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Abstract. Model-based systems engineering (MBSE) is intended to improve how systems 
engineering is performed compared with a more traditional document-based approach by 
effectively using models to analyze, specify, design, and verify systems. The OMG Systems 
Modeling Language (OMG SysML™) enables the practice of MBSE by providing a robust 
and expressive language for representing systems. 

Several MBSE methods are available [3], and have continued to mature over the last several 
years which include model-based practices for requirements flow-down, architecture-design, 
trade-off analysis, verification planning, and others. One of the critical systems engineering 
practices is interface modeling. This paper describes a layered interface pattern for modeling 
data and communications interfaces using SysML. The pattern spans logical to physical 
interface definition, and includes software and electrical interfaces. 

Each layer in a stack describes a portion of the interface functionality. The concept of a 
layered interface is borrowed from computer networking [8] [10]. The layered interface 
pattern described in this paper enables the specification and design of connections and 
behavior between interfacing systems at a given layer, and between the adjacent layers of a 
single system. This pattern may also be applied recursively. That is, communication within a 
single layer may itself be realized by a multi-layer stack. The level of detail of the model to 
describe a layered interface should be adapted to the need, and can vary from highly abstract 
logical flows across a system to highly detailed protocol specifications and message 
structures. 

This paper builds on work that was documented in a previous paper entitled "A modeling 
pattern for layered system interfaces" [5]. Aspects of this pattern have been demonstrated in 
various project applications including Exploration Flight Test 1 (EFT-1), Space 
Communication and Navigation (SCaN) Trade Studies, and the SCaN Network Integration 
Project (SNIP). 



 

 

Introduction 
This paper is organized into six sections. The Introduction, section 1, describes some of the 
challenges associated with interface specification and design. This section then introduces 
some basic definitions and concepts that the layered interface pattern uses and provides a 
simple example. It concludes with a brief overview of SysML. 

The System Example, section 2, uses a spacecraft example to describe a logical data flow 
through a system, and how data interface requirements can be specified and allocated to 
various parts of a system. 

The Interface Realization, section 3, describes how a particular interface from the spacecraft 
example can be realized by a layered protocol stack that converts the data contained in 
communication packets to electrical signals on a physical connector, which are exchanged 
through a physical medium. The modeling pattern defines each vertical layer of the stack, the 
data structure that is transformed from one vertical layer to the next, the behavior 
specification for an example layer, and the interaction between peer layers at each side of the 
interface. The sections ends with an example of how to show compliance with a standard that 
defines a protocol. 

Related Work, section 4, discusses some related work. Applications, section 5, then discusses 
how this pattern can be applied more generally to other types of interfaces, and finishes with 
the Summary, section 6. 

This pattern is capable of representing multi-layer interfaces at varying levels of detail. The 
level of detail should be adapted to the need. Sometimes, only abstract end to end flows may 
be appropriate to describe the interfaces. In other cases, the level of detail may include some 
combination of detailed message structure, pin to pin connection, and protocol behavior 
specification. This is often dependent on the phase of development, and whether the interface 
is using well understood interface standards or new or modified interfaces are being 
developed. 

The Interface Challenge 
Well-defined interfaces are essential to specify how a system can interact with the external 
world, and how the system elements can interact to achieve the objectives of the whole 
system. Specifying and designing interfaces is a critical and challenging aspect of systems 
engineering due to the number of interfaces, diversity of interfaces, and the inherent 
complexity of individual interfaces. For example, electrical harnesses can contain thousands 
of wires and connectors and perhaps millions of messages. Many system failures have been 
attributed to inadequate interface specification and design. [20] 

A typical system, subsystem, and component interface is often specified in an interface 
requirements document (IRD) or similar document. An example of a partial table of contents 
from a NASA interface control document for a C-9B aircraft in support of the Reduced 
Gravity Program [4] is included in Figure 1. 

This interface control document includes many different types of interfaces including 
electrical power, high-pressure gas, cabin environment, display interfaces, physical 
dimensions, and others. These interfaces are realized by many different engineering 
disciplines using many different technologies. A systems engineer must be able to specify, 



 

 

analyze, and verify interfaces that span the 
various engineering disciplines and technologies 
to ensure the elements of the system can work 
together to achieve the system requirements. 

Interface specification and design is not only 
complex because of the number of interfaces and 
the many different kinds of interfaces, but any 
given interface can be complex in its own right. 
For example, the interface for a “simple” USB 
device is defined by the Universal Serial Bus 
revision 2 (USB 2) specification [6] that is 650 
pages long, and includes specification of the data 
flow model, mechanical and electrical interface, 
and protocol layer. 

A model-based approach provides an opportunity 
to address the challenges of specifying, analyzing, 
designing, and verifying interfaces over a more 
traditional document based approach by 
enhancing consistency, precision, traceability, 
conformance to standards, reuse, and managing 
the inherent complexity of interfaces. 

Definitions and Concepts 
The following definition of interface is from the Glossary of Terms in the Guide to the 
Systems Engineering Body of Knowledge [7]. 

Interface: 

1. A shared boundary between two functional units, defined by various characteristics 
pertaining to the functions, physical signal exchanges, and other characteristics. 
(ISO/IEC 1993) 
2. A hardware or software component that connects two or more other components for the 
purpose of passing information from one to the other. (ISO/IEC 1993)  
3. To connect two or more components for the purpose of passing information from one to 
the other. (ISO/IEC/IEEE 2009) 

The first definition is the most general of the three definitions above because it does not limit 
interface to the exchange of information. An interface provides the means for systems and 
system elements to interact, which may include the exchange of information, material, forces, 
and energy. To specify an interface, one must specify the connection points on the 
components (i.e. ports) on either side of the interface, the items that are exchanged, the 
constraints and/or rules that govern the exchange, and the medium for the exchange (i.e., 
link). An interface definition sometimes refers to one side of an exchange, but more generally 
refers to both sides of the exchange and the exchange medium. The system, subsystem or 
other system element (e.g. component) behaviors realize the interface to achieve the 
exchange. These interface concepts are illustrated in Figure 2.  

This paper also uses the term protocol, where a protocol at layer (N) can be defined as a set 
of rules and formats (semantic and syntactic) which determines the communication behavior 

1.0 INTRODUCTION 
1.1 Purpose 
1.2 Scope 
2.0 FACILITIES PROVIDED 
2.1 Aircraft 
2.1.1 Cabin Environment 
2.1.2 Cabin Dimensions 
2.1.3 Cabin Provisions 
2.1.4 Electrical Power and Interface 
2.1.5 Aircraft Lighting 
2.1.6 High Pressure Gas System 
2.1.7 Overboard Vent System 
2.1.8 Aircraft G-Load Display 
2.1.9 Accelerometer Signal 
2.1.10 On-Board Tools 
2.1.11 On-Board Storage Containers 
 
Figure 1. Partial Table of Contents 
for a NASA Interface Control 
Document [4] 



 

 

of (N)-entities in the performance of (N)-functions. [10] The protocol would be most strongly 
reflected in the Behavior and the Constraint. 

Simple Example of a Layered Interface 
Figure 3, shows a set of components: a USB digital audio interface between an Audio Player 
component such as a CD player, an Amplifier component that amplifies the audio electrical 
signals and converts the digital signal to an analog signal, and a Speaker that converts the 
analog audio electrical signals to acoustic waves (sound). Each of these interfaces is shown 
with their protocol stack. 

The ability to describe interfaces at different levels of abstraction is essential to address 
interface complexity. An interface layer1 is an abstraction approach to help deal with this 
complexity where each interface layer provides specific functionality associated with the 
interface. A Protocol Stack is a set of layers that transforms items to enable their exchange, 
such as for purposes of communication.  

 

A fundamental principle of an interface layer is that the layer below is independent of the 
layer above. Consider the connection between the Audio Player and the Amplifier for the 
USB Digital Audio I/F layer. That layer encodes the digital audio with a certain number of 
bits per sample, samples per second, number of channels (mono or stereo), etc. The USB 
Protocol I/F layer below does not know or care about those details. The USB Digital Audio 
I/F layer will impose quality-of-service constraints on the USB Protocol I/F layer, in 

                                                
1NOTE: The terminology that is used for interface layer is adopted from the ISO/IEC Basic Reference Model (ISO BRM), reference [16] as 
included below: 
5.2.1.2 (N)-layer: A subdivision of the OSI architecture, constituted by subsystems of the same rank (N).  
5.2.1.9 (N)-protocol: A set of rules and formats (semantic and syntactic) which determines the communication behavior of (N)-entities in1 
the performance of (N)-functions. 
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Figure 2. Interface Concepts 
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Figure 3: Example of Audio System interfaces 



 

 

particular constraints related to isochrony, minimum throughput constraints, and other 
constraints. But, the content and format of the audio data is opaque to the USB Protocol I/F 
layer. 

Each of the four layers of the Audio Player and the Amplifier USB Audio Stack performs an 
orthogonal part of the functions needed to transfer the Digital Audio data. For example, the 
USB Digital Audio I/F layer is responsible for encoding the audio. The USB Protocol I/F 
layer is responsible for complete and isochronous delivery of the data. The USB Protocol I/F 
layer may simultaneously handle types of data other than Digital Audio from different higher 
level protocols. These top two layers do not allow the presence of intermediate systems 
between the Audio Player and the Amplifier. The lower two layers, however, would allow 
such systems. The USB Link I/F layer transmits data between one USB device and another, 
but with no regard for retransmission or completeness. It may allow intermediate devices like 
USB hubs. But, those hubs are transparent to the upper two layers. The USB Physical I/F 
layer is concerned simply with the cable. It may allow intermediate systems like USB 
extension cords that are not visible to the upper layers. 

In this example the Audio Player can handle stored audio data in several formats, for example 
audio CDs, .mp3 files and .wav files. The format in which the audio data is stored, however, 
is not relevant to the format in which it is transmitted. In each case, the Audio Player 
transforms the audio from the original storage format into the USB Digital Audio format for 
transmission. 

An interface view is another abstraction approach to deal with interface complexity. For 
example, in the digital audio interface above, noise immunity and component proximity may 
be important concerns for the design of this interface, which can drive specific design choices. 
The separation between the Audio Player and the Amplifier that is tens of meters instead of 
1-2 meters may require a different interface design using a digital audio TOS link fiber optic 
cable instead of USB. The design decisions must be considered from the perspective of 
different stakeholder viewpoints that may include different engineering disciplines such as 
electrical, mechanical, and software perspectives. An interface view presents the interface 
information that addresses a particular stakeholder viewpoint. 

In this paper, we present a modeling pattern that applies to data and communication 
interfaces that includes logical interfaces, software interfaces, signal interfaces, and physical 
connections. Although this is applied to communication interfaces in this paper, the pattern 
can be applied to other kinds of interfaces as well. 

Describing the layered interface modeling pattern using SysML is the subject of this paper. 
However, the pattern reflects layered interface concepts that are well established and have 
been applied many times to data and communications interfaces. These include the ISO Basic 
Reference Model [10] and the Reference Architecture for Space Data Systems (RASDS) [14], 
and the entire Internet protocol suite. RASDS is particularly relevant for the primary 
spacecraft example used in this paper. 

RASDS defines five architectural viewpoints. Three of the RASDS viewpoints are related to 
the layered interface concept. The Connectivity view shows the lowest physical layer 
physical view of the nodes and links in the system over which data is routed. The 
Communications view shows in detail the protocol stacks in detail that perform data 
communication over the physical medium. The Information view shows the details of how 
data is packaged. Multiple system views modeled from these viewpoints provide the overall 
description of the system components, their communications, and behaviors. 



 

 

SysML Overview 
SysML is a general purpose modeling language for modeling systems and their environment 
that may include hardware, software, data, people, facilities, and natural objects. The 
language is often characterized in terms of four pillars as indicated in Figure 4 that represent 
the system requirements, structure, behavior, and parametrics. 

The four pillars of the language include the capability to represent: 

• Structure: Structural composition, interconnection, and classification 
• Behavior: Function-based, message-based, and state-based behavior 
• Parametrics: Constraints on the physical and performance properties 
• Requirements: Requirements and relationship to other requirements, design, analysis, 

and test cases 

SysML includes the nine kinds of diagrams. The diagrams provide pre-defined ways to 
present the design of a system in terms of the four pillars and the associated capabilities 
described above. A major advantage of this modeling approach is that the model of a system 
contains model elements that are defined once in the model, but can appear on zero, one, or 
many diagrams. This provides a flexible means to present multiple views of the same system 
that are self consistent. 

Many of these diagram types are used to reflect specific requirements, design, and 
implementation views of the system in alignment with ISO 42010 [13] and RASDS [14]. 
Detailed information on SysML can be found in several books on this topic including 'A 
Practical Guide to SysML' [2]. 

System Example 
In this section, a simplified Spacecraft and Ground System end-to-end system design example 
is introduced to provide the context for the layered interface modeling pattern. A critical 

 
 

Figure 4. Four Pillars of SysML 
From 'A Practical Guide to SysML, 3rd Edition' (Figure 2.1) 
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system interface requirement is specified, along with some of the considerations for 
allocating this requirement to other subsystem interfaces. In Section 3, the layered interface 
modeling pattern is applied to a particular subsystem interface from this example, and is 
described in more detail. Model elements that are referenced in the text are shown in italics. 

End-to-End System Design 
An end-to-end view of the Spacecraft and Ground System example is shown in Figure 5. The 
overall system function is to provide the observed Temperature Data of the Thermal Sources 
to the User. The Spacecraft transforms Thermal Emissions from the Thermal Sources into RF 
Signals that are transmitted to the Ground System, and the Ground System transforms the RF 
Signals to Temperature Data which is provided to the User. 

Specifically, the observed Thermal Sources on the Earth’s surface emit Thermal Emissions, 
which propagate through the Earth's Atmosphere. The Spacecraft Payload includes a Sensor 
that senses the Thermal Emissions. The Sensor Signal is processed by an On-board Computer 
in the Avionics Subsystem and converted to Thermal Packets. The Telecom Subsystem 
transforms the incoming Thermal Packets into space data link units, modulates the data, and 
transmits RF Signals through the Earth's Atmosphere to the Ground System. The Ground 
System Receiver Subsystem receives and demodulates the RF Signal, processes the space data 
link units, and extracts the Thermal Packets. The Thermal Packets are processed by the 
Ground Computer to derive the Temperature Data that can be stored as text files, MPEG 
videos, or other file formats. This data is also transformed to Digital Video to send to the 
Display, which is presented to the User.  

System Data Interface Requirements and Allocation Approach 
The basic top-level requirement for the end-to-end system as noted in the previous section is 
to provide Temperature Data of the Thermal Sources to the User. The Temperature Data 
provided to the User should be specified as an interface requirement for the end-to-end 
system. The Temperature Data is a logical abstraction of the physical signals provided 
directly to the User, which in this example, are photons emitted from the Display. The 
interface requirement should specify the temperature of the Thermal Source in units, such as 
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degrees Celsius, and include the estimated time when the temperature was measured. There 
are many derived requirements to achieve the desired measurement quality and satisfy the 
user need including requirements related to sample rate, latency, range, accuracy, precision, 
reliability, and security. The requirement for this example may be stated as: The end to end 
system shall provide estimated Temperature Data in degrees Celsius of the thermal sources 
located within the specified coverage area to the Users at the XYZ Facility every 4 hours with 
an accuracy of 1 °C over a temperature range from 0 °C to 300 °C. 

The data interface requirements must be satisfied by the end-to-end system. This in turn 
imposes requirements on all the system elements and associated interfaces that contribute to 
the end-to-end data flow. Latency is allocated to each system element in the data flow path. 
For example, accuracy may drive sensor resolution requirements. Precision and range 
requirements may drive the number of bits to be transmitted. The coverage area, accuracy, 
precision, and range requirement may drive the amount of data to be collected and 
transmitted, and the associated storage and downlink data rates. Reliability may drive 
selection of the communication protocols and the associated packet loss rate. Security 
confidentiality, integrity and availability may drive the need for encryption, access control, 
and firewalls. 

Requirements are allocated to the system elements and their interfaces as the design process 
progresses. This process includes several design and implementation choices such as whether 
hardware or firmware is required to meet the performance goals, or does software suffice; 
and whether coax cables are sufficiently noise free or must fiber optics be used. 

Interface Realization 
The previous section introduced the end-to-end spacecraft system that is used as an example 
to illustrate the application of the layered interface modeling pattern. This system includes 
several components, both in the Spacecraft and the Ground System as shown in Figure 5. The 
process for moving from requirements to realization at each level of design involves further 
decomposing the system and its elements, defining the interfaces between them, and 
allocating the requirements to the next lower level elements. In order to ensure the system 
satisfies its requirements, the characteristics of the elements and their interfaces must be 
specified, designed, and verified. 

In this section, the layered interface modeling pattern is applied to the On-board Avionics 
Subsystem and Telecom Subsystem interfaces shown in Figure 6. In this figure, the subsystem 
interfaces are shown as a single Packet Port that are connected by a connector that supports 
the exchange of Thermal Packets. The tilde symbol (~) on the Packet Port of the Telecom 
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Subsystem indicates the port is conjugated to enable the flow direction to be reversed from 
out to in. Note that the subsystem ports are also connected to the ports on its internal 
components. This enables the subsystem interface to be specified as a black box that is 
realized by its internal components. As in the earlier example of the Audio Player to 
Amplifier interface in Figure 3, there may be several ways to realize this interface, which 
may have very different performance and behavioral characteristics. Furthermore, 
system-wide design decisions may constrain these choices. 

Stack Definition 
To fully specify the interfaces on a component, the protocol elements that make up the 
“stack” must be defined. Figure 7 shows the Avionics and Communication components from 
Figure 6 and defines the protocol stack for the Packet Ports on the two components. In more 
traditional spacecraft, this protocol stack might use MIL Std1553, LVDS, or even Spacewire. 
This example assumes the use of TCP/IP on-board to network together the sub-systems, and 
uses 1 Gigabit Ethernet and RJ-45 plugs. Although this sort of physical layer is not a typical 
spacecraft deployment, it is used for illustration purposes because it may be more familiar to 
many readers. 

The top level flow is still shown as Thermal Packet, but now the layers of the protocol stack 
are defined, and each layer has the «Protocol Entity» stereotype applied. The stack consists of 
the following: 

1. Application protocol layer: packet transfer protocol, manages exchange of packet data 
between applications. 

2. Transport layer: Transmission Control Protocol (TCP), provides end-to-end, once 
only, in order, complete delivery of data. 

3. Network layer: Internet Protocol (IP), provides network layer routing over any 
number of intermediate network nodes. 

MagicDraw, 1-1 /Users/msarrel/Documents/Conferences - Working/2016-07 INCOSE IS/Working 2016-03-13/Ports & Flows 2016-03-13.mdzip White Box Mar 13, 2016 6:02:05 PM

White Box[  ]

«Application»
 : Packet Processor

 : Packet Port

«Software»
 : C&DH SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer  Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer  Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : Packet Port

«Component»
 : On-board Computer

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«Hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted 

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted 
Pair I/F

 : 1GbE I/F

 : Packet Port

«Subsystem»
 : Avionics Subsystem

 : Packet Port

«Application»
 : Packet to Frame Processor

 : ~Packet Port

«Software»
 : Communication SW

«Protocol Entity»
 : TCP

 : TCP Provided I/F

 : IP Required I/F

 : TCP I/F

«Protocol Entity»
 : IP

 : 1GbE Required I/F

 : IP Provided I/F

 : IP I/F

«Protocol Entity»
 : Pkt Xfer

 : Pkt Xfer  Provided I/F

 : TCP Required I/F

 : Pkt Xfer I/F

 : Packet Port [Stack X]
 : Pkt Xfer  Provided I/F

 : Pkt Xfer I/F

 : TCP I/F

 : IP I/F

 : ~Packet Port

«Component»
 : Transceiver-S

«Protocol Entity»
 : 1GE

 : Twisted Pair Required I/F

 : 1GbE Provided I/F

 : 1GbE I/F

«Hardware»
 : RJ45 Plug

 : Twisted Pair Provided I/F
 : Twisted 

Pair I/F

 : Ethernet Port [Stack X]

 : Twisted 
Pair I/F

 : 1GbE I/F

 : ~Packet Port

«Subsystem»
 : Telecom Subsystem

 : ~Packet Port

«System»
 : Spacecraft-Physical

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

Space Packet

«PDU Link»

«PDU Link»

«PDU Link»

«Hardware»

«PDU Link»

«PDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«SDU Link»

«Hardware»

«SDU Link»

Thermal 
Packet

 
Figure 7. Protocol Stacks Inside Component Interface (White Box) 



 

 

4. Data link layer: 1 Gb Ethernet, provides data link layer services that may involve a 
fabric of switches and hubs. 

5. Physical layer: twisted pair cable (Cat-5) and RJ-45 plug terminations. 

The application above the protocol stack is responsible for processing the contents of the 
packets, and the protocol stack is responsible for transferring the packets. The top three 
protocol layers are responsible for the encoding and transfer of the data and are implemented 
in software. The bottom two layers are responsible for the physical and electrical connection, 
and are implemented in the computer. 

The type of data flowing between the On-board Computer and the Transceiver-S in Figure 7 
is Thermal Packets. That is, packets that contain the thermal measurements of interest. Stack 
X however, can accommodate any kind of Space Packet, including Thermal Packets. Thermal 
packets are, in the model, a specialization of Space Packets, see Figure 10. It’s not shown in 
Figure 7 but many types of packets are routed through the same Stack X, not just Thermal 
Packets. This is an example of how the modeling can support re-use of the interface. 

The data flows down the stack on one side and up the stack on the other. A protocol entity 
performs the appropriate behavior to support the transformation and exchange of data at that 
layer. Each layer is typically described by a single protocol specification that defines the 
behavior for that layer. Service Units (SDU's) are input to each layer from the layer above or 
below. The protocol behavior for a particular layer transforms its input SDU to an output 
SDU. 

A protocol entity also interacts with its peer-level protocol entity at the same layer on the 
other side of the interface by exchanging Protocol Data Units (PDU's). The protocol behavior 
also specifies the transformation of the input SDU to an output PDU. The protocol entities 
are shown with dashed lines, which indicates that the protocol entities can be implemented 
elsewhere within the system. 

Figure 8 extends concepts from our previous paper [5]. The figure shows elements of the 
protocol stack defined with stereotypes in a SysML profile that are used in the examples in 
this paper. 

• A Component contains other Components, Protocol Entities and hosts Applications. 
• Components perform Behavior. 
• There are three types of Ports, Required I/F and Provided I/F (for SDU) and PDU I/F. 
• SDU Links connect Provided I/F and Required I/F. 
• PDU Links connect PDU I/Fs. Finally, PDU Data flows over PDU Links. 
• Constraints govern PDU Links and SDU Links. 

Each port on a system component has an interface binding signature that describes each layer 
of the protocol stack that interfaces with the peer interfacing component. Depending upon the 
nature of the component, the interface binding signature may have multiple layers, each with 
its own internal protocol stack, but there is always a physical layer and a link layer for 
communications. And, in some circumstances such as space communication, there may also 
be sub-layers. For example, in the Consultative Committee for Space Data Systems (CCSDS), 
the link layer is defined to include both data link and error encoding, and the physical layer is 
defined to include modulation and free space radiation. 

Specifying subsystem and component interfaces by their interface binding signatures allows 
the design more flexibility. As technology evolves, the component design may also evolve 



 

 

from a set of elements built from discrete components to elements based upon FPGA 
firmware, to a single integrated package of software running on a high performance COTS 
CPU. 

There are two related, but somewhat disjoint statements about how protocol stacks operate: 

1. The behavior of each protocol entity is carefully specified at each layer by describing 
how the two peer protocol entities in each interfacing component behave. This 
involves careful definition of the PDUs and behaviors within the layer. 

2. The data does not flow directly between peer entities; it actually flows down one 
stack, across the physical connection, and up the other stack. The SDU interfaces 
between layered protocol entities are only abstractly defined. 

One consequence of this approach is that the implementation details in two connected, but 
interoperable, components that share an interface may be entirely different. They may use 
different languages, run on different operating systems, and even allocate functionality very 
differently. However, they will interoperate as long as the protocol specifications are 
implemented faithfully. 

The functions at each layer may be implemented in one component or they may be allocated 
to different components, depending on design choices. For example, in many space systems, 
the RF, modulation, encoding, and data link functions may be allocated to separate 

components. The Transceiver shown in Figure 7 includes 
link layer, encoding and modulation functions. However, 
the Transceiver can be implemented as three separate 
components, a link layer processor, an encoder, and a 
modulator. In this case, each of these sub-components also 
have their own top level interfaces, passing application 
data, data link frames, and encoded data blocks. In a 
recursive fashion, the interfaces themselves each have an 
interface binding signature that typically include one or 
more layers. 

Each of the protocol entities in the stack may be left as 
abstract or further elaborated, as needed. The interface 
between IP and the 1 gigabit Ethernet data link may be 
important to define, along with the CSMA/CD behavior. 
The RJ45 plug and Cat5e Ethernet cable may be 
elaborated to show its electrical pin out as shown in 
Figure 9. The plug specification may include electrical 
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Figure 8. Concrete Protocol Stack Interface Concepts 
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Figure 9. RJ45 Pinout 



 

 

and mechanical properties, such as impedance. Each pin can be specified individually, with 
whatever additional information is needed. 

Packet Data Structures 
The data objects that are exchanged (i.e. data flows) must have a well defined data structure 
down to the octet and bit level, and have well defined relationship with other data objects. 
The data structure definitions are constructed using defined building blocks. All data 
structures, including PDUs and SDUs at each layer, must be defined in unambiguous terms to 
ensure interoperable exchange of information between applications. Figure 10 shows the data 
structure definition for a CCSDS Space Packet [16], which is the highest-level data structure 
for Stack X shown in Figure 7. It also shows the Thermal Packet that flows on Figure 7. The 
Thermal Packet is contained in the CCSDS Space Packet. This Packet Data structure may be 
used to carry many different types of application data, and it may also carry application layer 
signal information as well as provide limited functions for data assembly and/or 
fragmentation. 

The application data at the packet transfer layer may have explicit structure known to the 
application, but that data is treated as bits that are only meaningful to the layer above. The 
data structure in this example is the Space Packet, which is defined as a data structure with 
two parts, the Packet Primary Header and the Packet Data Field. Both of these are defined in 
a way that promotes re-use. The example shows the specialization of Packet Data to carry 
typical thermal data in the Thermal Packet, redefining the generic Packet Data as Thermal 
Packet Data Field that specifies the structure of the specific application data. Other packet 
data types may be specified in a similar way. 

Protocol Entity Behavior 
Accurately characterizing the behavior and performance of each interface requires an 
understanding of the protocol stack, and understanding the stack requires an understanding of 
the behavior of the protocol entities at each layer. This section and the next provide a method 
for describing that behavior. 
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Packets

constraints
{packet primary header.packet identification.application process identifier = 0x37}
{packet primary header.packet identification.secondary header flag = 0b1}
{packet primary header.packet identification.packet type = 0b0}

parts
packet data field : Thermal Packet Data Field [1]{redefines packet data field}

«PDU Data»
Thermal Packet

parts
packet timestamp : octet [6]{subsets packet secondary header}
telemetry packet  type : octet [1]{subsets packet secondary header}
timestamp : octet [3]{subsets user data field}
temperature : octet [2]{subsets user data field}

«block»
Thermal Packet Data Field

parts
packet version number : bit [3]
packet identification : Packet Identification [1]
packet sequence control : Packet Sequence Control [1]
packet data length : octet [2]

constraints
{packet version number = 0b000}

«block»
Packet Primary Header

parts
packet primary header : Packet Primary Header [1]
packet data field : Packet Data Field [1]

«PDU Data»
Space Packet

parts
packet type : bit [1]
secondary header flag : bit [1]
application process identifier : bit [11]

«block»
Packet Identification

constraints
{size(packet secondary header) +
size(user data field)
>= 1 octet}
{size(packet secondary header) +
size(user data field)
<= 65536 octets}

parts
packet secondary header : octet [0..*]
user data field : octet [0..*]

«block»
Packet Data Field

parts
sequence flags : bit [2]
packet sequence count : bit [14]

«block»
Packet Sequence Control

«Specification»
RFC 793

«block»
Temperature

parts
bits : bit [8]

«block»
octet

«block»
bit

«allocate»

«satisfy»

 
Figure 10. Packet Data Structure definition 



 

 

Within the stack, the SDU at each layer (N) is a sequence of octets that is provided by the 
upper layer (N+1) transformed by the (N) layer protocol and then passed to the lower layer 
(N-1). It is a function of the upper layer to send the SDU in a form that is acceptable to the 
(N) layer service interface. The (N) layer may transform that SDU in a variety of ways, 
including cutting it into smaller pieces, aggregating it into larger units, or performing a 
transformation to encode or encrypt the SDU. It is a function of the (N) layer to send the (N) 
SDU it constructs to the (N-1) layer service interface in a form that is acceptable to that layer. 

Figure 11 shows one of the protocol entities, the Transmission Control Protocol (TCP), that is 
part of the stack in Figure 7. The TCP protocol entity has ports like the other protocol stack 
elements. Each protocol entity has three ports, the interface that provide services to the upper 
(N+1) layer, the interface that requires services of the lower (N-1) layer, and the interface 
with the peer protocol entity at the same layer:  

1. Provided service port: the services offered to any upper layer (N+1) protocol, defined 
as an abstract service and using a layer N Service Data Unit (SDU) 

2. Required service port: the services required from any lower layer (N-1) protocol, 
defined as an abstract service and using a layer N-1 Service Data Unit (SDU) 

3. Peer protocol port: the port that enables the protocol entity to interact with its peer 
entity at the same layer, defined by the protocol specification and using the layer N 
Protocol Data Units (PDU) 

There may also be a separate control or management 
interface within the protocol, or via a separate port on 
the component. 

The provided service interface accepts layer (N) Service 
Data Units (SDU) from the upper (N+1) layer, and it is 
the upper layer entity’s job to match the implementation 
characteristics of the layer (N) provided interface. 
Similarly, the interface to the lower layer (N-1) protocol 
entity must provide (N-1) SDUs in the form that entity 
expects. Within each protocol entity is a transformation 
engine that accepts (N) SDUs, creates (N) PDUs that 
contain all or part of each (N) SDU, and then forms 
(N-1) SDUs for the lower layer. This sending side 
process, of course, works in reverse in the peer protocol 
stack on the receiving end. 

One (or more) state machines and/or activity diagrams may be used within the protocol 
specification to define the protocol entity’s behavior. While some protocol specifications will 
contain carefully constructed state machines, or state tables, some of them use English prose 
to specify the behavior. The SysML modeling approach used here provides explicit state 
machine, sequence, and activity diagrams to describe the behavior. 

One or more state machines are needed to describe peer level protocol behavior; and how the 
protocol entity responds when PDUs arrive, and what PDUs are sent. This behavior may 
involve establishing a connection, authentication, performing mono- or bi- directional data 
exchanges, handling reliability & error conditions (re-transmission), sending and responding 
to quality of service (QoS) signals, and other behavior. There may also be data 
transformation behavior within the protocol entity that can be described using a separate state 
machine or functional model (activity diagram). This describes the transformation of (N) 
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Figure 11. Protocol Entity 

(Black Box) 



 

 

SDUs into (N-1) SDUs, which may require data fragmentation, re-assembly, caching, and 
even data transformation to encode or encrypt. 

Figure 12 shows the canonical State Machine for TCP connection establishment and tear 
down. This diagram combines the state transitions for both the sender and the receiver. Either 
TCP entity may send and/or receive. In support of the sender / receiver roles, it is useful to 
think of one TCP entity as the server and the other as the client. From this point of view, the 
server leaves the Closed state using the blue path, performs a passive open, and enters the 
Listen state. When a client is ready to communicate, it exits the Closed state via the red path, 
performs an active open, and sends a SYN PDU. The PDU exchanges continue until the 
connection is Established, at which point the two peer entities may exchange data in either 
direction. The bottom part of Figure 12 describes the process for closing the connection and 
returning to the Closed state. A very similar diagram is included in RFC 793 [8] that defines 
the TCP protocol. 

Figure 13 is a sequence diagram that depicts a part of the PDU interchange between the client 
and the server, showing the PDUs sent by the client (TCP 2) in red, and PDUs sent by the 
server (TCP 1) in blue. As mentioned, the server does a passive open and the client does an 
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Figure 12. TCP Protocol state machine – connection establishment 



 

 

active open. The top part of the diagram shows the exchanges to achieve the Established state. 
Those on the bottom are the exchanges to return to the Close state. 

Much of the behavior of a protocol entity behavior may be captured within the state machines, 
but the dynamics of the interactions between the two cooperating state machines can be 
further described using a sequence diagram. The sequence diagram can show both the 
interchanges of PDUs and also the timing relationships as the protocol entity interacts with its 
peer entity at the same level. Particularly for space data link protocols, where there may be 
long round trip light time delays (tens of minutes to tens of hours), understanding the timing 
dynamics of the protocol becomes very important. One approach to dealing with long delays 
is to use a networking approach like Delay/Disruption Tolerant Networking (DTN) that uses 
the delay tolerant Bundle Protocol [12] rather than TCP and IP. Understanding the dynamics 
of interactions is important when there is a high bandwidth / delay product (> 107 bits). 
Sequence diagrams that describe these interactions and timing considerations are useful in 
understanding protocol behavior in the face of data errors, data loss, weather based channel 
fades, and other conditions. 

Once the connection is established, the TCP operates to provide reliable end-to-end exchange 
of a stream of bytes, in order, once only, and without omission. That behavior takes place 
within the Established state in Figure 12. In RFC 793, this description is many pages of clear, 
but rather dense, prose. Specifying this behavior as behavioral models facilitates 
understanding, and the translation of this behavior into code. It is even possible to 
automatically transform well specified state machines directly into executing code. [17] 
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FIN4: 

 
Figure 13. TCP Protocol connection establishment sequence diagram 



 

 

The behavior of TCP to accomplish these reliable exchanges is complex and it must handle 
start up, shut down, retransmission, and error cases. It is a testament to the quality of the 
original spec that it has persisted in essentially an unchanged form since 1981, leaving aside 
extensions like SACK and RENO. 

Figure 14 shows the sequence 
diagram from Figure 13 which 
constrains the interaction between 
the client and server, which are 
peer-level entities on each side of 
the connection. 

Figure 15 provides a structured 
description of a part of the TCP 
Established state behavior. This 
describes the behavior of the 
sending protocol entity when it 
receives SEND Call on its (N+1) 
service interface. The behavior is 
described using an activity diagram. 
The figure re-casts in SysML a 
figure from a paper modeling TCP 
and the RENO congestion control 
extensions using EFSM/SDL [9]. 
The diagram shows both the 
calculations done within the 
protocol entity to manage the sliding 
acknowledgement window (rounded 
ovals) and the protocol behavior to 
send a PDU with a segment of data 
and with the SND, ACK, and CTL 
signal field settings (right facing 
arrow). 

The defined behavior and PDU 
exchanges in each state are defined 
in Figure 12. In the cited paper the 
full description of the protocol 
behavior in EFSM is documented in 
many pages. 

Compliance with RFC 793 
Figure 16 gives an overview of all the elements in the model that must comply with RFC 793. 
The same pattern will be found for any other protocol as well. RFC 793 governs the PDU 
link at the TCP layer, the two TCP Protocol Entities, the two SDU Links above, and all six 
Interfaces to which those links connect. This compliance includes data, structure, connections 
and behavior, as illustrated by the state machine, activity and sequence diagrams. Compliance 
is shown by the Satisfies notation on the diagram both on the Components (white box) and 
the protocol entities (black box). 
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Figure 14. Association block and Sequence 

diagram specifying relationship between port 
definitions (i.e., types) 
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TCP Send Call processing
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Piggybacked ACK

 [else]

 [else]
 [SND.NXT < (SND.UNA+SND.WND)]

 [Send Buffer has sufficient 
data to satisfy a new segment]

 
Figure 15. TCP Send Call activity diagram 



 

 

 

Related Work 
This pattern is the result of work performed on several previous tasks at the Jet Propulsion 
Laboratory. The pattern was first developed and applied as part of the Space Communication 
and Navigation (SCaN) Integrated Network Interface Definition Trade Study and the related 
SCaN Network Integration Project (SNIP). It was used to describe and document each of the 
standard interfaces to help unify the three separate Earth to Space communications networks 
run by NASA. These standard interfaces allowed encapsulation of different implementations, 
providing common external interfaces for end users, regardless of which communications 
network they chose, and common internal interfaces as integration points. The interface 
bindings were described from application layer down to network layer and tied to the 
individual protocol layer specifications. This approach provided accurate models of all of the 
major external and internal interfaces. 

The pattern was also applied to the Ground Data System of the Exploration Flight Test 1 
(EFT-1) project. The purpose here was to describe the flow of information across the ground 
network supporting the mission. Two levels of abstraction were used. The top layer described 
the flow from source to destination in a single step, and the second layer described the 
connections between the routers, switches, firewalls and servers. Constraints were added to 
describe the path of the first over the second. 

There has been other earlier work to model interfaces in SysML, some of which started to 
model similar layer interface concepts. Robert Karban developed and applied interface and 
protocol stack patterns to model software, electrical, optical, and mechanical interfaces while 
at the European Southern Observatory [19]. Mark McKelvin applied layered interface 
patterns to electrical interface design [21] [22]. Maddalena Jackson wrote about using a 
layered interface concept to describe data flows in support of human space flight. 
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Applying the Pattern to Other Types of Interfaces  
This paper largely focuses on communications interfaces, since dealing with the complexities 
of a full specification of such interfaces was a driver for developing the layered interface 
pattern. However, as stated in The Interface Challenge section, systems interfaces can be very 
diverse and involve many different technical domains including electrical, mechanical, 
thermal, software, user, and others. A question to be explored here is whether this pattern can 
be leveraged to model other kinds of interfaces. 

One key observation is that many interfaces between elements exhibit a set of characteristics 
that may be modeled as a stack with defined functionality. An earlier paper [5] introduced the 
concept of four abstract layers: message, encoding, signal, physical. These examples that 
were used correspond to data exchanges using various protocols, to send signals across the 
interface media such as a cable or free space, and the physical connection to the interface 
media. This interface modeling pattern, however, may be generalized to model interface with 
distinctly different characteristics. 

Communication Interfaces 
Applying this layered pattern to specify communication interfaces has been presented above. 
The communication interfaces come in a wide variety of forms and may include only two 
protocol layers, or many of them (encoding). The sorts of signals used may also vary widely, 
depending upon the physical media being used in the communication path (free space RF or 
optical, fiber, copper wire, and maybe, in some future, quantum entanglement). 

Intermediate system components, such as routers or switches, may only include two or three 
layers (up to link or network layers), and other components, such as gateways, may include 
protocol transformation behavior as well. All of these may be modeled by applying this 
pattern. Furthermore, end-to-end-performance may be modeled by defining implementation 
specific performance characteristics for each of the physical interconnects and, if necessary, 
modeling the performance of SDU transformations within the stack to account for these time 
and resource consuming processes. 

Other Interfaces 
This modeling pattern may be extended to model interfaces that are constrained by physical 
laws, such as forces, torques, momentum, and energy. Modelica is a modeling language that 
simulates physical interactions, and expresses the constraints in terms of conservation laws. 
The model of the physical layers of the stack can be augmented to reflect these constraints.  

An example for RF antenna, gimbal and inertial effects is as follows. The RF antenna may be 
body mounted on a spacecraft, or it may be on a gimbal. If it is on a gimbal there will be 
control and power interfaces, as in the previous example, but there will also be inertial effects 
on the rest of the spacecraft. The system will have to react to this, using counteracting forces 
driven managed by control loops. These will have their own interfaces for control and power 
and their own sets of constraints. 

Application of the modeling pattern to user interfaces may be an interesting area for future 
exploration. Humans gather information using their five senses, and then decode the 
information using their nervous system and brain. When describing user interfaces, the 
human “stack” and related aspects of the end-to-end system flow are often abstracted away, 
there may be cases where elaborating this part of the model may provide useful insights. 



 

 

Summary 
The application of the pattern to communication interfaces has been described to help guide 
the consistent and clear specification and design of end-to-end system interfaces. It provides 
a framework for modeling system and component interfaces at successive levels of detail as 
the design progresses. It helps to address the complexity of each interface in terms of how 
data is encoded in messages and signals, the rules that govern their exchange, and how they 
are physically sent from sender to receiver. This pattern defines how to model these 
interfaces and to document conformance to standards. 

The pattern provides the modeler the ability to accurately describe complex interfaces at 
whatever level of detail is useful. Interfaces may be left abstract at the “communicated data” 
layer if documenting end-to-end connectivity is all that is required. The interfaces can also be 
documented down to the physical layer, including performance characteristics, such that 
throughput and latency may be characterized. External and internal interfaces may be given 
the same treatment using the same pattern. 

The effective specification and design of external and internal interfaces is a critical aspect of 
any system development process. The number, diversity and complexity of interfaces 
contributes to the interface specification and design challenge. A model-based approach can 
help address this challenge over more traditional document-based approaches by enhancing 
consistency, precision, traceability, conformance to standards, and reuse.  

This paper uses a representative Spacecraft and Ground System to illustrate how a critical 
end-to-end system interface is specified using a model-based approach with SysML. It then 
presents an application of a layered interface modeling pattern to realize a Spacecraft 
subsystem interface and help manage the inherent complexity. The pattern leverages layered 
interface concepts to model each side of an interface as a stack of protocol entities with 
distinct functionality. Inputs flow down the stack on one side of the interface, across a 
physical medium, and up the stack on the other side of the interface. 

The pattern specifies how to model a typical protocol entity, and its behavior to transform its 
inputs data to outputs at the next layer of the stack, and its interaction with a peer level 
protocol entity at each layer of the stack. It shows how to model data that flows through the 
stack as a logical abstraction, data encoded in bits and bytes, data encoded in signals such as 
electrical, RF, and optical signals. It also discusses how to model the physical connection to 
an interface medium such as a cable or free space. 

Like any effective modeling effort, it is essential to scope the model to address the modeling 
objectives. This will result in emphasizing particular aspects of the interface for a given 
project and lifecycle phase. This pattern is intended to support such adaptation, and can be 
selectively and incrementally applied to meet a project’s needs. Early in the development, the 
emphasis may be to create abstract models of the interface specification, and as the design 
progresses, the model may include additional design detail to address protocol, deployment, 
software, electrical, and mechanical design concerns. The details may be captured directly in 
the model, or refer to detailed interface information captured in other tools. Understanding 
the layered interface pattern can assist the team in determining an effective strategy for 
capturing this critical information to meet the needs of the project. 

Although the pattern is illustrated for a communications interface, the application spans 
system, software, electrical, and mechanical interfaces. Future work can explore how to 



 

 

leverage this pattern for other kinds of interfaces that involve many technology domains and 
different engineering disciplines. 

 

 

 

Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National Aeronautics and Space Administration. 



 

 

References 
[1] Object Management Group. OMG Systems Modeling Language (OMG SysML™). V1.4. 

Available at: http://www.omg.org/spec/SysML/. 

[2] A Practical Guide to SysML, The Systems Modeling Language, Third Edition by Sanford 
Friedenthal, Alan Moore, and Rick Steiner, Morgan Kaufmann, 2014 

[3] Estefan Jeff A., Survey of Model-Based Systems Engineering (MBSE) Methodologies, 
Rev B INCOSE Technical Publication, Document No. INCOSE-TD-2007-003-01. 
San Diego, CA: International Council on Systems Engineering; June 10, 2008. 

[4] Interface Control Document NASA 932 C-9BAircraft Operations Division February 
2011. http://jsc-aircraft-ops.jsc.nasa.gov/Reduced_Gravity/docs/AOD_33912.pdf 

[5] Shames, Peter M, Sarrel, Marc A, A modeling pattern for layered system interfaces, 25th 
Annual INCOSE International Symposium (IS2015), Seattle, WA, July 13 – 16, 2015 

[6] Universal Serial Bus Specification (revision 2) 
http://sdphca.ucsd.edu/Lab_Equip_Manuals/usb_20.pdf 

[7] Guide to the Systems Engineering Body of Knowledge (SEBoK) 
http://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge
_(SEBoK) 

[8] Postel J., “Transmission Control Protocol,” RFC 793, September 1981.   

[9] Zaghal, R, Khan, J, EFSM/SDL modeling of the original TCP standard (RFC793) and the 
Congestion Control Mechanism of TCP Reno, Kent State University report, 
TR2005-07-22-tcp-EFSM.pdf, 2005 

[10] Information technology - Open Systems, Basic Reference Model, ISO/IEC 7498-1, 
revised June, 1996 

[11] OMG QUDV, Quantities, Units, Dimensions and Values, 
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-qudv:qudv_owl 

[12] Scott, K, Burleigh, S, “Bundle Protocol Specification”, RFC 5050, Nov 2007 

[13] Systems and software engineering — Recommended practice for architectural 
description of software-intensive systems, ISO/IEC 42010, July 2007, revised 2011 

[14] Reference Architecture for Space Data Systems (RASDS), CCSDS 311.0-M-1, Sept 
2008 

[15] Rasmussen, R, et al, An Architectural Pattern for Goal-Based Control, IEEE Aerospace 
Conference. Big Sky, MT. March 2008 

[16] Consultative Committee for Space Data Systems, CCSDS Space Packet Protocol, 
CCSDS 133.0-B-1c2, Sept 2010 

[17] Wagstaff, et al, Automatic Code Generation for Instrument Flight Software, 
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.548 



 

 

[18] Jackson, et al., “Architecting the Human Space Flight Program with Systems Modeling 
Language (SysML)”, Infotech 2012, AIAA 2012-2556. 

[19] Karban, et al., “MBSE Initiative – SE2 Challenge Team, Cookbook for MBSE with 
SysML, Issue 1, INCOSE, 2011. 

[20] Leveson, “The Role of Software in Spacecraft Accidents,” AIAA Journal of Spacecraft 
and Rockets, to be published. 

[21] Mark L. McKelvin, Jr.,Robert Castillo, Kevin Bonanne, Michael Bonnici, Brian Cox, 
Corrina Gibson, Juan P. Leon, Jose Gomez-Mustafa, Alejandro Jimenez, and Azad M. 
Madni. “A Principled Approach to the Specification of System Architectures for 
Space Missions”, In Procs. of the AIAA Space Conference, Anaheim, CA, 2015. 

 [22] Mark L. McKelvin, Jr. and Alejandro Jimenez. “Specification and Design of Electrical 
Flight System Architectures with SysML”, AIAA Infotech@Aerospace, Garden 
Grove, CA, June 2012. 

Biography 
Peter Shames has been engaged in the process of turning computers into useful tools for 
scientists for the bulk of his professional career. His specific expertise is architecting 
large-scale space data systems, including space communications protocols and standards. 
Peter manages JPL's Data Systems Standards Program in the Interplanetary Network 
Directorate (IND). He is Director of the System Engineering Area for Consultative 
Committee for Space Data System (CCSDS). For CCSDS he was lead editor of the CCSDS 
Reference Architecture for Space Data Systems (RASDS, CCSDS 311.0-M-1) and Space 
Communications Cross Support Architecture (SCCS-ADD, CCSDS 901.0-G-1). 

Marc Sarrel is a systems engineer in JPL's Mission Control Systems section. For the past 
five years, he has applied Model Based Systems Engineering to various system engineering 
tasks in the space-flight ground-systems domain. He has worked on the Spitzer and Cassini 
missions as a Mission Operations System Engineer and a Ground Data Systems Engineer, 
and has written ground processing software. He has a master’s degree in Computer and 
Information Science from The Ohio State University, a bachelor’s in Computer Science from 
Washington University in St. Louis, and has worked at JPL for twenty-five years. 

Sanford Friedenthal is an independent consultant and industry leader in model-based 
systems engineering. Previously, as a Lockheed Martin Fellow, he led the corporate 
engineering effort to enable Model-Based Systems Development across the company, where 
he was responsible for developing and implementing strategies to institutionalize the practice 
of MBSD across the company, and provide MBSE support to programs. He chairs the 
INCOSE MBSE Initiative and other industry modeling efforts, and is co-author of ‘A 
Practical Guide to SysML.’ 


