavior, as illustrated by the state machine, activity and sequence diagrams. Compliance
is shown by the Satisfies notation on the diagram both on the Components (white box) and
the protocol entities (black box).

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip TCP Connector Definition Mar 12, 2016 3:24:35 PM

TCP Connector Definition

«interfaceBlock»
TCP 1 : TCP I/F

«interfaceBlock»
TCP 2 : TCP I/F

TCP Established

ref

PASSIVE OPEN()
comes through
TCP Provided I/F

ACTIVE OPEN()
comes through
TCP Provided I/F

CLOSE()
comes through
TCP Provided I/F

CLOSE()
comes through
TCP Provided I/F TIMEOUT

happens
internally to TCP
protocol entity

Reference to the
interaction for
data exchange.

FIN6:

SYN+ACK2:

ACK5:

ACK3:

SYN1:

ACK7:

FIN4:

«interfaceBlock»
TCP I/F

«interfaceBlock»
TCP I/F

«PDU I/F»
TCP I/F Connector Type

TCP I/F Connector Type

Figure 14. Association block and Sequence

diagram specifying relationship between port
definitions (i.e., types)

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-12/Ports & Flows 2016-03-12.mdzip TCP Send Call processing Mar 12, 2016 3:27:15 PM

TCP Send Call processing

Segment (
SEQ=SND.NXT ,
ACK=RCV.NXT ,

CTL=ACK)

Queue data in
the Send Buffer SND.NXT :=

SND.NXT +
SEG.LEN

Create a new
segment from
the data in the

Send Buffer

CalcRTO (RTO)

SET (RTO,
REXMT)

Send Call

Add data just
sent to the

Rexmt Queue

Wait until enough data has been
accumulated in the buffer before sending
a new segment.

Piggybacked ACK

 [else]

 [else]
 [SND.NXT < (SND.UNA+SND.WND)]

 [Send Buffer has sufficient
data to satisfy a new segment]

Figure 15. TCP Send Call activity diagram

Related Work
This pattern is the result of work performed on several previous tasks at the Jet Propulsion
Laboratory. The pattern was first developed and applied as part of the Space Communication
and Navigation (SCaN) Integrated Network Interface Definition Trade Study and the related
SCaN Network Integration Project (SNIP). It was used to describe and document each of the
standard interfaces to help unify the three separate Earth to Space communications networks
run by NASA. These standard interfaces allowed encapsulation of different implementations,
providing common external interfaces for end users, regardless of which communications
network they chose, and common internal interfaces as integration points. The interface
bindings were described from application layer down to network layer and tied to the
individual protocol layer specifications. This approach provided accurate models of all of the
major external and internal interfaces.

The pattern was also applied to the Ground Data System of the Exploration Flight Test 1
(EFT-1) project. The purpose here was to describe the flow of information across the ground
network supporting the mission. Two levels of abstraction were used. The top layer described
the flow from source to destination in a single step, and the second layer described the
connections between the routers, switches, firewalls and servers. Constraints were added to
describe the path of the first over the second.

There has been other earlier work to model interfaces in SysML, some of which started to
model similar layer interface concepts. Robert Karban developed and applied interface and
protocol stack patterns to model software, electrical, optical, and mechanical interfaces while
at the European Southern Observatory [19]. Mark McKelvin applied layered interface
patterns to electrical interface design [21] [22]. Maddalena Jackson wrote about using a
layered interface concept to describe data flows in support of human space flight.

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-13/Ports & Flows 2016-03-13.mdzip RFC 793 Compliance Mar 13, 2016 4:23:22 PM

RFC 793 Compliance

Segment (
SEQ=SND.NXT ,
ACK=RCV.NXT ,

CTL=ACK)
Send Call

Queue data in
the Send Buffer

Create a new
segment from
the data in the

Send Buffer

SND.NXT :=
SND.NXT +

SEG.LEN

Add data just
sent to the

Rexmt Queue

CalcRTO (RTO)

SET (RTO,
REXMT)Wait until enough data has been

accumulated in the buffer before sending
a new segment.

Piggybacked ACK

 [else]

 [else]
 [SND.NXT < (SND.UNA+SND.WND)]

 [Send Buffer has sufficient
data to satisfy a new segment]

Usual TCP Paths

Client

Server

CLOSED

LISTEN

ESTABLISHED

SYN RECEIVED SYN SENT

FIN WAIT 1

FIN WAIT 2

CLOSING

TIME WAIT

CLOSE WAIT

LAST ACK

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYNRST

FIN / ACK

FIN / ACK

CLOSE() / FINACK ACK

PASSIVE OPEN() CLOSE()

«Protocol Entity»
TCP : TCP

«Provided I/F»
 : TCP Provided I/F

Satisfies = RFC 793

«PDU I/F»
 : TCP I/F

Satisfies = RFC 793

«Protocol Entity»
pkt Xfer : Pkt Xfer

«Required I/F»
 : TCP Required I/F

Satisfies = RFC 793

«Component»
component 1

«PDU I/F»
 : TCP I/F

Satisfies = RFC 793

Segment (
SEQ=SND.NXT ,
ACK=RCV.NXT ,

CTL=ACK)
Send Call

Queue data in
the Send Buffer

Create a new
segment from
the data in the

Send Buffer

SND.NXT :=
SND.NXT +

SEG.LEN

Add data just
sent to the

Rexmt Queue

CalcRTO (RTO)

SET (RTO,
REXMT)Wait until enough data has been

accumulated in the buffer before sending
a new segment.

Piggybacked ACK

 [else]

 [else]
 [SND.NXT < (SND.UNA+SND.WND)]

 [Send Buffer has sufficient
data to satisfy a new segment]

Usual TCP Paths

Client

Server

CLOSED

LISTEN

ESTABLISHED

SYN RECEIVED SYN SENT

FIN WAIT 1

FIN WAIT 2

CLOSING

TIME WAIT

CLOSE WAIT

LAST ACK

after (2MSL)

ACK

SYN / SYN+ACK

CLOSE() / FIN

FIN / ACK

SYN+ACK / ACK

ACTIVE OPEN() / SYN

ACK

CLOSE() / FIN

SYN / SYN+ACK

FIN+ACK / ACK

SEND() / SYNRST

FIN / ACK

FIN / ACK

CLOSE() / FINACK ACK

PASSIVE OPEN() CLOSE()

«Protocol Entity»
TCP : TCP

«Provided I/F»
 : TCP Provided I/F

Satisfies = RFC 793

«PDU I/F»
 : TCP I/F

Satisfies = RFC 793

«Protocol Entity»
pkt Xfer : Pkt Xfer

«Required I/F»
 : TCP Required I/F

Satisfies = RFC 793

«Component»
component 2

«PDU I/F»
 : TCP I/F

Satisfies = RFC 793

«interfaceBlock»
TCP 1 : TCP I/F

«interfaceBlock»
TCP 2 : TCP I/F

TCP Established
ref

PASSIVE OPEN()
comes through
TCP Provided I/F

ACTIVE OPEN()
comes through
TCP Provided I/F

CLOSE()
comes through
TCP Provided I/F

CLOSE()
comes through
TCP Provided I/F TIMEOUT

happens
internally to TCP
protocol entity

Reference to the
interaction for
data exchange.

FIN6:

SYN+ACK2:

ACK5:

ACK3:

SYN1:

ACK7:

FIN4:

«SDU Link»
 : TCP Pro Req Connector Type

Satisfies = RFC 793

«SDU Link»
 : TCP Pro Req Connector Type

Satisfies = RFC 793

«PDU Link»
 : TCP I/F Connector Type

Satisfies = RFC 793

Figure 16. Compliance with RFC 793

Applying the Pattern to Other Types of Interfaces
This paper largely focuses on communications interfaces, since dealing with the complexities
of a full specification of such interfaces was a driver for developing the layered interface
pattern. However, as stated in The Interface Challenge section, systems interfaces can be very
diverse and involve many different technical domains including electrical, mechanical,
thermal, software, user, and others. A question to be explored here is whether this pattern can
be leveraged to model other kinds of interfaces.

One key observation is that many interfaces between elements exhibit a set of characteristics
that may be modeled as a stack with defined functionality. An earlier paper [5] introduced the
concept of four abstract layers: message, encoding, signal, physical. These examples that
were used correspond to data exchanges using various protocols, to send signals across the
interface media such as a cable or free space, and the physical connection to the interface
media. This interface modeling pattern, however, may be generalized to model interface with
distinctly different characteristics.

Communication Interfaces
Applying this layered pattern to specify communication interfaces has been presented above.
The communication interfaces come in a wide variety of forms and may include only two
protocol layers, or many of them (encoding). The sorts of signals used may also vary widely,
depending upon the physical media being used in the communication path (free space RF or
optical, fiber, copper wire, and maybe, in some future, quantum entanglement).

Intermediate system components, such as routers or switches, may only include two or three
layers (up to link or network layers), and other components, such as gateways, may include
protocol transformation behavior as well. All of these may be modeled by applying this
pattern. Furthermore, end-to-end-performance may be modeled by defining implementation
specific performance characteristics for each of the physical interconnects and, if necessary,
modeling the performance of SDU transformations within the stack to account for these time
and resource consuming processes.

Other Interfaces
This modeling pattern may be extended to model interfaces that are constrained by physical
laws, such as forces, torques, momentum, and energy. Modelica is a modeling language that
simulates physical interactions, and expresses the constraints in terms of conservation laws.
The model of the physical layers of the stack can be augmented to reflect these constraints.

An example for RF antenna, gimbal and inertial effects is as follows. The RF antenna may be
body mounted on a spacecraft, or it may be on a gimbal. If it is on a gimbal there will be
control and power interfaces, as in the previous example, but there will also be inertial effects
on the rest of the spacecraft. The system will have to react to this, using counteracting forces
driven managed by control loops. These will have their own interfaces for control and power
and their own sets of constraints.

Application of the modeling pattern to user interfaces may be an interesting area for future
exploration. Humans gather information using their five senses, and then decode the
information using their nervous system and brain. When describing user interfaces, the
human “stack” and related aspects of the end-to-end system flow are often abstracted away,
there may be cases where elaborating this part of the model may provide useful insights.

Summary
The application of the pattern to communication interfaces has been described to help guide
the consistent and clear specification and design of end-to-end system interfaces. It provides
a framework for modeling system and component interfaces at successive levels of detail as
the design progresses. It helps to address the complexity of each interface in terms of how
data is encoded in messages and signals, the rules that govern their exchange, and how they
are physically sent from sender to receiver. This pattern defines how to model these
interfaces and to document conformance to standards.

The pattern provides the modeler the ability to accurately describe complex interfaces at
whatever level of detail is useful. Interfaces may be left abstract at the “communicated data”
layer if documenting end-to-end connectivity is all that is required. The interfaces can also be
documented down to the physical layer, including performance characteristics, such that
throughput and latency may be characterized. External and internal interfaces may be given
the same treatment using the same pattern.

The effective specification and design of external and internal interfaces is a critical aspect of
any system development process. The number, diversity and complexity of interfaces
contributes to the interface specification and design challenge. A model-based approach can
help address this challenge over more traditional document-based approaches by enhancing
consistency, precision, traceability, conformance to standards, and reuse.

This paper uses a representative Spacecraft and Ground System to illustrate how a critical
end-to-end system interface is specified using a model-based approach with SysML. It then
presents an application of a layered interface modeling pattern to realize a Spacecraft
subsystem interface and help manage the inherent complexity. The pattern leverages layered
interface concepts to model each side of an interface as a stack of protocol entities with
distinct functionality. Inputs flow down the stack on one side of the interface, across a
physical medium, and up the stack on the other side of the interface.

The pattern specifies how to model a typical protocol entity, and its behavior to transform its
inputs data to outputs at the next layer of the stack, and its interaction with a peer level
protocol entity at each layer of the stack. It shows how to model data that flows through the
stack as a logical abstraction, data encoded in bits and bytes, data encoded in signals such as
electrical, RF, and optical signals. It also discusses how to model the physical connection to
an interface medium such as a cable or free space.

Like any effective modeling effort, it is essential to scope the model to address the modeling
objectives. This will result in emphasizing particular aspects of the interface for a given
project and lifecycle phase. This pattern is intended to support such adaptation, and can be
selectively and incrementally applied to meet a project’s needs. Early in the development, the
emphasis may be to create abstract models of the interface specification, and as the design
progresses, the model may include additional design detail to address protocol, deployment,
software, electrical, and mechanical design concerns. The details may be captured directly in
the model, or refer to detailed interface information captured in other tools. Understanding
the layered interface pattern can assist the team in determining an effective strategy for
capturing this critical information to meet the needs of the project.

Although the pattern is illustrated for a communications interface, the application spans
system, software, electrical, and mechanical interfaces. Future work can explore how to

leverage this pattern for other kinds of interfaces that involve many technology domains and
different engineering disciplines.

Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

References
[1] Object Management Group. OMG Systems Modeling Language (OMG SysML™). V1.4.

Available at: http://www.omg.org/spec/SysML/.

[2] A Practical Guide to SysML, The Systems Modeling Language, Third Edition by Sanford
Friedenthal, Alan Moore, and Rick Steiner, Morgan Kaufmann, 2014

[3] Estefan Jeff A., Survey of Model-Based Systems Engineering (MBSE) Methodologies,
Rev B INCOSE Technical Publication, Document No. INCOSE-TD-2007-003-01.
San Diego, CA: International Council on Systems Engineering; June 10, 2008.

[4] Interface Control Document NASA 932 C-9BAircraft Operations Division February
2011. http://jsc-aircraft-ops.jsc.nasa.gov/Reduced_Gravity/docs/AOD_33912.pdf

[5] Shames, Peter M, Sarrel, Marc A, A modeling pattern for layered system interfaces, 25th
Annual INCOSE International Symposium (IS2015), Seattle, WA, July 13 – 16, 2015

[6] Universal Serial Bus Specification (revision 2)
http://sdphca.ucsd.edu/Lab_Equip_Manuals/usb_20.pdf

[7] Guide to the Systems Engineering Body of Knowledge (SEBoK)
http://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge
_(SEBoK)

[8] Postel J., “Transmission Control Protocol,” RFC 793, September 1981. 

[9] Zaghal, R, Khan, J, EFSM/SDL modeling of the original TCP standard (RFC793) and the
Congestion Control Mechanism of TCP Reno, Kent State University report,
TR2005-07-22-tcp-EFSM.pdf, 2005

[10] Information technology - Open Systems, Basic Reference Model, ISO/IEC 7498-1,
revised June, 1996

[11] OMG QUDV, Quantities, Units, Dimensions and Values,
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-qudv:qudv_owl

[12] Scott, K, Burleigh, S, “Bundle Protocol Specification”, RFC 5050, Nov 2007

[13] Systems and software engineering — Recommended practice for architectural
description of software-intensive systems, ISO/IEC 42010, July 2007, revised 2011

[14] Reference Architecture for Space Data Systems (RASDS), CCSDS 311.0-M-1, Sept
2008

[15] Rasmussen, R, et al, An Architectural Pattern for Goal-Based Control, IEEE Aerospace
Conference. Big Sky, MT. March 2008

[16] Consultative Committee for Space Data Systems, CCSDS Space Packet Protocol,
CCSDS 133.0-B-1c2, Sept 2010

[17] Wagstaff, et al, Automatic Code Generation for Instrument Flight Software,
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.548

[18] Jackson, et al., “Architecting the Human Space Flight Program with Systems Modeling
Language (SysML)”, Infotech 2012, AIAA 2012-2556.

[19] Karban, et al., “MBSE Initiative – SE2 Challenge Team, Cookbook for MBSE with
SysML, Issue 1, INCOSE, 2011.

[20] Leveson, “The Role of Software in Spacecraft Accidents,” AIAA Journal of Spacecraft
and Rockets, to be published.

[21] Mark L. McKelvin, Jr.,Robert Castillo, Kevin Bonanne, Michael Bonnici, Brian Cox,
Corrina Gibson, Juan P. Leon, Jose Gomez-Mustafa, Alejandro Jimenez, and Azad M.
Madni. “A Principled Approach to the Specification of System Architectures for
Space Missions”, In Procs. of the AIAA Space Conference, Anaheim, CA, 2015.

 [22] Mark L. McKelvin, Jr. and Alejandro Jimenez. “Specification and Design of Electrical
Flight System Architectures with SysML”, AIAA Infotech@Aerospace, Garden
Grove, CA, June 2012.

Biography
Peter Shames has been engaged in the process of turning computers into useful tools for
scientists for the bulk of his professional career. His specific expertise is architecting
large-scale space data systems, including space communications protocols and standards.
Peter manages JPL's Data Systems Standards Program in the Interplanetary Network
Directorate (IND). He is Director of the System Engineering Area for Consultative
Committee for Space Data System (CCSDS). For CCSDS he was lead editor of the CCSDS
Reference Architecture for Space Data Systems (RASDS, CCSDS 311.0-M-1) and Space
Communications Cross Support Architecture (SCCS-ADD, CCSDS 901.0-G-1).

Marc Sarrel is a systems engineer in JPL's Mission Control Systems section. For the past
five years, he has applied Model Based Systems Engineering to various system engineering
tasks in the space-flight ground-systems domain. He has worked on the Spitzer and Cassini
missions as a Mission Operations System Engineer and a Ground Data Systems Engineer,
and has written ground processing software. He has a master’s degree in Computer and
Information Science from The Ohio State University, a bachelor’s in Computer Science from
Washington University in St. Louis, and has worked at JPL for twenty-five years.

Sanford Friedenthal is an independent consultant and industry leader in model-based
systems engineering. Previously, as a Lockheed Martin Fellow, he led the corporate
engineering effort to enable Model-Based Systems Development across the company, where
he was responsible for developing and implementing strategies to institutionalize the practice
of MBSD across the company, and provide MBSE support to programs. He chairs the
INCOSE MBSE Initiative and other industry modeling efforts, and is co-author of ‘A
Practical Guide to SysML.’

