
SysML Tools

Traditional
Descriptive Tools

Excavator
Boom Model

Factory
Layout Model

Production
Ramps

NX/MCAD Tool

Reliability
Model

Mathematica

Factory
Simulation

eM-Plant

Dig Cycle
Model

Dymola

FEA Model

Ansys

Cost Model

Excel

Optimization
Model

Model Center

Factory
Model

RSA/E+/SysML
Excavator

Executable
Scenario

RSA/E+/SysML

Excavator
System Model

No Magic /SysML

Factory CAD

Excel

2009-02-25a

Traditional
Simulation & Analysis Tools

Operational
Scenario

Interface & Transformation Tools
(VIATRA, XaiTools,…)

A P u b l i c at i o n o f t h e I n t e r n at i o n a l C o u n c i l o n S y s t e m s E n g i n e e r i n gDecember 2009 | Volume 12 Issue 4

The Use of Systems Engineering Methods to Explain the
Success of an Enterprise 65

Technical Activites
Announcing BKCASE: Body of Knowledge and Curriculum

to Advance Systems Engineering 69

New Guidelines for Graduate Software-Engineering Education 70

Notes to the Editor
Book Review: Reviewer’s Response to Author’s Reply 73

Final Thoughts
From the Chief Editor 76

President’s Corner
Inclusive Thinking for INCOSE’s Future 3

Special Feature
Introduction to this Special Edition on Model-based Systems

Engineering (MBSE) 7

SysML: Lessons from Early Applications and Future Directions 10

Model-based Systems Engineering for Systems of Systems 12

MBSE Methodology Survey 16

Using Model-based Systems Engineering to Supplement the
Certification-and-Accreditation Process of the U.S.
Department of Defense 19

Executable and Integrative Whole-System Modeling via the
Application of OpEMCSS and Holons for Model-based
Systems Engineering 21

MBSE in Telescope Modeling 24

Model-based Systems Praxis for Intelligent Enterprises 34

The Challenge of Model-based Systems Engineering for
Space Systems, Year 2 36

Integrating System Design with Simulation and Analysis
Using SysML 40

A Modeling Approach to Document Production 44

MBSE for European Space-Systems Development 47

SysML is the Point of Departure for MBSE, Not the Destination 54

 Fellows’ Insight
Key Issues of Systems Engineering 58

What Are the General Principles Applicable to Systems? 59

Forum
Are You Programmable, Inventive, or Innovative? 65

What’s Inside Model-Based Systems Engineering:
The New Paradigm

December 2009 | Volume 12 Issue 42

Visit www.incose.org and click on the CSEP icon to begin.

Get recognition for your systems engineering
experience and knowledge through the

INCOSE certifi cation program! Apply today.

Now is the time!

INCOSE Professional Certification

December 2009 | Volume 12 Issue 43

President’s Corner

President’s
CornerChief Editor Bob Kenley

 insight@incose.org +1 260 460 0054
Assistant Editor Andrew Cashner
 andrew.cashner@incose.org
Theme Editor Rob Cloutier
 robert.cloutier@incose.org
Advertising Editor Christine Kowalski
 advertising@incose.org +1 858 541 1725
Layout and Design Chuck Eng
 chuck.eng@comcast.net +1 206 364 8696
Member Services INCOSE Central Office
 info@incose.org +1 858 541-1725
On the Web http://www.incose.org
Article Submission INSIGHT@incose.org

Publication Schedule. INSIGHT is published four times per year.
Issue and article/advertisement submission deadlines are as follows:  
April 2010 issue – 15 February; July 2010 issue – 15 May; October 2010
issue – 08 August ; December 2010 issue –15 October 
For further information on submissions and issue themes, visit the
INCOSE Web site as listed above.

Advertising in INSIGHT. Please see http://www.incose.org/Products
Pubs/periodicals/insight.aspx — or e-mail advertising@incose.org.

Subscriptions to INSIGHT are available to INCOSE members as part
of their membership. Complimentary copies are available on a limited
basis. Back issues are available on the INCOSE Web site. To inquire
about membership or to order a copy, contact Member Services.

©2009 Copyright Notice. Unless otherwise noted, the entire
contents are copyrighted by INCOSE and may not be reproduced in whole
or in part without written permission by INCOSE. Permission is given
for use of up to three paragraphs as long as full credit is provided. The
opinions expressed in INSIGHT are those of the authors and advertis-
ers and do not necessarily reflect the positions of the editorial staff or
the International Council on Systems Engineering.

Who are we? INCOSE is a 7000+ member organization of systems
engineers and others interested in systems engineering. Its purpose
is to foster the definition, understanding, and practice of world class
systems engineering in industry, government, and academia. INCOSE is
comprised of chapters located in cities worldwide and is sponsored by
a corporate advisory board and led by elected officers, directors, and
membership board.

2009 INCOSE Board of Directors
President:	 Pat Hale, M.I.T.
President-Elect:	 Samantha Brown, BAE Systems
Secretary:	 Bob Kenley, Kenley Consulting, LLC
Treasurer:	 Ricardo Valerdi, M.I.T.

Director for Leadership and Organizational Development: Bill Ewald, Macro
International

Director for Communications: Cecilia Haskins, Norwegian University of Science
and Technology

Director for International Growth: Tat Soon Yeo, Temasek Defence Systems
Institute

Director for Commercial Outreach: Henk van der Linden, SRON

Director for Strategy: Ralf Hartmann, EADS Astrium GmbH

Corporate Advisory Board Chair: Art Pyster, Stevens Institute of Technology

Member Board Chair: Jonette Stecklein, NASA

Member Board Co-Chair: Richard Grzybowski, Corning

Technical Director: Regina Griego, Sandia National Laboratory

Managing Executive: Holly Witte, Universal Management Services, LLC

INSIGHT
Publication of the International
Council on Systems Engineering

Two years ago at the 2008 Interna-
tional Workshop, I started my time
as president with a message titled

“Doing Serious Work Together While Hav-
ing Fun!” As I write my last “President’s
Corner,” I have been thinking about what
makes INCOSE valuable to me and what my
hopes are for INCOSE and you, its members, in the future. For
the past twenty years, INCOSE has grown steadily in member-
ship, influence, geographic presence, and domain scope. Our
profession has similarly increased in importance and impact,
until we stand on the threshold of a world so interconnected
that only systems thinking and the application of the methods
we know as good systems engineering can help us to forge
durable solutions to world challenges.

A highlight of 2009 was the CNN Money Web site’s selec-
tion of the systems engineer as the number-one job in
America, and, significantly, CNN asked INCOSE to recom-
mend people who could represent the diverse jobs in today’s
systems-engineering marketplace. Many of you probably saw
the profile about our own Anne O’Neil of the New York City
MTA, describing the challenges and satisfaction of her job as a
chief systems engineer. It is a milestone to have CNN come to
INCOSE and to highlight a job outside the defense and aero-
space domains. Defense is an important application space for
systems engineering, but our profession’s influence has spread
across many more domains of practice in the past decade, and
the best practices we share have been put to use in products

and systems of tremendous variety.
At the 2008 IW, I emphasized that our members are the

most important asset we have, and I want to reaffirm that
judgment. INCOSE’s greatest strength is the generosity, skill,
and dedication of its members. Our products are a direct result
of that dedication and professionalism, and even as the chal-
lenges and products grow in complexity, our individual mem-
bers, often backed by our corporate members, are successfully
forging ahead in multiple initiatives that will enable continued
growth and success in applications of systems engineering.
For those who are leaders of this organization, whether at
the chapter, national, or international levels, we must always
remember that we serve the members and the profession, and
allow that sense of service to guide our decisions.

I see a bright future for systems engineering and the poten-
tial for an equally bright future for INCOSE. Perhaps the only
troubling current that has rippled through the past twelve years
as I have served on the board of directors is the tension between
national and global concerns, particularly in the United States.
INCOSE has a destiny that is global, and will draw on the
immense strength and resources of a global existence, pro-
viding that we can establish a foundation that creates a level
playing field for global collaboration. Yes, INCOSE began in the
United States as NCOSE, and many of our senior members grew
from those roots, just as the systems-engineering profession,
while originally conceived in the telecommunications industry,
grew to its greatest strength in defense-and-aerospace-systems
development and operations. While we should remember those
roots and be proud of them, the time has come to acknowledge
that we will achieve our greatest destiny only as a truly global
organization, pursuing our vision and mission as equal interna-
tional collaborators, and working to enable such collaboration
on a worldwide scale. Accordingly, at the final Board of Direc-
tors meeting I presided over as president, the board unani-
mously passed a resolution to “to conduct the due diligence
necessary to (re)establish a U.S. national organization.” While
it may not seem intuitive that a U.S. national organization is a
requirement for INCOSE to be truly global, I hope to convince
you all that it is, for the following primary reasons:

INCOSE is currently established as a non-profit corporation •	

Inclusive Thinking for INCOSE’s Future
Pat Hale, patrick.hale@incose.org

Special Feature

December 2009 | Volume 12 Issue 44

in the state of California, which sometimes leads us to behave in a fashion that
belies our international mission and goals, simply to comply with California
corporate law. All of the other nations in INCOSE have formed national chapters
under independent charters in order to comply with their legal and cultural
frameworks and to serve both legitimate national considerations and globally
shared concerns.
Non-North American chapters can and do invest their assets and efforts into •	
products that serve national interests, as well as contributing to international
products. It is not surprising that other nations have national priorities in addi-
tion to INCOSE’s global work; rather, it is surprising that the only nation that
does not have a national organization and voice is the United States, INCOSE’s
birthplace. Because our board is a global mix of representation (absolutely
appropriate for the international governing body), we refrain from lobbying
U.S. government agencies or establishing positions that are specific to the U.S.
While this is a requirement for a global leadership, it deprives U.S. members of
a potentially powerful voice in U.S. policies pertaining to systems engineering
and associated matters.
Only by establishing a globally level organizational framework can we enable •	
global collaboration, and realize INCOSE’s full future potential, without nation-
al tensions at the international governance level.

As part of the motion to perform due diligence for “INCOSE-US,” three subcom-
mittees of the board were established to examine different aspects of the plan:

1. Legal, administrative, or bylaw changes to enable a split between U.S. and
global INCOSE organizations.

2. Financial models, equitable asset distribution and division of services: What
should the global organization provide, and what is better done on a national
level?

3. Governance: How should the new global organization be governed to provide
fair representation and organizational stability at minimum overhead?

These subcommittees have been working hard to develop an initial report and
recommendations for further action, to be delivered at the 2010 International Work-
shop. I encourage you to make your voice heard during 2010 and to lend support to
crafting the best organizational framework to carry your organization forward for
the next twenty years. I thank you for the privilege of serving as your president for
the past two years. It has been a lot of work, but it has also been, in great measure,
a labor of love. 

December 2009 | Volume 12 Issue 45

Special Feature

Corporate Advisory Board — Member Companies

Air Force Center for Systems
Engineering

Alliant Techsystems

Analytic Services-Applied Systems
Thinking Institute

BAE SYSTEMS

Boeing Commercial Airplane Co.

Boeing Integrated Defense Systems

Boeing Integrated Defense Systems
– East

Booz Allen Hamilton Inc.

C.S. Draper Laboratory, Inc.

Carnegie Mellon University Software
Engineering Institute

Certification Training International

Defense Acquisition University

EADS Astrium

EADS Military Air Systems

EADS N.V.

Federal Aviation Administration (U.S.)

General Dynamics

Honeywell International

IBM Corporation

ITT

Japan Manned Space Systems
Corporation

JAXA (Japan Aerospace Exploration
Agency)

Jet Propulsion Laboratory

Johns Hopkins University

L-3 Communications Integrated Systems

Lockheed Martin Corporation

ManTech International Corporation

MAP systeme

Missouri University of Science and
Technology

Mitsubishi Electric Corporation

National Aeronautics and Space
Administration

National Geospatial – Intelligence Agency

National Reconnaissance Office

National Security Agency

Naval Surface Warfare Center  – Dahlgren
Division

Northrop Grumman Corporation

Northrop Grumman Information
Technology – TASC

Office of the Under Secretary of Defense
(AT&L), Systems and Software
Engineering

Project Performance International

Raytheon Corporation

Rockwell Collins, Inc.

Rolls Royce

Saab AB

SAIC

Sandia National Laboratories

Serco Defence, Science and
Technology

Siemens – UGS PLM Software

SPAWAR Systems Center
Charleston

SRA International

Stevens Institute of  Technology

Swedish Defence Materiel
Administration

Systems Engineering
Innovation Centre

Tectura Corporation

Thales

The Aerospace Corporation

The MITRE Corporation

UK MoD Integration Authority

United Technologies Corporation

University of Southern California

US Army ARDEC

US Army CERDEC

Vitech Corporation

INCOSE Past Presidents

Paul Robitaille, 2006/07

Heinz Stoewer, 2004/05

John Snoderly, 2002/03

John Clouet, 2001

Donna H. Rhodes, 2000

Ken Ptack, 1999

William W. Schoening, 1998

Eric C. Honour, 1997

V. A. (Ginny) Lentz, 1996

James Brill, 1995

George Friedman, 1994

Brian Mar, 1993

Jerome Lake, 1992

Promote INCOSE
To obtain materials to
p r o m o t e I N C O S E i n
the workplace and at
events such as regional
c o n f e r e n c e s , a n d
symposia, contact the
INCOSE Central Office:

info@incose.com
+1 858 541-1725, or access

the INCOSE Web site at
www.incose.org.

7670 Opportunity Road
Suite 220

San Diego, CA 92111-2222

We supply INCOSE table
signs, promotional items, and

informational materials.

www.incose.org

Special Feature

December 2009 | Volume 12 Issue 46

P e n n S t a t e | O n l i n e

 Gain a quality education in a convenient
online format

 Apply your skills to any engineering discipline

 Build a professional network with classmates

 Become a leader in your organization

 Finish in as little as two years

Online Master’s Degree in
Systems engineering
Advance Your Career

Penn State is committed to affirmative action, equal opportunity, and the diversity of its workforce. U.Ed.OUT 10-0369/10-WC-148bkh/bjm

www.wo r l d c am p u s . p s u . e d u/ I N COS E

Apply now

December 2009 | Volume 12 Issue 47

Special Feature

INSIGHTINSIGHT
Special
Feature

Introduction to this Special Edition on Model-based Systems
Engineering Robert Cloutier, robert.cloutier@incose.org

Model-based systems engineering (MBSE) has been with us
for many years now. In the fall of 1998, a special issue of
INSIGHT (vol. 1, no. 3) proclaimed it as “a new paradigm,”

and included these articles:
“The INCOSE Model Driven System Design Interest Group,” 1.	
by Howard Lykins and Bob Cohen
“Information Models as a Prerequisite to Software Tool 2.	
Interoperability,” by Byron Purves and Loyd Baker
“Aspects of Modeling,” by Ingmar Ogren3.	
“The Benefits of Model Based Engineering,” by David W. 4.	
Oliver
“DD21 Smart Product Model,” by Jerry Golub5.	

A little over a decade later, it seems appropriate
to take a closer look at what we have learned,
and where we may be heading with regard to
MBSE. One sign of the rising interest in MBSE is
that during this year’s International Symposium
in Singapore, there were two MBSE tracks, and
participants of the MBSE Initiative also met the
day before the conference began. Further evidence
can be found in this issue of INSIGHT, where there
are thirteen articles on model-based systems
engineering, ranging from the current and future
trends, research in MBSE, and most important,
examples and lessons learned — reflecting a
consensus that MBSE is “ready for prime time”
(under certain conditions).

It is clear reading these articles that there is no single view of
what constitutes model-based systems engineering. Some may
say it is synonymous with using the Systems Modeling Language
(SysML). Further, there are the methodology wars — functional
decomposition versus object-oriented decomposition. Others will
say MBSE consists of behavioral analysis or some other tool of the
month. For my part, I have been suggesting to my students that the

specific tool, or language, or approach, is not the important thing;
rather, systems engineers should model to understand the problem,
and to communicate with others about the problem. If your
modeling approach helps you accomplish that, it is a good thing.

There is no common thread that runs through the articles,
except that it is important to model. Therefore, you can read the
articles in any order you wish. I will briefly introduce the articles
here, and you can turn to those you are most interested in first—but
I highly recommend that you ultimately read them all. Let me
lead off with Sandy Friedenthal and his presentation of lessons
learned from early adoption of SysML. He goes on to discuss the
future directions for SysML, including the potential for a SysML

certification program. Ron Williamson follows
that up with an article on the forthcoming Unified
Modeling Language (UML) profile for defense
projects, focusing specifically on complex systems
and system of systems. This profile is called
UPDM.1 Next, if you are unsure about the alphabet
soup of modeling tools available for MBSE, Jeff
Estefan introduces us to a systems-engineering
modeling tool survey that was conducted by
the Jet Propulsion Laboratory, and is available
through INCOSE. There exists a U.S. Department
of Defense certification and accreditation process,
and Curtis Barefield addresses the use of MBSE as
a supplement to that process.

Did I mention research? Jose Garcia presents
some of his research by looking at the use of holons and operational
evaluation modeling for context-sensitive systems for MBSE,
and Russell Peak and his team present a fascinating project that
is underway with Lockheed Martin and John Deere to integrate
system design with simulation and analysis using SysML. It is a

1. The Unified Modeling Language Profile for the United States Department of Defense
Architecture Framework and the United Kingdom Ministry of Defense Architecture
Framework.

Special Feature

December 2009 | Volume 12 Issue 48

real-life example of how SysML can be used as a central repository for a multitude
of data from engineering tools. Jack Ring offers us a “Model-based Systems Praxis
for Intelligent Enterprises.”

And now, let’s discuss the practitioners. Robert Karban, Rudof Hauber, and
Tim Weilkiens demonstrate for us the real-world application of SysML to the
design of the European Southern Observatory telescope. First it was used to
reverse engineer the design artifacts, and then it was used to forward engineer
part of the European Extremely Large Telescope (E-ELT). Chris Delp and his team

Table 1. MBSE authors

Author Affiliation

1 Robert Cloutier Stevens Institute of Technology

2 Sanford Friedenthal Lockheed Martin

3 Ron Williamson Raytheon

4 Jeff Estefan Jet Propulsion Laboratory

5 Curtis Barefield Booz Allen Hamilton

6 Jose S. Garcia, Jr The Boeing Company

7 R. Karban European Southern Observatory

R. Hauber HOOD group

T. Weilkiens Oose GmbH

8 Jack Ring Innovation Management

9 C. Delp NASA/JPL

L. Cooney NASA/JPL

C. Dutenhoffer NASA/JPL

R. Gostelow NASA/JPL

M. Jackson NASA/JPL

M. Wilkerson NASA/JPL

T. Kahn NASA/Ames

S. Piggott Canadian Space Agency

10 Russell Peak Georgia Institute of Technology

Chris Paredis Georgia Institute of Technology

Leon McGinnis Georgia Institute of Technology

Sandford Friedenthal Lockheed Martin

Roger Burkhart Deere & Company

11 Steven Jenkins Jet Propulsion Laboratory

12 Harald Eisenmann EADS Astrium GmbH

Hans-Peter de Koning European Space Agency

13 Anatoly Levenchuk TechInvestLab.ru

presents another “space-age” article for this issue, “The Challenge of Model-based
Systems Engineering for Space Systems, Year 2,” and Harald Eisenmann discusses
European space-system development. Next, Steve Jenkins addresses a modeling
approach to document production.

Finally, we have an article from our newest INCOSE chapter from Russia.
Anatoly Levenchuk reminds us that while SysML is gaining acceptance and
momentum, we always need to be looking forward. He reminds us that SysML has
its roots in the software community’s Unified Modeling Language (UML). Moreover,
there are a number of new technologies coming out of that same software practice
toward which systems engineers should not turn a blind eye.

And there you have it: MBSE articles from noted authors and members of
INCOSE, researchers, practitioners, and visionaries. I would like to thank each and
every one of the authors who contributed to making this issue a large success. It
has been a pleasure working with each of you. Your enthusiasm was such that I
never had a problem “running down the next submission.”

Table 1 lists the contributors’ names, and organizational affiliations. As you can
see, the contributors come from a wide array of organizations in the United States
and Europe that are serious about MBSE.

I hope you enjoy reading this special issue on model-based systems engineering.

Contact Holly Witte, Foundation Managing Director, for more information.
holly.witte@incose.org

Have you remembered the Foundation in your will?
Many companies match gifts. Please ask your company to match your gift.

We accept all major credit cards.

Start off a banner year for the INCOSE
Foundation with a gift to the future.

You make the difference — we provide the
means through scholarships and grants.

Special Feature

December 2009 | Volume 12 Issue 49

Delivering graduate programs tailored to the real-world education needs
of today's Software and Systems Professionals

School of Systems and Enterprises

SOFTWARE ENGINEERING

Courses delivered in convenient and flexible formats, on-site at industry and government locations, online via Stevens award-winning
WebCampus and on-campus at Stevens in Hoboken, NJ and Washington, DC.

The Master of Science program in Software Engineering (SSW) emphasizes the skills needed to apply software technologies to the realization of software products on time, within
budget and with known quality. Our courses teach you the latest and best software engineering skills and theory, to allow you to effectively architect, build, and maintain both
large and small scale systems.

The program consists of the following six required core courses, and four faculty advisor directed electives:

• SSW 540 Fundamentals of Software Engineering • SSW 533 Software Cost Estimation and Metrics

• SSW 564 Software Requirements Analysis and Engineering • SSW 565 Software Architecture and Component-Based Design

• SSW 567 Software Testing, Quality Assurance and Maintenance • SSW 689 Software Systems Reliability Theory and Practice

Electives: Students are required to complete four advisor-approved electives, or any one of the Graduate Certificates listed above.

http://sse.stevens.edu/Software

Linda Laird
Program Director, Software Engineering

School of Systems and Enterprises
Stevens Institute of Technology

Hoboken, NJ and Washington, DC

Email: Linda.laird@stevens.edu

FOR ADDITIONAL INFORMATION CONTACT:

Master of Science in Software Engineering
Graduate Certificates in:

• Software Engineering • Systems-Centric Software Engineering

• Software Engineering in Finance • Financial Software Engineering

December 2009 | Volume 12 Issue 410

Special Feature

SysML: Lessons from Early Applications and Future Directions
Sanford Friedenthal, sanford.friedenthal@incose.org

The Object Management Group’s Systems Modeling Language
(OMG SysML™) is “a general-purpose graphical modeling
language for specifying, analyzing, designing, and verify-

ing complex systems that may include hardware, software, infor-
mation, personnel, procedures, and facilities. In particular, the
language provides graphical representations with a semantic foun-
dation for modeling system requirements, behavior, structure, and
parametric equations that can integrate with other engineering
analysis models. SysML represents a subset of UML 2 1 with exten-
sions” to satisfy the needs for system modeling.2 Further informa-
tion on SysML can be found at http://www.omgsysml.org.

The OMG SysML specification was adopted in 2006 and version
1.0 became an available specification in September 2007. Since
then, the SysML specification has continued to evolve, with ver-
sion 1.1 published by the OMG in November 2008 and version 1.2
submitted to the OMG in September 2009. Several tool vendors have
implemented SysML in their tools, several writers have written
books and articles, and academic departments have begun to offer
courses that include SysML. Early adopters across the industrial
world have begun to use SysML in a broad range of aerospace and
commercial applications. The INCOSE Model-Based Systems Engi-
neering Initiative has yielded results from applying SysML in some
of the MBSE Challenge teams (see “The Challenge of Model-based
Systems Engineering for Space Systems, Year 2” in this issue). This
experience and infrastructure are providing a foundation for more
widespread adoption of the language as part of a model-based
systems-engineering approach. This article highlights some of the
observations and lessons from early applications of SysML and
looks at future directions for the language to further enable the
practice of MBSE.

Lessons Learned
The following are some lessons learned from early applications

1. Unified Modeling Language, version 2.0.
2. Object Management Group, “What is OMG SysML?” OMG Systems Modeling
Language: The Official OMG SysML Site, http://www.omgsysml.org/#What-Is_SysML
(accessed 26 Oct. 2009).

of SysML in support of MBSE.
1. MBSE is a cultural change. A model-based approach to

systems engineering involves a fundamental shift from traditional
documentation-based approaches. In MBSE, the model becomes a
primary artifact to represent the system specification and design.
The system model is managed and controlled, and some of the
documentation becomes a by-product that is populated by the
modeling information. This change from a traditional document-
centric view of systems engineering can require a different way
of thinking about how the systems-engineering effort is planned,
executed, and controlled. An organization or project team should
not make the transition to MBSE in an ad-hoc manner, but should
employ concepts of organizational change in support of continuous
improvement. These concepts include clearly identifying the issues
to be addressed by MBSE, engaging stakeholders, developing and
executing a plan for improvement or transition, and monitoring the
results.

2. A well-defined MBSE method is essential. MBSE formal-
izes the practice of systems engineering through the use of models.
As such, MBSE requires a high level of rigor to leverage its benefits.
In developing a system model, one can quickly get overwhelmed
with the amount of information that is generated about the system.
An MBSE method must be clearly defined to support the model
development. The method should also provide guidance on how to
organize the system model to ensure it can be navigated, managed,
and controlled. Several different MBSE methods are summarized
in an article in this issue by Jeff Estefan (“Survey of Model-Based-
Systems-Engineering Methodologies”), which provides an excellent
starting point for identifying candidate MBSE methods.

3. New practitioners need training in the language, meth-
ods, and tools of MBSE. MBSE with SysML requires a set of skills
that take time to learn. The learning curve can take several months
to reach a moderate level of proficiency in the application of SysML
in support of MBSE. It should be noted that there are distinct
concepts and proficiencies required to learn SysML, the MBSE
method, and the modeling tools. As a result, it has been found use-

Special Feature

December 2009 | Volume 12 Issue 411

ful to provide separate the training in the language, method, and tools to develop
proficiency in each area. The training should also be adapted to different members
of the project team. In particular, a small core modeling team may require more
significant MBSE training, while the larger project team may only require sufficient
training to understand the modeling artifacts. After the initial training, ongoing
mentorship is essential to provide the support needed to help the team climb the
learning curve.

4. Pilot projects can be used to validate the MBSE approach. Before deploy-
ing MBSE to a significant project, it is recommended that pilot projects be imple-
mented to validate the MBSE approach, and its applicability to the project. The pilot
shows how MBSE can most effectively be applied to a targeted set of programs. The
pilot can also serve to build the skill base for use on the program, and the pilot
results, including the modeling artifacts, can
serve as a starting point or template for the
targeted programs. A pilot project should be
well planned with clear objectives, deliver-
ables, milestones, and sufficient resources
to achieve the objectives. In addition, team
continuity with effective leadership and
stakeholder participation are essential elements for a successful pilot project.

5. Well-defined modeling objectives and scope are critical to MBSE suc-
cess. An old axiom is that modeling is intended to address specific concerns or
answer specific questions. This is particularly critical in applying MBSE. The appli-
cation of MBSE to a particular project should have a well-defined purpose, objec-
tives, and scope, and the scope should be consistent with the planned resources
and schedule. There are many aspects of MBSE that can provide value to a project,
such as improvements in the specification quality, integrity of system design,
productivity through the evolution of the system design, reduced risk, and other
potential benefits. However, different levels of model breadth, depth, and precision
are required to support different purposes. Scoping the model to meet its objec-
tives within program constraints is essential to managing stakeholder expectations
including those from program management, the customer, and other members of
the development team.

Future Directions
SysML is in its early stages of adoption. Some of the areas that are currently

being pursued are highlighted below.

1. Language evolution. The language continues to evolve in response to end-
user and tool-vendor feedback. The OMG SysML Revision Task Force for SysML

version 1.3 was chartered in September 2009 and is cochaired by Roger Burkhart
and Rick Steiner. The scope of revisions through the Revision Task Force is limited
by OMG policy. Major revisions are handled through a new request for proposal.

A SysML Request for Information was issued at the June 2009 OMG meeting. The
survey is used to elicit feedback on issues and recommendations relative to the use
of SysML in support of MBSE. The survey results will be analyzed by Rob Cloutier
and made available to the OMG and INCOSE following the period of data collec-
tion and analysis, which will conclude early 2010. This feedback will provide a key
input to identify future enhancements to incorporate into a SysML roadmap.

2. SysML Certification. A OMG Certified Systems Modeling Professional
(OCSMP) certification program has been jointly initiated by the Object Management
Group and INCOSE. The certification objectives are to certify systems engineers

and other practitioners on SysML with the
purpose of (a) helping systems-engineering
professionals to assess and demonstrate their
knowledge and skills in SysML and its appli-
cation to MBSE, (b) helping organizations
grow their capability in this critical skill area,
and (c) promoting the use of SysML in support

of MBSE. The certification program will consist of four competency levels aimed at
model reviewers who need to interpret the diagrams, and model developers who
need to create the models. The certification program is expected to be in place in
2011.

3. Integration with Simulation and Analysis. There has been significant
effort to establish approaches to integrate the system model in SysML with vari-
ous simulation and analysis models. Some of this work is addressed later in an
article by Russell Peak. This is considered a critical area to more fully leverage
an MBSE approach across a diverse set of modeling and simulation domains. One
such example is the integration of SysML with Modelica models. Modelica is a
sophisticated and standardized simulation modeling language that is maintained
by the Open Modelica Association. A working group has been established as part
of the OMG’s Systems Engineering Domain Special Interest Group to formalize the
mapping between SysML and Modelica; it is chaired by Chris Paredis. This effort
is expected to result in a customized version of SysML that can be automatically
transformed to a Modelica model and executed by a Modelica modeling tool.

4. MBSE Tool Interoperability. The system model must integrate across a
range of modeling domains, including hardware, software, analysis, and test
models and tools. Model and data interchange standards are essential to achieve
the model and tool interoperability. Evolution of model and data interchange stan-
dards continues to be a focus of the OMG’s standards activities. The OMG Model

A model-based approach to systems engineering
involves a fundamental shift from traditional

documentation-based approaches.

Special Feature

December 2009 | Volume 12 Issue 412

Interchange Working Group is coordinating vendor efforts to demonstrate and
enhance their ability to exchange modeling information via the XML Metadata
Interchange (XMI) standard. This working group established a set of test cases
to incrementally verify the exchange capability of UML, SysML, UPDM, and
other profiles. A second effort, led by David Price and Alice Feeney, is focused
on the integration between SysML and ISO Application Protocol 233 (AP233).
AP233 is a STEP-based3 data-exchange standard targeted to support the needs
of the systems-engineering community by integrating systems-engineering
data with other types of engineering analysis that are typically associated
with hardware design. A validation tool developed by Peter Denno from the
U.S. National Institute of Standards and Technology is being used to support
interoperability testing.

5. SysML Integration with UPDM and Other Profiles. SysML is being
integrated with other UML profiles. In particular, SysML can be leveraged when
applying the UPDM, as described in Ron Williamson’s article in this issue. The
UPDM can be used for architecting at the system-of-systems level, and then
integrated with SysML for systems modeling. Other profiles that are being
integrated with SysML include MARTE (Modeling and Analysis of Real-Time
Embedded Systems).

Summary
Model-based systems engineering is part of INCOSE’s Systems Engineering

Vision 2020, and will be fundamental to the future practice of systems
engineering. SysML was jointly developed by INCOSE and the Object
Management Group to provide an enabling capability for MBSE. There has
been considerable early application of SysML across a range of industry and
application domains, and much has been learned about the challenges of
transitioning to a model-based approach. The need for a systematic approach
to transition from a document-based approach to a model-based approach is
essential, and includes the need for well-defined MBSE methods, training,
and piloting of the approach. The MBSE initiative is helping to address some
of these challenges by providing a body of knowledge that can be shared
across industry and academia. In addition, several initiatives are underway
to enhance the SysML language, certify systems modelers, enhance the
integration with simulation, improve tool interoperability, and integrate with
other domain-specific modeling languages such as UPDM and MARTE. 

3. STEP: Standard for the Exchange of Product Model Data, ISO 10303

INCOSE’s model-based systems-engineering effort is focused on improving
model-based methods for systems engineering. One of the MBSE activities, Sys-
tem of Systems, addresses the modeling and systems-engineering capabilities

necessary to develop enterprise-wide solutions in a more cost-effective, timely, and
high-quality manner than would be possible with traditional systems engineering.
The Defense Acquisition University’s Defense Acquisition Guidebook defines a sys-
tem of systems as “a set or arrangement of systems that results when independent
and useful systems are integrated into a larger system that delivers unique capabil-
ities” (2004 version, chapter 4, quoted in ODUSD 2008: v). Developing the vocabu-
lary, methods, and tools in support of enterprise architectures is a critical element
of both the MBSE system-of-systems top-down needs-development strategy and the
bottom-up strategy, which leverages the best practices and tooling in the industry.
The development of model-based standards that clearly define the metamodels
associated with enterprise architectures and associated models is fundamental to
the success of model-based development.

The partnership and cross membership between INCOSE and the Object Man-
agement Group (OMG) has produced a productive synergy of ideas and methods;
this collaboration continues with the ongoing efforts to develop a unified profile
for military architecture frameworks. An industry standards team, composed
of INCOSE and OMG members, has been established to build on previous efforts
within the OMG to develop a modeling standard that supports both the U.S. Depart-
ment of Defense Architecture Framework (DoDAF) and the U.K. Ministry of Defence
Architecture Framework (MODAF). The modeling standard is called UPDM, the
Unified Profile for DoDAF and MODAF.

UPDM defines an industry standard representation for enterprise architectures
that are compliant with DoDAF 1.5 or MODAF 1.2. UPDM leverages the existing
SysML standard for requirements, parametrics, allocation, and other critical
features that enable UPDM to integrate with SysML models for system-level
specification, design, and analysis. UPDM is an Object Management Group (OMG)
initiative. UPDM is expected to lead to significant improvements in the consistency,
quality, and tool interoperability of enterprise architectures that comply with
these frameworks. In addition, it is expected to be fully compatible with both UML
models for specification and design models for Level 0 compliance and SysML
specification and design models for Level 1 compliance. Developing a specification
that fully supports DoDAF/MODAF is essential for organizations developing NEC

Model-based Systems Engineering for Systems
of Systems Ron C. Williamson, ronald.williamson@incose.org

Special Feature

December 2009 | Volume 12 Issue 413

(network-enabled capability) systems. The UPDM Team will also make use
of NATO’s recently adopted architectural framework standard, NAF version 3.
NAF is based on MODAF 1.1 but has been extended to support service-oriented
architecture (SOA). SOA views have since been included in MODAF 1.2.

Although the UPDM team group is independent of the OMG, it submitted a
new specification to the OMG using the OMG fast-track Request for Comments
adoption process. The final UPDM specification was anticipated to become
an available specification by September 2009. UPDM will then be updated
through the OMG technology adoption process to address the requirements of
DoDAF 2.0. The team is also considering the Security and Information Protec-
tion views of the Canadian DNDAF.

The UPDM team has already defined working groups to focus on specific
aspects of the ongoing specification updates and plans to set up a forum
to enable interested parties to keep up to date with the progress on the
specification. The membership of the UPDM team comprises development
tool vendors and defense-industry contractors along with representatives of
the key government agency stakeholders — the U.S. Department of Defense
and the U.K. Ministry of Defence.

In addition to the UPDM effort, the INCOSE MBSE SoS activity intends to
leverage and influence the ongoing standards efforts to develop model-based
approaches to systems engineering at the level of the enterprise or the system
of systems. Based on industry feedback, the SoS activity will focus on key
perspectives relevant to the MBSE SoS activity including (but not limited to)

Executable models,•	
Business structure and behavioral models,•	
Service-oriented models,•	
Security models, and•	
Information models.•	

Case Study: Gap Analysis using UPDM
To further illustrate the current mainstream approach to modeling sys-

tems of systems, we will summarize a case study of a subset of the key per-
spectives listed above. First, let’s review a brief summary of the key concepts
included in UPDM as a system-of-systems modeling framework.

Viewpoints and views•	
Critical organizing constructs to enable the effective management of ◊	
potentially complex models
Extensible to accommodate new viewpoints and views◊	

Strategic capability, operational/business, services, systems, standards •	
viewpoints

Predefined set of viewpoints and views to accommodate DoDAF 1.5 and MODAF ◊	
1.2 specifications “out of the box”
User model visualization integrated via standard UML, SysML, and SoaML ◊	
visual modeling standards

Context, interfaces, constraints, and parametrics•	
Supports core systems-engineering principles directly applicable to system-of-◊	
systems-level analysis and engineering

Context via block or composite structure model elements and diagrams��
Interfaces using standard and flow ports on structural elements with ��
strongly typed interface specifications
Constraints applicable to structural, linkage, dynamics, and parametric ��
model elements
Parametrics capturing the boundary conditions and key performance ��
parameters allocated to structural and behavioral models elements
Technology standards��

Includes current and emerging standards that may be allocated to any model ◊	
element
Leverages allocation mechanisms built into SysML◊	

Next, the key set of requirements that drove the UPDM standards specification were
captured as a domain metamodel structure (see metamodel structure in figure 1 below) in
a set of model element packages. This metamodel defined the key terms, relationships,

Measurements

RequirementsEnvironment

Ontology

Structure

Structure

Organizational

Typical

External Types

Technical Standards Elements

Actual

Structure

StructureBehavior Behavior

Behavior

Milestones

Milestones

ALL ELEMENTS Acquisition Elements Operational Elements

Service Elements Systems Elements

Strategic Elements

Data Data

Data

Flows

Flows
Views

Figure 1. UPDM system-of-systems metamodel structure

Special Feature

December 2009 | Volume 12 Issue 414

and constraints that defined the underlying semantics of the architecture frameworks (i.e.,
DoDAF 1.5 and MODAF 1.2). These requirements were then translated into a profile specification
(see profile example in figure 2).

Note in figure 1 that the emphasis in each package (where applicable) on key modeling con-
structs such as behavior, structure, data, flows, milestones, requirements, views, environment,
measurements and ontology. Extensibility is accommodated through the use of external type
definitions.

As depicted in figure 2, the structural and temporal aspects of an enterprise are critical to

modeling the evolution of system of systems over time within the con-
text of a well-defined environment and a well-defined mission (either
business or military oriented). The logical concept of a capability is
fundamental to enterprise-level analysis, keeping the level of discourse
away from any physical realization of the solution space.

Modeling Tools Support
During the several years of evolution of the UPDM standards effort

within the Object Management Group process, all major tool vendors
evaluated and/or participated in the effort. All key stakeholders
participated in the process in addition to the tool vendors and
included representatives major aerospace companies (as end users of
the tool and MBSE for SoS subject-matter experts), the United States
Department of Defense, British Ministry of Defence, the Canadian DND,
and NATO customer representatives. Key vendors have committed
to implementing the UPDM standard in their tools and include the
following:

Artisan Software Tools, UPDM profile•	
EmbeddedPlus, UPDM plug-in•	
IBM, Rational Rhapsody, UPDM profile•	
NoMagic, MagicDraw, UPDM profile•	
Sparx Systems, enterprise architect UPDM profile•	

References
National Defense Industrial Association. 2009. DoDAF 2.0 meta model (DM2) walk-

through. Slides from presentation given at U.S. Department of Defense Enterprise
Architecture Conference (Washington, DC). http://www.ndia.org/DoDEntArchitecture/
Documents/DoDAF%20Metamodel%20Walkthru%202009-06-01r2.pdf.

Object Management Group. 2009. Unified Profile for the Department of Defense
Architecture Framework (DoDAF) and the Ministry of Defence Architecture Framework
(MODAF): FTF beta 2. Available at http://www.omg.org/cgi-bin/doc?dtc/09-05-08.

ODUSD (Office of the [U.S.] Deputy Under Secretary of Defense for Acquisition and
Technology, Systems and Software Engineering). 2008. Systems engineering guide for
systems of systems. Version 1.0. Washington, DC. Available at http://www.acq.osd.
mil/sse/docs/SE-Guide-for-SoS.pdf.

U.K. Ministry of Defense. 2008. The MOD architecture framework version 1.2.
http://www.modaf.org.uk.

U.S. Department of Defense. 2007. DoD architecture framework version 1.5. 2 vols.
Washington, DC. Available at http://www.defenselink.mil/cio-nii/docs/DoDAF_
Volume_I.pdf and http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_II.pdf.

«stereotype»
WholeLifeEnterprise

«stereotype»
EnterprisePhase «stereotype»

StructuralPart

«stereotype»
TemporalPart

«stereotype»
Mission

«stereotype»
DefinesArchitecture

«stereotype»
ArchitecturalReference

«stereotype»
ArchitecturalDescription«stereotype»

ArchitectureMetadata

«stereotype»
Capability

«stereotype»
Environment

«stereotype»
Metadata

«metacontraint»
{umlRole = “class”}

«metacontraint»
RepresentedBy
{umlRole = “supplier”}

0..*
environmentConditions

– endDate : ISO8601DateTime [1]
– startDate : ISO8601DateTime [1]

exhibits

*

inhabits

0..*

«metacontraint»
{umlRole = “client”} «metacontraint»

{umlRole = “client”}
«metacontraint»

{umlRole = “supplier”}

«metacontraint»
{umlRole = “annotatedElement”}

– approvalAuthority : ActualOrganizationalResource [*]
– architect : String [*]
– assumptionAndConstraint : String [*]
– creatingOrganization : ActualOrganizationalResource [*]
– dateCompleted : String [0..1]
– purpose : String [*]
– recommendations : String [*]
– summaryOfFindings : String [*]
– toolsUsed : String [*]
– toBe : Boolean [1]
– architectureFramework : ArchitectureFrameworkKind [0..1]

«metacontraint»
{umlRole = “class”}

«metacontraint»
{umlRole = “useCase”}

Fulfills

«metacontraint»
{umlRole = “type”}

«metacontraint»
{umlRole = “type”}

– dublinCoreElement : String [0..1]
– modMetaDataElement : String [0..1]
– name : String [1]

– MissionArea : String [*]

Figure 2. UPDM profile example

http://www.ndia.org/DoDEntArchitecture/Documents/DoDAF%20Metamodel%20Walkthru%202009-06-01r2.pdf
http://www.ndia.org/DoDEntArchitecture/Documents/DoDAF%20Metamodel%20Walkthru%202009-06-01r2.pdf
http://www.omg.org/cgi-bin/doc?dtc/09-05-08
http://www.acq.osd.mil/sse/docs/SE-Guide-for-SoS.pdf
http://www.acq.osd.mil/sse/docs/SE-Guide-for-SoS.pdf
http://www.modaf.org.uk
http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf and http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_II.pdf
http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf and http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_II.pdf

December 2009 | Volume 12 Issue 415

Visit www.3ds.com/hightech for more information

At a time when:
	 •	 More	than	40%	projects	fail	due	to	lack	of	requirements	and	traceability	capability.
	 •	 More	than	50%	of	projects	fail,	due	to	poor	systems	architecture	validation.
	 •	 80%	of	costs	are	committed	in	the	first	20%	of	product	lifecycle.

How can we manage Product & Process development complexity
and comply to ever growing stringent industry regulations ?

The “Collaborative Systems Engineering” Solution is the answer:
	 •	 Ensuring	right-to-market	delivery	through	complete	traceability
	 	 	from	customer	needs	to	final	product	validation.
	 •	 Mastering	a	collaborative	model	based	systems	definition
	 	 unifying	Requirement,	Functional,	Logical	&	Physical	views.
	 •	 Assuring	the	right	engineering	decisions	are	made	by	simulating	
	 	 product	behavior	&	environment,	powered	by	a	multi-engineering
	 	 modeling	language.

Collaborative Systems Engineering Solution:

Fostering innovation and mastering
Future sustainable product development

©
	D
as
sa
ul
t	
Sy

st
èm

es
	2
00

9.
	A
ll	
ri
g
h
ts
	r
es
er
ve

d
.	D

es
ig
n
ed

	b
y	
W
ig
w
am

December 2009 | Volume 12 Issue 416

Special Feature

MBSE Methodology Survey
Jeff Estefan, jeff.estefan@incose.org

One of the activities of INCOSE’s MBSE Initiative deals with
Processes, Practices, and Methods. This activity is com-
prised of two components. The first of these is the subject of

this article: under my leadership, this component aims to provide
the international systems-engineering community with a survey, to
be updated annually or on an as-needed basis, of some of the lead-
ing MBSE methodologies used in industry.1 The other component,
under the leadership of Ray Jorgensen and Joe Bedocs, deals with
configuration-management practices with the objective of identify-
ing and codifying approaches to manage and control the model
baseline and address integrating models with multiple users.
In the future, it is hoped that the scope of the overall activity be
expanded to publish industrial best practices and MBSE principles.

Survey Background and Status
The MBSE methodology survey was originally initiated as an

internal study at NASA’s Jet Propulsion Laboratory (JPL) in Pasa-
dena, California, as part of an initiative to advance the state of
the practice in model-based engineering. JPL then identified the
work product as a roadmap for the 2007 fiscal year, along with
industry benchmarking in MBSE. The objective of the study was
to go beyond a simple survey. The engineers at JPL felt that addi-
tional supporting material was important in helping to ground the
concepts of MBSE. This included differentiating the meaning of
processes, methods, and tools, characterizing the role of lifecycle
models—specifically, those for project, acquisition, and systems
engineering—and identifying and characterizing the role of models
in support of MBSE processes. In addition, they felt that there
needed to be some discussion of the role of the Unified Modeling
Language (UML) and SysML, which are visual modeling-language

1. An MBSE methodology can be characterized as the collection of related processes,
methods, and tools used to support the discipline of systems engineering in a model-
based or model-driven context. We adopt the definition of INCOSE Fellow James N.
Martin that differentiates process from method and tool (Martin 1997). Martin defines
process as a logical sequence of tasks performed to achieve a particular objective.
Processes essentially define what needs to be done without specifying the how. A
method consists of techniques for performing a task, in other words, it defines the how
of each task described by the process. A tool is an instrument that, when applied to a
particular method, can enhance the efficiency of the task — provided it is applied prop-
erly and by somebody with adequate skills and training in the tool.

standards from the Object Management Group.
While the MBSE methodology survey report was published

initially as an internal JPL engineering memorandum, it was
scrubbed, cleared for external release, and published on 25 May
2007 as Revision A (Estefan 2007). I then contributed this document
to the INCOSE MBSE Initiative as part of its Processes, Practices,
and Methods activity. It was also made available for public down-
load on the OMG SysML official Web site, available at http://www.

omgsysml.org.
The publication was intended to be a “living” document, to be

updated annually or on an as needed basis. This first study surveyed
five methodologies, each of which will be briefly summarized below.
An important caveat is that this was a survey report only. It was not
intended to be a formal assessment of these candidate MBSE meth-
odologies, because such an assessment is tightly associated with
specific project and organizational needs, and thus, any assessment
would be highly subjective. It is up to the community of users to
assess which candidate MBSE methodology best suits their needs.

Analysis performed for the 2007 survey and reported during the
MBSE Workshop held in conjunction with the 2008 INCOSE Interna-
tional Workshop in Albuquerque suggested that there was a robust
set of MBSE methodologies ready for adoption by organizations and
practitioners at the time of publication. Feedback from the INCOSE
community suggested that a gap existed for considering additional
methodologies, some of which were highly targeted at software or
software-intensive systems. Given the large scope of model-based
software-engineering methodologies, I determined that such a sur-
vey would be too broad and that the software community already
had a robust set of candidate model-based methodologies to choose
from. Consequently, I decided to focus exclusively on MBSE meth-
odologies for the INCOSE MBSE Initiative. In addition, INCOSE
Fellow Jack Ring suggested that consideration should be given to
incorporating the pioneering MBSE work of INCOSE Fellow Wayne
Wymore on the “Wymorian” notation and associated methods.
Further analysis was needed to determine if additional candidate
MBSE methodologies had been overlooked.

As a result of the gap analysis performed following publication
of Revision A of the MBSE methodology survey report, an updated
version was published on May 23, 2008 as Revision B (Estefan
2008a). As with the Revision A report, this publication was made

http://www.omgsysml.org
http://www.omgsysml.org

Special Feature

December 2009 | Volume 12 Issue 417

publicly available on the OMG SysML Web site. It was also submitted to INCOSE
publication staff for consideration as an official INCOSE technical publication. This
updated revision incorporated the suggestion from the 2007–2008 gap analysis
to include an overview of Prof. Wymore’s pioneering MBSE work. The statement
of scope was also updated to reflect the focus on systems-engineering processes
rather than software-engineering processes. An additional methodology was
added to result in a total of six methodologies surveyed. This new methodology
documented in Revision B was Prof. Dov Dori’s object process methodology (OPM).
Finally, a new section was added to describe the role of OMG model-driven archi-
tecture (MDA) and executable UML foundation. Of course, Revision B also included
minor editorial updates from Revision A.

Results from this report were presented during the MBSE track at the 2008
INCOSE International Symposium in Utrecht, the Netherlands, in June 2008 (see
Griego 2008). During the course of the remainder of the 2008 year through early
2009, work was focused on formatting the Revision B survey as an official INCOSE
Technical Data publication (INCOSE-TD-2007-003-01) (Estefan 2008b), which is now
available for public download on the INCOSE Technical Resource Center Web site
at http://www.incose.org/ProductsPubs/techresourcecenter.aspx (under the “Modeling and
Tools Technical Committee” heading).

During the 2009 INCOSE International Workshop in San Francisco in January
2009, a gap analysis determined that an additional MBSE methodology should be
reviewed and incorporated into another revision of the survey. The addition added
Weilkiens’ SYSMOD methodology, which is described in his textbook Systems
Engineering with SysML/UML (Weilkiens 2007: 271–284) and available at http://

sysmod.system-modeling.com/. Throughout this effort, managed under the auspices of the
MBSE Initiative, I have worked to support the infusion of some of the methodologies
studied in the survey into various efforts of MBSE challenge teams, particularly the
space-systems challenge team led by Chris Delp (Delp et al. 2008, 2009).

Methodologies in Brief
The latest revision of the MBSE methodology survey at the time of submittal

deadline for this INSIGHT article was Revision B, which surveyed six methodolo-
gies. It is possible that Revision C or some variation such as a Wiki-based update
to the survey might be available by the time you are reading this article (see the
section below on “Future Work”). Nevertheless, a very brief summary of the six
methodologies published in the Revision B report is provided here. Space limita-
tions prevent a more detailed description. The interested reader should refer to the
INCOSE Technical Data publication INCOSE-TD-2007-003-01 for more details as well
as references for additional information (Estefan 2008b). A link to this publication
is provided in the reference list.

IBM Telelogic Harmony-SE. This methodology is a service-request-driven
approach, described by SysML structure diagrams and state/mode changes
(activities), which are described as operational contracts. This approach somewhat
mirrors the “vee” model. Task flow and work products include top-level process
elements of requirements analysis, system functional analysis, and architectural
design. Detailed task flows and work products are provided for each process
element and modeled as SysML activity diagrams.

INCOSE Object-Oriented Systems Engineering Methodology (OOSEM). This
methodology integrates a top-down (functional decomposition) approach with a
model-based approach. It leverages object-oriented concepts and uses SysML (for-
merly UML) to support the specification, analysis, design, and verification of sys-
tems. It is intended to ease integration with object-oriented software development,
hardware development, and testing. OOSEM includes the following activities:
analyze stakeholder needs, define system requirements, define logical architecture,
synthesize candidate allocated architectures, optimize and evaluate alternatives,
and validate and verify system.

IBM Rational Unified Process for Systems Engineering (RUP SE) for Model-
Driven Systems Development (MDSD). This methodology extends the RUP style
of concurrent design and iterative development to support new roles, artifacts, and
disciplines for systems engineering. This approach includes an emphasis on busi-
ness modeling, business actors, and flow of events as well as systems-engineering
model levels and model viewpoints. This approach introduces the concept of “local-
ity,” meaning a member of a system partition representing a generalized or abstract
view of physical resources, which are linked by connections. This methodology also
provides a schema for allocated vs. derived requirements by tying use-case flowdown
and flow of events in a “white-box” view of a system to locality/subsystem (allocated
requirements) and collaboration (derived requirements) and subsystem-level flow-
down activity. There is also support for designing additional components beyond
RUP software focus (e.g., hardware systems)—this is known as “RUP+.”

Vitech MBSE Methodology. This methodology initially was created by INCOSE
Fellow Jim Long and offered as a Vitech MBSE training series. Jim Long has
also offered a streamlined version of the training at past INCOSE International
Workshops and Symposia as well. The training module contains four primary
concurrent systems-engineering activities, which are linked and maintained
through a common system-design repository. Each activity is linked within the
context of associated “domains,” namely, process (systems-engineering activities),
source requirements, behavior, verification and validation, and architecture.

http://sysmod.system-modeling.com/
http://sysmod.system-modeling.com/

Special Feature

December 2009 | Volume 12 Issue 418

The methodology recommends a strong adherence to an agreed-upon “system-
definition language”— that is, a systems-engineering schema or ontology to
manage the syntax and semantics of model artifacts. This approach uses the
incremental process known as the “onion model,” which allows complete interim
solutions at increasing levels of detail during the system-specification process;
this produces a lower-risk design approach by checking for completeness and
discovering constraints early in the design process. Detailed testing methods are
described in support of system verification-and-validation activity.

JPL State Analysis (SA). Developed at NASA’s Jet Propulsion Laboratory, this
methodology leverages model- and state-based control architecture. This approach
defines state as a representation of the momentary condition of an evolving system;
it defines models as describing how the state evolves, and state variables as abstrac-
tions representing “knowledge” of the state (in other words, the known state of the
system is a value of its state variables at the time of interest). Together, state and
models supply what is needed to operate the system, predict its future state, control
it toward its desired state, and assess its performance. This approach defines an
iterative process for state discovery and modeling, and allows models to evolve as
appropriate across the project’s lifecycle. The state-analysis requirements process
helps bridge the gap between the requirements on software specified by systems
engineers. SA information is compiled in a Structured Query Language (SQL)-com-
pliant database referred to as the “state database.”

Dori Object Process Methodology (OPM). This methodology is a formal para-
digm for systems development, lifecycle support, and evolution. It combines
simple object process diagrams with object process language (constrained natural
language) and the basic building blocks of an object (something that exists or has
potential of existence physically or mentally), a process (pattern of transformation
that object undergoes), and the state (situation object can be in). It is a reflective
methodology that refers to system lifecycle as system evolution. In OPM, the “sys-
tem developing” (SD1) process contains three main stages: (1) requirement specify-
ing, (2) analyzing and developing, and (3) implementing. SD1 also includes a “using
and maintaining” state. Each process element can be “zoomed” multiple times.
Visual models (object process diagrams) and associated object process languages
are represented and captured in the OPCAT tool (available at http://www.opcat.com).

SYSMOD. As stated earlier, a gap analysis resulting from the MBSE Workshop at
IW09 indicated that the Weilkiens SYSMOD methodology should also be evaluated as
a possible candidate MBSE methodology to be included in a future survey report.

Future Work
Initially, the MBSE methodology survey was intended to be a living document.

However, it is difficult to maintain such a deliverable over the course of several
years. Consequently, an alternative approach to disseminating this type of
information to the community of systems-engineering practitioners is being
investigated at the time of this article’s submission. One potential solution might
be a Wiki-based system that would be made publicly available via an INCOSE
Web resource. This would allow authors or key focal individuals of specific MBSE
methodologies, as well as emerging MBSE methodologies, to post content to
the Wiki reflecting a synopsis of their particular methodology as well as links
to additional resources describing the methodology. Until such an alternative
becomes a reality, the participants of the INCOSE MBSE team will continue to
publish annual updates to the MBSE methodology survey.

Acknowledgement and Disclaimer
This research was carried out at the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and Space
Administration. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

References
Crisp, H. E., R. Wray, J. Carl, and S. Brown. 2007. Systems engineering vision 2020. INCOSE-

TP-2004-004-02. Version 2.03.

Delp, C., C-Y. Lee, O. de Weck, C. Bishop, E. Analzone, R. Gostelow, and C. Duttenhoffer. 2008. The
challenge of model-based systems engineering for space systems. INSIGHT 11 (5): 14–18.

Estefan, J. 2007. Survey of model-based systems engineering (MBSE) methodologies. Revision A. White
paper, INCOSE MBSE Focus Group. Available at http://www.omgsysml.org/MBSE_Methodology_
Survey_RevA.pdf.

 . 2008a. Survey of model-based systems engineering (MBSE) methodologies. Revision B. White
paper, INCOSE MBSE Initiative. Available at http://www.omgsysml.org/MBSE_Methodology_Survey_
RevB.pdf

 . 2008b. Survey of model-based systems engineering (MBSE) methodologies. Revision B.
INCOSE-TD-2007-003-01. Prepared by the Model-Based Systems Engineering Initiative of INCOSE.
Seattle, WA. Available at http://www.incose.org/ProductsPubs/pdf/techdata/MTTC/MBSE_
Methodology_Survey_2008-0610_RevB-JAE2.pdf.

Friedenthal, S., R. Griego, and M. Sampson. 2008. Workshop in Albuquerque promotes model-based
systems engineering. INSIGHT 11 (2): 45–47.

Griego, R. 2008. Model-based systems engineering activities. INSIGHT 11 (4): 45–46.

Martin, J. N. 1997. Systems engineering guidebook: A process for developing systems and products. Boca
Raton, FL: CRC Press.

Weilkiens, T. 2007. Systems engineering with SysML/UML. Burlington, MA: Morgan Kaufman. 

http://www.omgsysml.org/MBSE_Methodology_Survey_RevA.pdf
http://www.omgsysml.org/MBSE_Methodology_Survey_RevA.pdf
http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf
http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf
http://www.incose.org/ProductsPubs/pdf/techdata/MTTC/MBSE_Methodology_Survey_2008-0610_RevB-JAE2.pdf
http://www.incose.org/ProductsPubs/pdf/techdata/MTTC/MBSE_Methodology_Survey_2008-0610_RevB-JAE2.pdf

December 2009 | Volume 12 Issue 419

Special Feature

Using Model-based Systems Engineering to Supplement the Certification-and-
Accreditation Process of the U.S. Department of Defense Curtis Barefield, curtis.barefield@incose.org

Model-based systems engineering can be used to improve
or complement risk analysis and management in the
certification-and-accreditation (C&A) process of the

U.S. Department of Defense by using modeling to provide a clear
picture of residual risk associated with a system or enterprise.
MBSE is also useful to create a true living document to enforce
configuration management and track design changes through the
lifecycle of the system or enterprise. Both ideas are reasonable
and achievable, and could serve as a method to incorporate
MBSE more fully into the lifecycles of federal and private-sector
systems and enterprises. The resulting models could logically
be tied to the architecture views created using Department of
Defense Architecture Framework (DoDAF) and Ministry of Defense
Architecture Framework (MODAF), which provide the exact type of
overview alluded to in the briefing slides for MBSE on the INCOSE
Web site (https://connect.incose.org/tb/MnT/mbseworkshop/SAWG%20

Shared%20Documents/MBSE%20Overview.ppt).
Of course, MBSE could be used to create models supporting any

architecture framework (thereby providing a deeper insight to the
system or enterprise), but federal law has mandated risk manage-
ment and the identification of risk for federal systems. Anything
that will improve risk assessments and lifecycle management
could be introduced using existing legacy or new program of record
systems in the C&A pipeline. Up-front costs would increase, but the
savings could be realized during post-deployment operations.

Governance issues related to Federal Acquisition Regula-
tion (FAR), Defense Federal Acquisition Regulation (DFAR), DoD
5000 (acquisition) and 8500 (IA) series that are not captured or
addressed in the architecture framework views would be addressed
in the MBSE modeling as constraints; as parametric, activity, or
state diagrams; or as use cases with traceability directly to the
associated mission assurance category (MAC) and Confidentiality
IA controls. Test procedures and results would be visually traceable
to models at the level of the system or component.

Due to enterprise and system visibility from the architecture
to the component level, the improved risk-analysis process would

reduce post-deployment costs because potential problems would
be identified earlier in the lifecycle. Some additional considerations
include the following:

1.	 In the Department of Defense, the Defense Information
Assurance Certification and Accreditation Process (DIACAP)
has eliminated most of the original System Security
Authorization Agreement (SSAA) sections and attachments,
effectively eliminating the living document that was designed
to manage and access systems throughout their lifecycle.
DIACAP has effectively replaced the SSAA with a database
record and a few exhibits.

2.	 The National Information Assurance Certification and
Accreditation Process (NIACAP) SSAA, although designed to
be a living document, normally becomes “shelfware” until it
is time for the annual (periodic) review and re-accreditation at
the three-year point, as mandated by the Federal Information
Security Management Act (FISMA).

3.	 Neither DIACAP artifacts nor NIACAP documents provide
a means that supports easy risk analysis by C&A reviewers
supporting the approval authority.

4.	 In a number of cases, the reviewers, certification authorities,
and approval authorities are not able to glean a detailed
understanding of the systems or enterprises due to the limited
time allowed for risk analysis.

5.	 Without a detailed understanding of the reviewed system, a
realistic assessment of residual risk is not likely. A system-
or component-level model with traceability to the system
(or enterprise) architecture would be extremely helpful in
visualizing potential risks associated with the system or
enterprise.

6.	 Test cases and results can be captured within the model,
which then could be stored electronically with the DIACAP
scorecard and other electronic artifacts in the applicable
database.

7.	 Using modeling allows for increased opportunities to apply
“what-if” scenarios by using XMI to import the baseline into

MBSE is a methodology

that can be used to

supplement several

ongoing processes and

procedures in the federal

and civil acquisition

systems.

https://connect.incose.org/tb/MnT/mbseworkshop/SAWG%20Shared%20Documents/MBSE%20Overview.ppt
https://connect.incose.org/tb/MnT/mbseworkshop/SAWG%20Shared%20Documents/MBSE%20Overview.ppt

Special Feature

December 2009 | Volume 12 Issue 420

SysML applications with a low cost per seat at any level within the command
structure.

8.	 Existing investments in products like DOORS are protected since a number of
the low-cost SysML applications can be configured to accept direct input from
these existing applications.

9.	 Modeling effectively improves the ability of an integrated product team to
collaborate on the overall effect of changes within their area of expertise on
the whole program by providing a single corporate model of the entire system
or enterprise.

10.	Documentation can be generated from the models using SysML applications
so that the paper artifacts can be incorporated into acquisition- or program-
related documentation.

11.	To produce a living lifecycle model, MBSE models need to be used to trace
specific components, processes, test cases with verifications, and use cases
to the original requirements visualized in the architectural views. Changes
in the system requirements, governance, or component will be clearly visible
at whatever level you view the enterprise or system, and the ability to assess
changes to costs, schedule, and risks become easier to ascertain.

12.	The successful use of MBSE for an actual DoD project in the DIACAP pipeline
will help make the case for an increased use of systems-engineering models
in support of certification and accreditation and other procedures associated
with the federal acquisition process.

This is the true worth of model-based systems engineering when coupled with
an applicable architectural framework. Cost associated with implementing MBSE
would primarily be applied in the beginning of the enterprise or system lifecycle.
Use of modeling in requirements analysis and assessment of alternatives would
increase the accuracy of cost estimates by ensuring that all systems and compo-
nents selected for the program baseline are actually valid. Models at the system
and component levels that are traceable to architecture will improve the accuracy
in the decision process all the way through the enterprise’s lifecycle. Increased
accuracy would result in significant cost savings during the enterprise or system’s
operational life.

MBSE is a methodology that can be used to supplement several ongoing processes
and procedures in the federal and civil acquisition systems. The use of the MBSE in
the certification and accreditation process offers a means to implement modeling
with minimal impact on operational costs and the potential for a reasonable return
on investment, based on increased throughput with the improved risk analysis pro-
cess. For a more detailed discussion of the MBSE process associated with certification
and accreditation, please contact me at the e-mail address above. 

Penn State Great Valley School of Graduate Professional Studies is seeking qualified appli-
cants for a faculty appointment in the area of systems engineering. In addition to teaching and
research, Penn State Great Valley faculty members perform program, campus, and university
service assignments. Required qualifications include a Ph.D. in systems engineering or a closely
related field, and a demonstrated record of research accomplishments, preferably in systems
design, software systems, or system integration. Prior teaching experience (preferably at the
graduate level) is desirable. Experience in the systems engineering field in government or indus-
try is highly valued. The position will be available starting Fall semester 2010 and may be either
tenure track or multi-year fixed term, depending on the qualifications, interests, and goals of the
candidate.

Located 20 miles northwest of Philadelphia, the Penn State Great Valley School of Graduate Profes-
sional Studies (www.sgps.psu.edu) is a special mission campus of The Pennsylvania State Universi-
ty. The campus enjoys a central location in a corporate park among world-class corporate neighbors
in a rapidly growing technological corridor. Our graduate students are working professionals.

Penn State offers a competitive salary commensurate with experience, in addition to a
comprehensive benefit package. For confidential consideration, submit letter of application, current
curriculum vitae, research/publication history, and the names and contact information of three
references to: Dr. Phillip A. Laplante, CSDP, PE,

Systems Engineering Search Committee Chair, Penn State Great Valley School of Graduate Pro-
fessional Studies, 30 E. Swedesford Road, Malvern, PA 19355-1443 by January 31, 2010. Applica-
tions can also be sent electronically to jos12@psu.edu. Penn State is committed to affirmative
action, equal opportunity and the diversity of its workforce.

Assistant Professor, Systems Engineering

Penn State Great Valley School of Graduate Professional Studies is seeking qualified applicants
for a faculty appointment in the area of engineering management. In addition to teaching and
research, Penn State Great Valley faculty members perform program, campus, and university ser-
vice assignments. Required qualifications include a Ph.D. in engineering management or a closely
related field, and a demonstrated record of research accomplishments. Prior teaching experience
(preferably at the graduate level) is desirable. Experience in the systems engineering field in
government or industry is highly valued. The position will be available starting Fall semester
2010 and may be either tenure-track or multi-year fixed term, depending on the qualifications,
interests, and goals of the candidate.

Located 20 miles northwest of Philadelphia, the Penn State Great Valley School of Graduate
Professional Studies (www.sgps.psu.edu) is a special mission campus of The Pennsylvania State
University. The campus enjoys a central location in a corporate park among world-class corporate
neighbors in a rapidly growing technological corridor. Our graduate students are working
professionals. Penn State offers a competitive salary commensurate with experience, in addition
to a comprehensive benefit package. For confidential consideration, submit letter of application,
current curriculum vitae, research/publication history, and the names and contact information of
three references to:

Dr. Phillip A. Laplante, CSDP, PE, Engineering Management Search Committee Chair, Penn State
Great Valley School of Graduate Professional Studies, 30 E. Swedesford Road, Malvern, PA 19355-
1443 by January 31, 2010. Applications can also be sent electronically to jos12@psu.edu. Penn
State is committed to affirmative action, equal opportunity and the diversity of its workforce.

Assistant Professor, Engineering Management

December 2009 | Volume 12 Issue 421

Special Feature

Executable and Integrative Whole-System Modeling via the Application of
OpEMCSS and Holons for Model-based Systems Engineering
Jose S. Garcia, Jr., jose.garcia@incose.org

The advancements of science and technology in our society
have provided us with two realities: (1) a utopian potential
of improving our lives and economies, and (2) a growing

complexity in integrating technology into our lives, often at a high
cost. The field of engineering pervades our lives in almost every
aspect of our society and economy. We are continuously dazzled
by today’s “futuristic” weapon systems, biomedical wonders,
and intelligent, almost humanlike, information systems. How-
ever, from an engineering standpoint, designing and integrating
such systems poses a growing challenge to make them work “as
advertised.” As evidenced on an almost daily basis in the news,
large-scale and complex defense and space projects suffer from a
continuous rash of cost overruns, schedule delays, and technologi-
cal bottlenecks. This is because the problems engineers face in
designing and integrating modern technical wonders are growing
in complexity. Recognized as early as the 1940s by Bell Labs (and
during the 1950s and 60s by the U.S. Department of Defense and
NASA, respectively), technological developers have turned to the
interdisciplinary field of systems engineering to manage and inte-
grate complex engineering projects.

Systems engineering is an interdisciplinary, process-oriented
approach to solving a wide variety of complex technical and
societal problems. It is a “lever and fulcrum” that enables highly-
complex system problems and projects to be easily and efficiently
architected, broken-down, designed, developed, diagrammed,
calculated, cataloged, evaluated, integrated, optimized, measured,
and managed. Systems engineering as a formal field and methodol-
ogy developed out of the disciplines of system science and opera-
tions research during the twentieth century. This type of “systems
thinking” arose during the beginning of the century, initially
among biologists, and was subsequently adopted by scientists
and engineers to describe the interconnected nature of systems.
As the pace of science and technology continues to march forward
by leaps and bounds, the field of systems engineering continues
to encounter an ever more complex and varied set of challenging,

yet ambiguous, set of systems problems. The problems and projects
encountered by systems engineers are more interdisciplinary in
nature than formerly, and they behave as complex adaptive sys-
tems. A complex adaptive system consists of two or more agents
that adjust their behavior to achieve an overall system goal. Agents
can be as simple as a desktop computer or Web site, or as complex
as a human operator, a factory robot, space satellite, astronaut, war
fighter, software application, or an autonomous deep-space probe.
In addition, systems are not merely composed of physical entities,
technologies, and software, but are comprised of people, processes,
and enterprises that are highly networked, intelligent, and inter-
connected. In a complex system problem, these entities, technolo-
gies, people, processes, and enterprises can be conceptualized as
interacting agents.

The challenge therefore, is to make these complex systems work
and operate effectively and safely. Moreover, as the level of com-
plexity rises, what used to be “systems” problems are now becom-
ing “system of systems” problems. Tackling these more complex
problems requires a cost-effective, thorough, and disciplined
approach to systems engineering. However, as complexity increas-
es, this “engineering of a system” needs to make use of intelli-
gent and intuitive model-based systems-engineering techniques.
Scientists and engineers face an ever-greater array of complex
requirements. Complexity must be managed. A paradigm shift is
occurring within systems engineering, where the level of complex-
ity of system-of-systems projects can only accurately and precisely
be modeled by a modeling construct that is executable (such as a
software tool or algorithm). An engineering approach to a “whole-
system” understanding of a design or system needs to be taken into
consideration from the onset. For example, it is not merely enough
to design and deploy a satellite. Everything from its conception,
launch, communication, safety, and disposal must be considered.
Thus there is an identifiable need for an executable and integrative
approach to systems engineering.

A system of systems is a system abstracted and constructed of

The executable and

integrative approach to

model-based systems

engineering … allows

both an expansionist and

reductionist approach.

Special Feature

December 2009 | Volume 12 Issue 422

an aggregate of individual systems, which interoperate and interface with each
other, and are characterized by emergent properties (see figure 1). The need to engi-
neer systems of systems has spawned the field of system-of-systems engineering,
which can be defined as the engineering of large-scale systems.

What these statements say
is that the aforementioned
paradigm shift to the system-
of-systems understanding of
system problems, and their
engineering via system-of-
systems engineering, is an
evolutionary value-adding
process that presents a
variety of challenges that
include technology, human
dynamics, and sustainability.
In addition, a whole-system,
or holistic, approach to
engineering will facilitate
complexity management.
Engineering projects grow
ever more complex with the increase of unique and challenging requirements.
Using the construct of holons in the systems engineering process enables this
holistic approach.

Holons are system agents that are autonomous and cooperate, and lend them-
selves well to understanding the interdependent and emergent properties of
agent-based systems and their unique requirements. In this article I will argue
that an executable and integrative approach to whole-system modeling can be
accomplished by applying a methodology known as OpEMCSS (operational evalua-
tion modeling for context-sensitive systems) to all aspects of model-driven design.
These aspects include both model-based systems engineering and simulation-
based systems engineering. Dr. John R. Clymer, my thesis advisor and professor of
electrical engineering and systems engineering at Cal State Fullerton, developed
OpEMCSS. Dr. Clymer is an INCOSE Fellow, and has been a member of INCOSE
since its inception. Dr. Clymer developed the OpEM graphical language based on
parallel processing language concepts and mathematical linguistics.

Operational evaluation modeling for context-sensitive systems is a modeling-
and-simulation tool that allows an explicit understanding of complex system
interactions and complex-adaptive-system behavior among system components
and subsystems. The systems-engineering professional community, as represented

by INCOSE, has embraced model-based systems engineering. MBSE techniques
have been identified as a discipline within the field of systems engineering. There
are active working groups and conferences where the state of the art of complex
modeling is advanced and where an identifiable need for an executable and inte-
grative approach to model-based systems engineering for whole-system modeling
has emerged.

Description of Research
This research was intended to identify and provide an integrative and execut-

able approach to whole-system modeling via the application of OpEMCSS to both
simulation-based and model-based systems engineering. The intent of this research
was to provide a whole-system understanding of the systems-engineering process.
This study, although focused on systems engineering, encompasses multidisci-
plinary applications. The research and conclusions provided herein will help set
the foundation for an integrative modeling paradigm (see figure 2).

OpEMCSS has an extensive library of blocks that make possible the modeling
of context-sensitive systems that exhibit
emergent behavior. OpEMCSS thus
allows the rapid modeling and analysis
of complex processes. Emergent behav-
ior arises in multiagent systems. One
modeling block used in OpEMCSS is
the “Wait until Event” block. This block
models resource contention (see figures 3

Sub
Agent 1

System
Agent 1

System
Agent 2

System
Agent N

Sub
Agent 2

Sub
Agent N

Sub
Agent 1

Sub
Agent 2

Sub
Agent N

Sub
Agent 1

Sub
Agent 2

Sub
Agent N

Figure 1. System-of-systems interactions

Whole-System Model
(Integrative Appoach)

Dynamic,
Executable,
Model and
Simulation

MBSE + SBSE

(Systems Analysis) (System Definition)

Design Capture,
Requirements,

Functions,
Interfaces and

Architecture

1

1

2

2

This interface provides MOE* and MOP* statistics to System Definition (results).

* : MOE – Measure of Effectiveness/MOP – Measure of Performance/KPP – Key Performance Parameters

This interface provides values, margin, variables, KPP* to dynamic model.

Figure 2. Integrative modeling paradigm

Direct

Logic

Figure 3. “Wait until Event” block in OpEMCSS
library

Special Feature

December 2009 | Volume 12 Issue 423

and 4) as exhibited in
systems with multiple
agents. Agents can
be human operators,
satellites, computers,
or something else.

Significance of This
Research

As the military-
industrial complex
evolved during the
Cold War, the field of
systems engineering
organized itself

into a process and a body of knowledge for executing complex projects involving
technology and the physical sciences. At the advent of the twenty-first century and
at the apex of the information age, systems engineering has grown into a highly
sophisticated, network-centric, complex engineering discipline. This requires a
whole-system approach to systems thinking. Systems thinking requires taking an
expansionist approach to system design and analysis, in addition to reductionism.
The executable and integrative approach to model-based systems engineering for
whole-system modeling via operational evaluation modeling for context-sensitive
systems allows both an expansionist and reductionist approach.

The significance of
this research is the wide
array of application areas
for such whole-system
modeling techniques.
OpEMCSS provides the
ability to model just
about any type of system.
For example, the follow-
ing model in OpEMCSS
(figure 5) is that of a sup-
ply chain.

Modeling the supply
chain and simulating the
interactions between the
various agents allows complexity to be comprehended, managed, and optimized.
A supply-chain and value-chain management process is a multiagent orchestration
of manufacturers, suppliers, transportation companies, and communication
networks, all working in concert to maintain a flow of products. Figure 6 shows
a mathematical optimization fitness surface. This data set, as produced by the
MBSE techniques modeled in OpEMCSS, allows a system, such as a supply chain or
manufacturing operation, to be optimized.

A model is an abstraction or representation of reality. Model-based systems
engineering is the practice and discipline within the field of systems engineering
that models system interactions and interoperability in order to better engineer
or develop an intended system design. Simulation is a computer-based or
mathematical-based analysis of a complex system, which measures a system
concept. Simulation-based systems engineering is the process and discipline of
using simulation to evaluate candidate system designs within an operational
scenario.

The ultimate goal of both model-based and simulation-based systems
engineering is emulation. In terms of systems engineering, emulation is the real-
time operation of a system’s behavior (a simulation of the actual system functions
and interfaces). Emulation is the ultimate objective of simulation, since simulation
is an approximation, and emulation is an actual implementation. Emulation
allows you to observe, measure, and anticipate system behavior. For this reason,
OpEMCSS should be adopted into the systems-engineering process as the whole-
system modeling construct that provides executable and integrative modeling for a
holonic systems-engineering process. 

Figure 4. “Wait until Event” block dialog box

Figure 5. OpEMCSS example model

Event
Occurrence

Alternative Action

Fi
tn

es
s

Lotsize

Threshold

9000

8000

7000

6000

5000

4000

3000

2000

1000

0
100

100
125 150

150

175 200

200

225 250

250

Figure 6. Optimization of complexity

December 2009 | Volume 12 Issue 424

Special Feature

MBSE in Telescope Modeling
Robert Karban, rkarban@incose.org; Rudolf Hauber, rudolf.hauber@hood-group.com;
and Tim Weilkiens, tim.weilkiens@incose.org

In the framework of INCOSE’s strategic initiative, the Systems
Engineering Vision 2020, one of the main areas of focus is
model-based systems engineering. In keeping with this empha-

sis, the European Southern Observatory (ESO; http://www.eso.org/) is
collaborating with the German Chapter of INCOSE (http://www.gfse.

de/) in the form of an “MBSE Challenge” team. The team’s task is to
demonstrate solutions to challenging problems using MBSE. The
Active Phasing Experiment (APE; see Gonte et al. 2004), a Europe-
an Union Framework Program 6 project, was chosen as the subject
of the SE^2 Challenge Team (http://mbse.gfse.de/). Many technical
products in the telescope domain show an increasing integration
of mechanics with electronics, information processing, and also
optics, and can therefore be rightly considered as optomechatronic
systems.

This article presents the results of model-based systems engi-
neering using the Systems Modeling Language (SysML; see Ogren
2000), drawing on experiences within the MBSE Challenge proj-
ect and also the European Extremely Large Telescope (E-ELT)
project. For the former project, SysML models were created by

reverse engineering from existing
documentation and from interviews
with systems engineers, whereas
for the latter project, the practices
were applied to a new system. We
will make use of Ingmar Ogren’s
concept of a common project model
(Ogren 2000) to establish a common
understanding of the system.

Project Description
Our system case study is the

Active Phasing Experiment tech-
nology demonstrator for the future

European Extremely Large Telescope, which is a high-tech, inter-
disciplinary optomechatronic system in operation at the Paranal

observatory (see ESO 2009). Telescopes of the next generation need
to collect significantly more light than older models, therefore
requiring bigger reflecting surfaces that consist of many individual
mirror segments. Due to different disturbances (such as vibrations,
wind, and gravity), the segments must be actively controlled to
get a continuous mirror surface with a phasing error of only a few
nanometers over the main mirror’s diameter of 42 m. The main
challenge is to correctly detect the positioning errors of the seg-
ments via specific phasing sensors in order to create a continuous
mirror surface.

APE was developed to evaluate those sensors, and was installed
on one of the 8 m telescopes that constitutes part of the Very
Large Telescope in Chile (VLT) for sky tests. APE can be seen as
the black box in figure 1. For the installation it had to comply with
various mechanical, electrical, optical, and software interfaces.
APE consists of about two hundred sensors and actuators such as
wheels, translation stages, lenses, detectors, mirrors, light sources,
an interferometer, and twelve computing nodes for control. Since
APE had to be deployed in the test lab and in an already existing
telescope, for each context it was necessary to model variants of
function, interfaces, and structure. All of these characteristics
made APE well suited to evaluate the potential of SysML in tackling
similar issues.

MBSE Challenge Goals
SysML is only a graphical language and defines a set of dia-

grammatics, modeling elements, a formal syntax, and semantics.
Like any language (formal or informal), it can be used in many
different ways, including many wrong ways. Most notably, it is pos-
sible by misusing the language to create incorrect models. The main
goals of the SE^2 MBSE Challenge Team are to

create modeling guidelines and conventions for all system •	
aspects, hierarchy levels, and views;
provide examples in SysML, solving common modeling prob-•	
lems;
build a comprehensive model, which serves as the basis for •	
providing different views to different engineering aspects and
subsequent activities; and to
demonstrate that SysML is an effective means to support •	
systems engineering.

Figure 1. Active Phasing Experiment at the Very Large Telescope

http://www.gfse.de/
http://www.gfse.de/

Special Feature

December 2009 | Volume 12 Issue 425

The SE^2 team has provided their guidelines for modeling on the “frequently
asked questions” page of their Web site (http://mbse.gfse.de/documents/faq.html). A
SysML model, as described in the next section, illustrates the results of their com-
prehensive modeling. The SysML model is not merely a mental abstraction, but a
collection of complex data structures that can be edited, augmented, queried, and
reported on by means of a suitable tool, which is an indispensible pillar for MBSE.

Model Structure and Overview
Modeling is all about abstraction (reducing the complexity of a system), improv-

ing communication and understanding of the system, and providing reusable
system elements. However, capturing a lot of different aspects like requirements,
structure, interfaces, behavior, and verification in a model of a complex system like
APE leads to a large model. Therefore, the first challenge is to find a clear, intui-
tive structure for the model, since a well-structured model is crucial for controlling
complexity.

In the APE model we applied two techniques to establish a good and easily
understandable structure: recursive structure patterns and views. In SysML, pack-
ages are the structuring mechanism to group model elements, which were used by
the authors for both techniques. Packages are a mechanism to group model ele-
ments in higher-level units, similar to the way folders organize files in a computer’s
file system.

APE Model Structure Pattern
The APE model uses a recursive structure pattern to model different system

aspects on every level of decomposition of the APE. On each level we have pack-
ages for these aspects:

Objectives and requirements•	
Context•	
System structure•	
Behavior•	
Data•	
Performance•	
Verification•	
Auxiliary packages: comments, problems, issues•	

Overview Diagrams
To improve the understandability of the APE model, we provide content diagrams,

which describe the system by showing all the different aspects captured by the
model. The top-level overview diagram is a “project content” diagram (figure 2) and
serves as an entry point and an anchor for navigation through the complex model.

The System Structure
View (“APE_Structure” in
figure 2) is used to decompose
the system and provide the
recursive modeling pattern
within the subsystem
package; for example, the
“APE_Structure” sub-package
“InternalMetrology” contains
the same view packages, the
“InternalMetrology” sub-
package “PhaseModulator”
(figure 3) contains again
the same view packages,
and so on. For every system
decomposition element (like
the nested structure view for the “InternalMetrology” in figure 3), a package exists
together with an overview diagram that shows the aspect packages of the respective
element. The arrows between the packages show their dependencies. This recursive
model structure provides an intuitive look-and-feel navigation capability within the
APE model.

Aspects
Packages are used to separate

specific aspects of the system at
each decomposition level. Each
package provides one or more
aspects on APE for a specific
perspective, such as context,
structure, data, and so on.
Each of these aspects should
be documented so the model
makes clear which attributes or
characteristics are observed within
the aspect.

Objectives and Requirements
The next sections describe the APE modeling approach for each of the view-

points mentioned above. APE, like any complex system, has a large number of
functional, performance, physical, and interface requirements that have to be

Figure 2. APE project-content diagram
	

Figure 3. Subsystem content diagram
	

Special Feature

December 2009 | Volume 12 Issue 426

satisfied. This
implies the
need for formal
requirements
management
during the proj-
ect. APE has
about 50 high-
level system
requirements.
The control
system has
also about 50
requirements, refined by 150 use cases. We used the SysML requirements diagrams
to show the main objectives of APE (figure 4). The limitations of standard text-based
requirements-management tools were overcome by visualizing key requirements and
their impact on system design and verification in an intuitive way.

The following
user defined types
extend the SysML
requirements
modeling features
to organize and
trace objectives,
business and system
requirements of
APE. Figure 5 shows
the dependencies
of the requirements
and automatically
created traceability
matrices. In the figure, objectives are project-specific stereotypes of a class
to capture the objectives for the projects (see figure 4); business requirements
are project-specific stereotypes of a SysML requirement to capture the high-
level requirements for the projects; and for the system requirements, SysML
requirements are used to capture the detailed requirements for the projects.

Context
The system’s context defines the system’s boundaries and is modeled using

SysML internal block diagrams. A SysML internal block diagram (IBD) shows a

block, its parts, and its interfaces. For the system context our main focus is on
system interfaces.

SysML uses ports to model the interfaces of a block. SysML provides a standard
port for service-like interfaces and flow ports for physical interfaces. However,
there are different possibilities to use these ports for capturing system interfaces
(see figure 6):

Standard ports to model abstract interfaces as representation of an interface •	
control document (ICD) as shown for port “scp”
Flow ports for a combination of mechanical and flow interface at block level •	
(model physical and logical properties at the border of a block, hiding its inter-
nals), as shown for port “15-N-A”
Model mechanical and flow interface directly at the specific part level, as •	
shown for “coolantReturn” and “coolantSupply,” crossing the border of the
outer part
Model mechanical and flow interface at block and part level, as shown for port •	
“15-N-C”

Figure 5. Traceability among different types of requirements 	

Figure 6. Internal block diagram of electrical context 	

Figure 4. APE objectives diagram

req [Package] APE_Project_Objectives [Objectives1]

 «parsed»
ELT-PLA-ESO-04601-0001
Issue3. APE Science Plan
Scope

«objective»
Objectives

«objective»
EvaluationEnvironment

«objective»
ApplicabilityForELT

«objective»
Integration

«objective»
ImageQuality

«objective»
TestPhasingSensors

«trace»

«trace»

«trace»

«refine»

«businessRequirement»
User Requirements

«requirement»
System

Requirements

«functionalRequirement»
ReferenceMetrology

«businessRequirement»
CaptureRange

R

Id = “SR1”
Text = “Root
requirement for all
system requirements.”

Id = “SR1.3”
Text = “Provide
independent
measurement of the
active segmented
mirror
misalignment.”

Id = “01.5”
Text = “The evaluation
shall be carried out in
the laboratory and on
sky.”

Id = “01.1”
Text = “Verify and test
different phasing sensors
and related phasing control
algorithms.”

Id = “01.2”
Text = “Integrate phasing wavefront
sensors into a global scheme of
segmented telescope active control.”

Id = “01.4”
Text = “Study the effect of phasing on
the telescope image quality.”

Id = “01”
Text = “The objectives of APE.”

Id = “01.3”
Text = “Determine scalibility and
applicability of the developed
phasing algotithms and
segmented telescope active
control scheme for an ELT.”

Id = “UR1.4”
Text = “Determine the
maximum segment
error which can be
measured and
corrected by the
phasing sensors, i.e.,
its capture range.”
TracedFrom =
TestingPhasingSensors

Special Feature

December 2009 | Volume 12 Issue 427

To ensure consistency between the interface control document and the model,
the latter serves as the basis for the former. Figure 6 shows the context of the tele-
scope from an electrical viewpoint (ports on control system side are not modeled).

System Structure
The system structure may be the most self-evident aspect to model. We have

used SysML block definition diagrams (BDDs) to model the product tree and inter-
nal block diagrams to model the structure and interfaces of APE and its subsystem.
The APE hierarchical breakdown is based on the product tree. It has several levels,
going from the highest level into more and more details, using decomposition of its
elements.

On the other hand, a complex system has much more than just one internal
structure. There are multiple views showing electrical, optical, and mechanical
elements that are interconnected, and therefore multiple structures exist. The same

components can be connected in different views in different ways. We have used
IBDs to show the electrical, optical, and mechanical layout of APE and its compo-
nents at different levels. Figure 7 shows the optical layout in an abstract manner.
The connectors are stereotyped as optical, but they are elided for readability.

Figure 8. Activity diagram for APE wave-front control

Figure 7. IBD of the APE optical layout
	

	

Special Feature

December 2009 | Volume 12 Issue 428

Behavior
A complex system is much more than just the collection of its elements and their

structural architecture, because its behavior derives from the collaboration of its
parts. Therefore it is essential to capture the behavior of the system to be able to
understand it. We have used activities to model the behavior of APE and its sub-
systems. SysML activity diagrams can be used to show the actions taken by the
system and its data and control flow. Figure 8 shows the wave-front control of APE.
It shows at the same time the physical effects of the system (like distortion of the
wave front), as well as sensing, actuating actions, and control flows.

Data
Another aspect is the

information or data handled
by the system. SysML
provides block definition
diagrams for the definition of
data, and it provides internal
block diagrams, activities,
and sequence diagrams for
data usage and flow. APE
uses SysML “dataTypes”
to define the data of APE
and its subsystems. Figure
9 shows the composition
structure of a measurement and its relation to movements of the segmented mirror
(“AsmMovement”). Those data types are used to define ports in IBDs and objects in
activity diagrams.

Verification
For every large system, verification is an essential part of the system accep-

tance in order to prove that the system meets its requirements. SysML supports the
modeling of test cases with a specific model element, “testCase.” The “testCase”
element can be used at different levels for component integration, software inte-
gration, and system integration. Furthermore, APE has two different test contexts:
verification in the lab and in the sky.

Model Library and Systems-Engineering Profile
Besides the modeling of the different aspects, the APE modeling project pro-

vides a model library and an SE^2 profile. Data types and model elements that are
frequently used are modeled in a model library to increase reuse. Abstract types are

used as place holder
for specific build-
ing blocks. They are
classified in differ-
ent catalogue pack-
ages (figure 10).

Catalogues can
be easily extended
by using inheri-
tance. Furthermore,
the preliminary
design of a system
can initially work
with an abstract
type (when the
detailed require-
ments are yet
unknown) and
decide later which specific type to use for the implementation. A generic connector
gets a different context-specific pin assignment by inheritance. For each specific
assignment a separate specialization is needed. The SE^2 profile provides the
project-specific extensions to SysML: stereotypes like “objective,” constraints in
element usage, enumerations, and so on.

Modeling Challenges
SysML is a new language. This creates two inherent challenges: Is SysML suf-

ficiently mature for real projects, and is it accepted by a wide range of systems
engineers? Especially the fact that SysML is based on UML sheds a special light on
these challenges. Could a modeling language that was initially defined for software
development be used to model systems, and will systems engineers accept a lan-
guage with origins in the software discipline? An overall result of our project is that
this question can be answered yes.

The APE project is a very good challenge for SysML. It is complex and interdisci-
plinary without a special focus on software; it is a real system and not the simpli-
fied coffee machine so often used as demonstration project. Although we found
that SysML is practicable to model complex systems, we have made a list of the
language’s shortcomings. The most significant ones are these:

Variant modeling•	
Connection of nested blocks•	
Grouping of interfaces with nested ports•	

Figure 10. APE abstract types 	

Figure 9. Block definition diagram of APE wave-front data

bdd [Package] APEDataModel [APE_DataModel]

«dataType»
Measurement

«dataType»
Colorset

«dataType»
ColorsetElement

«dataType»
Image

«dataType»
SegmentPosition

«dataType»
WaveFrontData

«dataType»
AsmMovement

1 ..*

1 ..*

1

0..61

: double [61]

Reconstruction Type
CorrectionType
AlgorithmPolicy piston

tip
tilt

wavelength integrationTime : Second
binning

piston : double [61]
tip : double [61]
tilt : double [61]

Diagram name

Author

Creation date 3/22/08 5:03 PM

Modification date 6/30/09 1:53 PM

rkarban

APE_DataMofel

APE_Project_Content APE_Data_Content

Special Feature

December 2009 | Volume 12 Issue 429

Logical vs. physical decomposition•	
Functional multilayer abstraction•	
Reuse of blocks, allocation, and instances•	
Structural multilayer allocation•	
Defining quality of service•	
Transition to UML for software•	
Configuration and quality control•	
Navigability•	

There are four aspects related to these:
Notation: It is a real challenge for a modeling language to provide an interdis-
ciplinary notation for complex systems. It must be easy to understand and be
capable of modeling details unambiguously.
Model: Behind the notation is the real model, i.e., the data structure and
semantics of the information.
Tool: The implementation of the SysML specification is a challenge for tool
vendors.
Methodology: SysML is a language without any methodology. You need a
methodology or at least some best practices for good modeling.
In the following sections, we discuss one issue related to each of these aspects.

Notation: Connection of nested
blocks

Figure 11 shows the connec-
tion of control-system elements
with telescope elements: for
example, the sensor cabinet
(“sensCabinet”) is connected
with the “coolantReturn” and “coolantSupply.” The solid line is a nested connector.
It crosses the boundaries of the encapsulated system blocks.

If the modeler would like to hide the internal structure of the telescope in figure
11, the nested connector would also be hidden. Typically we still want to see that
there is some kind of relation-
ship between the telescope and
APE. SysML doesn’t provide
a presentation option to show
the link in this case.

As a workaround we pro
pose a standard port with
stereotype junction that divides

the nested connector at each relevant boundary crossing in separate connectors.
Figure 12 shows that the junction port resolves the issue (see also figure 6). We pro-
pose that SysML support the concept of junction ports, which would enable tools
to offer convenience functions for nested connector modeling (we have issued this
proposal to the SysML Revision Task Force).

Model
SysML supports two kinds of ports, that is, interaction points between a sys-

tem block and its environment. The standard port provides or requests services,
whereas the flow port specifies the flow of items inside or outside the system
block. SysML has no explicit support of more complex ports that combine single,
reusable ports. We propose nested ports for SysML. They allow a decomposing
structure, the potential for reusability and individual delegation of item flows that
go through this port (see figure 6). Nested ports conform to the abstract syntax
of SysML. Therefore some tool vendors already provide this important modeling
feature. SysML doesn’t say anything about the semantics of nested ports. Because
we issued this proposal to the SysML Revision Task Force, a forthcoming SysML
version will include a special kind of this concept called nested flow ports.

Tool
SysML has some modeling areas where creating and editing model information in

a diagram is cumbersome. For example for requirements, which are often entered in
bulk, it is easier to use a table than a diagram to enter or modify the data. The same is
true for relationship modeling like the allocation of behavioral elements to structural
system elements. It is easier to assign the relationships in a matrix than in a diagram
with lots of arrows. SysML already defines table and matrix formats. Most tools
provide them as limited read-only views on the model. What we need are table and
matrix views with the ability to create and modify model elements.

Methodology
SysML is a pure language and doesn’t prescribe any methodology. For example,

SysML allows one to model the “allocate” relationship between nearly any model
elements. But where is this feature useful in a specific project? How can the
relationship be determined from the model? What are the consequences of having
an “allocate” relationship between two elements? You don’t find answers to these
questions in the SysML specification. While there are some books that describe
methodologies for modeling systems with SysML (Friedenthal 2008; Weilkiens
2008), our MBSE Challenge Team has found some best practices and modeling
guidelines to complement them. Last but not least, each project needs its own
specific set of methods.

Figure 11. Nested connectors

ibd [System Context] ObservatoryContext [TelescopeContext_Electrical_MBSEInsightPaper]

«system»
ape : APE

«external»
ut3 : UnitTelescope

out : Coolant

in : Coolant

«block»
15-N-B : SCP Part B

«block»
coolantSupply : SCPSelfSealingFluidMale

«block»
coolantReturn : SCPSelfsealingFluidFemale

«block»
apecs : ControlSystem

«block»
«electronics»

sens : sensCabinet

Figure 12. Junction ports for nested connector

ibd [System Context] ObservatoryContext [TelescopeContext_Electrical_MBSEInsightPaper]

«system»
ape : APE

«external»
ut3 : UnitTelescope

«junction»
out : Coolant

«block»
apecs : ControlSystem

«block»
«electronics»

sens : sensCabinet

Special Feature

December 2009 | Volume 12 Issue 430

Configuration and Quality Control
As soon as a common project model is created and more than one person uses it,

configuration control becomes a fundamental requirement. In particular, consis-
tent linking among model elements must be ensured. Individual changes must be
traceable as well as creating visual differences to follow in detail what has changed
where. Due to the extensive linking, side effects (introduced by changes) can go
unnoticed and corrupt the model. This can only be mitigated by establishing rigor-
ous configuration-management practices and using tools that allow rollbacks.

Experiences from a New Project — E-ELT Telescope Control System
The European Extremely Large Telescope is a telescope with a primary mirror

of 42 m in diameter, composed of 984 hexagonal segments, and four other mirrors
with diameters ranging from 2.5 m to 6 m. Figure 13 shows the E-ELT in comparison
with the Very Large Telescope and the Roman Coliseum, which might be an indica-
tor for its complexity.

standards to be used for the field electronics, software, and hardware.
The common project model, where all TCS-relevant components of the

observatory are logically represented, enables the development team to
share a common, consistent •	
view of the system, like the
context in figure 14;
structure requirements, in •	
combination with a require-
ments management tool;
describe the complex •	
behavior of the system;
define the architecture and •	
detailed design;
standardize meta-archi-•	
tecture across the various
subsystems;
allocate function to •	
structure and allow full
traceability; and
analyze different design •	
variants.

TCS architecture is highly data-oriented, making it well suited for representa-
tion with SysML constructs like activities and pins, blocks and ports, and state
machines. The design of the TCS covers different views as control, electrical, and
even mechanical because components have to be mechanically mounted.

Diagrams are extracted from the model to create paper-based documentation,
as required by the project. The reporting and plug-in facilities of the modeling
tool allow the engineer to automatically create the recursive structure as defined
by the guidelines, and to make cost estimates using a predefined parts catalogue
and estimates of the required communication infrastructure to accommodate the
necessary throughput.

The successful application of MBSE to a project of this scale was only made
possible by the existence of the guidelines produced by the SE^2 Challenge Team.
We consider those guidelines, together with their accompanying examples,
a precondition to allow one to focus on the content, rather than on hands-on
technicalities.

Conclusions
The SE^2 Challenge team used an existing, complex system to create a

The telescope consists roughly of 10,000 tons of steel and glass in a structure
the size of a big football stadium; it needs 20,000 actuators, some of which have to
be controlled to location accuracies within a nanometer and to angular accuracies
within 0.02 degrees. It requires high-performance computation up to 700 Gflop/s,
and data transfers rates of up to 17 Gbyte/s. The control system has to deal with
about 60,000 I/O points, 15 subsystems (one particular subsystem requires the
coordination of 15,000 actuators alone), and interacting, distributed control loops
with sampling rates ranging from 0.01 Hz to several kHz.

The telescope control system (TCS) includes all the hardware, software, and
communication infrastructure required to control the telescope and the dome.
Many subsystems will be contracted and have to be properly integrated. Therefore,
the TCS defines for the subsystems the interfaces and requirements as well as

Figure 13. Size comparison of the European Extremely Large Telescope (left), the Very Large Telescope
(center) and the Roman Coliseum (right). (Image created by ESO; reprinted by permission.)

	

	
 	

Figure 14. TCS context diagram 	
 	

Special Feature

December 2009 | Volume 12 Issue 431

comprehensive SysML model and solve common daily modeling problems. The
engineering team of the E-ELT TCS is able to successfully apply the established
guidelines, model structures, and modeling procedures to a new large-scale system
in the optical telescope domain. The results demonstrate that SysML is an effective
tool to document the complexity of requirements, interfaces, behavior, and
structure, and is instrumental to enhance the traceability between requirements,
design, and verification and validation.

A formal language and an adequately strict tool enforce structured thinking
and a detailed description of the problem at hand. This increases the consistency
and reveals undefined or unclear parts of the problem. Some limits of SysML were
reached, because it does not offer out-of-the-box concepts for optical or electri-
cal engineering. However, this can be overcome by extending the language using
domain-specific profiles.

The most important value in a systems-engineering project is to have a common
understanding among all stakeholders; therefore, fancy SysML constructs should
be avoided when starting up. Even if SysML is a very good tool for communication
and improving understanding, not all aspects of systems engineering can be fully
covered by modeling with SysML, and systems engineers will still need the expres-
siveness and level of detail of traditional engineering activities like numerical

analysis, simulation and prototyping to handle non-functional aspects like safety,
security, reliability, usability, and logistics. 

References
ESO (European Southern Observatory). 2009. Very large telescope information. ESO (Web site). http://

www.eso.org/public/astronomy/teles-instr/paranal.html (accessed 3 Nov. 2009).

Friedenthal, S., A. Moore, and R. Steiner. 2008. A practical guide to SysML: The systems modeling lan-
guage. Burlington, MA: Elsevier/Morgan Kaufmann.

Gonte, F. Y. J., N. Yaitskova, P. Dierickx, R. Karban, A. Courteville, A. Schumacher, N. Devaney, et al.
2004. APE: A breadboard to evaluate new phasing technologies for a future European Giant Optical
Telescope. In Ground-based Telescopes, ed. Jacobus M. Oschmann, Jr. (vol. 5489 of Proceedings of
SPIE [The International Society for Optical Engineering]), 1184–1191. Bellingham, WA: SPIE.

Ogren, I. 2000. On principles for model-based systems engineering. Systems Engineering 3 (1): 38–49.

OMG (Object Management Group). 2008. OMG Systems Modeling Language (OMG SysML™): version 1.1.
OMG document no. formal/08-11-02. http://www.omg.org/spec/SysML/1.1/ (accessed 3 Nov. 2009).

Weilkiens, T. 2008. Systems engineering with SysML/UML: Modeling, analysis, design. Amsterdam:
Morgan Kaufmann OMG Press/Elsevier.

Figure 15. Meta-architecture of the local control system	
 	

Subscribe to PPI’s FREE
Systems Engineering Newsletter

PROJECT PERFORMANCE
INTERNATIONAL

www.ppi-int.com

PPI’s Newsletter (SyEN) contains scores of news and informa-
tion on developments in the field as well as a technical article

for the technical project professional, on a monthly basis.

Subscribe at:
http://www.ppi-int.com/newsletter/systems-engineering-newsletter.php

http://www.eso.org/public/astronomy/teles-instr/paranal.html
http://www.eso.org/public/astronomy/teles-instr/paranal.html
http://www.omg.org/spec/SysML/1.1/
http://www.ppi-int.com/newsletter/systems-engineering-newsletter.php

Special Feature

December 2009 | Volume 12 Issue 432

Presented by Mr. Robert Halligan

www.ppi-int.com/training/systems-engineering-course.php

Systems Engineering
for Technology-Based Projects and Product Developments

Provides valuable principles, and e�ective methods with which to implement
those principles, taking a single system in workshop format from requirements
through to design optimization.

A world renowned short course in Systems Engineering, that has been presented
to over 4,500 professionals on six continents. Relevant to beginners and seasoned
veterans alike, offering a structured approach from cradle to grave. This course
provides valuable information on guidelines, standards, templates, matched with
real-life examples and practical workshops, allowing theory to be put into
practice.

Who Should Attend?
• Project Directors

• Project Advisers

• Project Managers

• Engineering Managers

• Systems Engineers

• Software Engineers

• Design Engineers and all other Engineers

• Consultants

Leading-Edge Training - 5-Day Courses and Workshops

Presented by Dr. Gavan Lintern

www.ppi-int.com/training/cognitive-systems-engineering.php

Cognitive Systems Engineering

PROJECT PERFORMANCE
INTERNATIONAL contact@ppi-int.com

Project Performance International
PO Box 2385, Ringwood North
Victoria, 3134, Australia

+1 888 772 5174
+1 888 772 5191

Tel:
Fax:

These courses are available publicly and on-site. Visit www.ppi-int.com to register your interest in PPI’s leading-edge training.

This world-leading course teaches methods of cognitive analysis and cogni-
tive design, and illustrates how they can be applied to enhance human
systems e�ectiveness and safety within system development and acquisition.
The course covers two complementary frameworks for the analysis and design
of cognitive work. The basic tools of each are described and then demon-
strated to illustrate how they can be applied to enhance human systems
integration within systems development and acquisition.

Experiential design exercises give delegates practical experience with these
techniques. The course, while standing alone, complements PPI's 5-day
systems engineering course.

Code
P006-383
P006-377
P006-389
P006-391
P006-393
P006-397
P006-398
P006-399
P006-400

Location
Las Vegas, USA
Singapore
Amsterdam, The Netherlands
Melbourne, Australia
La Spezia, Italy
Las Vegas, USA
London, United Kingdom
Pretoria, South Africa
Helsinki, Finland

Dates
7 - 11 December, 2009
4 - 8 January, 2010
11 - 15 January, 2010
1 - 5 February, 2010
15 - 19 February, 2010
12 - 16 April, 2010
26 - 30 April, 2010
10 - 14 May, 2010
31 May - 4 June, 2010

Course Fee*
USD 2,420
SGD 3,595
EUR 2,075
AUD 2,960
EUR 2,075
USD 2,890
GBP 1,595
AUD 2,700
EUR 2,075

Code

P1082-4

P1082-5

P1082-6

P1082-7

Location

Melbourne, Australia

London, United Kingdom

Las Vegas, USA

Adelaide, Australia

Dates

19 - 23 April, 2010

24 - 28 May, 2010

7 - 11 June, 2010

8 - 12 November, 2010

Course Fee*

AUD 3,845

GBP 2,120

USA 3,990

AUD 3,845

Who Should Attend?

• All designers of systems which
include people
• Human system integrators
• Specifiers of user interfaces
• Designers of user interfaces
• Designers responsible for usability

• Systems engineers
• Software engineers who implement
user requirements
• System safety engineers
• Engineering managers and team
leaders

Special Feature

December 2009 | Volume 12 Issue 433

Presented by Mr. Robert Halligan

www.ppi-int.com/training/requirements-analysis-specification-writing-course.php

Requirements Analysis
& Speci�cation Writing

Leading-Edge Training - 5-Day Courses and Workshops

Presented by Mr. Robert Halligan

PROJECT PERFORMANCE
INTERNATIONAL contact@ppi-int.com

Project Performance International
PO Box 2385, Ringwood North
Victoria, 3134, Australia

+1 888 772 5174
+1 888 772 5191

Tel:
Fax:

These courses are available publicly and on-site. Visit www.ppi-int.com to register your interest in PPI’s leading-edge training.

www.ppi-int.com/training/ocd-conops-course.php

OCD & CONOPS
in Capability Development

The course is consistent with a systems approach to problem solving, as
advocated by defense administrations worldwide. Systems engineering is an
interdisciplinary, collaborative approach to the engineering of system solutions
(of any type).

This course is a 5-day immersion in the development of military capability, with a
focus on problem definition, Operational Concept Description (OCD - how the
capability, and each element of its solution, will be used), and the concept of
operations (CONOPS - how the military outcome is to be achieved).

OCD

TTDIS

OCD

Armed
Transport

Aircraft

OCD

Air�elds

OCD

ATCS

OCD

OP I/S

OCD

GTS
Project

I/S
Maint.
System

SRSSRSSRSSRSSRS

Detailed
Design

Description (DDD)

SRS

SRS SRS
e.g., PB

Architectural
Design

Description
(ADD)

Concept of Operations (CONOPS)

VRS VRS VRS VRS VRS VRS VRS

VRS
Example

Code

P958-06

P958-07

P958-08

P958-09

Location

Las Vegas, USA

Pretoria, South Africa

Adelaide, Australia

Adelaide, Australia

Dates

22 - 26 March, 2010

17 - 21 May, 2010

24 - 28 May, 2010

9 - 13 August, 2010

Course Fee*

USD 3,990

AUD 3,500

AUD 3,845

AUD 3,845

Requirements problems are at the top of the list of why projects go wrong. The
3-day Requirements Analysis module takes participants step-by-step in workshop
format through a practical requirements analysis, to achieve an objectively
adequate standard of requirements. In Specification Writing (2-days), you will learn
how to structure a requirements specification, and how to best express require-
ments and other text in English. Real-world examples generate group discussion
to assist in understanding.

Who Should Attend?

• Acquirer Personnel
• Supplier Personnel
• Developer Personnel

and anyone else who, in any
capacity, deals with requirements

SRS (if any)

Other Info

Ref.Ref.

3

SRS-refined

VRS

OCD

VM
Analytical work products

SRS: system or software requirements speci�cation
VRS: veri�cation requirements speci�cation
OCD: operational concept description
VM: value (or system/software) e�ectiveness model

Code
P007-259
P007-260
P007-261
P007-262
P007-263
P007-264
P007-265
P007-266

Location
Amsterdam, The Netherlands
Las Vegas, USA
Melbourne, Australia
Las Vegas, USA
Amsterdam, The Netherlands
Cape Town, South Africa
Adelaide, Australia
Melbourne, Australia

Dates
18 - 22 January, 2010
22 - 26 February, 2010
19 - 23 April, 2010
30 Aug - 3 Sep, 2010
6 - 10 September, 2010
27 Sep - 1 Oct, 2010
11 - 15 October, 2010
22 - 26 November, 2010

Course Fee*
EUR 2,075
USD 2,890
AUD 2,960
AUD 2,960
EUR 2,075
AUD 2,700
AUD 2,960
AUD 2,960

Special Feature

December 2009 | Volume 12 Issue 434

Model-based Systems Praxis for
Intelligent Enterprises Jack Ring, jack.ring@incose.org

Results
Several results have been produced to date:
Recommended edits to the INCOSE SE Vision 2020 report.•	
Presented a paper at the Conference on Systems Engineering Research •	
2007.
At IS07, which was themed “Intelligent Enterprises,” we presented tenets •	
and concepts regarding both the essence of intelligent enterprises as
systems and of the model-based praxis of systems, notably, identifying,
designing/architecting, engineering/constructing, adopting/adapting/
assaying, and learning.
Also at IS07, participated in a plenary panel that addressed the question, •	
“Are New Systems-Engineering Principles Required to Treat Enterprises as
Systems?
Also at IS07, we conducted a panel discussion in quest of a strategy for •	
evolving a whole-systems-modeling capability. This capability was envi-
sioned as 100,000 practitioners by 2015 performing at 10 times better
productivity and innovation than the 2007 norm.
Findings from this expedition were presented at the IEEE Systems •	
Conference, January 2009, with a recommendation that the expedition be
repeated according to the Interactive Management method with profession-
al facilitation involving ten to fifteen exemplars of the praxis of systems.
Conducted a tutorial in the model-based systems engineering of intelligent •	
enterprises at the International Conference on (Inter-) Enterprise Systems
Theory and Theory in Action, 2007.
Presented a progress briefing at IW08.•	
Presented eight papers at the Conference on Systems Engineering Research •	
2008 (six by John Clymer’s graduate students).
Worked with Ralph Hodgson to introduce development of formal ontologies •	
into MBSE deliberations. Started SysMO Forum at sysmoforum@googlegroups.

com.
Presented a progress report at IS08 regarding both the capabilities mod-•	
eling approach (Clymer) and the knowledge-management approach
(Lillehagen).
Presented a progress briefing at IW09 (thanks to Jose Garcia, Jr.).•	
Produced three straightforward test cases that are representative of man-•	
agement choices in an intelligent enterprise. These can help determine
whether any proposed modeling language or tool is adequate.
Produced a companion paper, “Executable and Integrative Whole-System •	
Modeling via the Application of OpEMCSS and Holons for Model-based
Systems Engineering,” by Jose Garcia, Jr., in this issue of INSIGHT.

Motivations
t the 2007 International Workshop Sandy Friedenthal asked the Fellows
Committee to participate in the Model-based Systems Engineering
Grand Challenge. I volunteered to demonstrate MBSE of intelligent

enterprises. Fellow John Clymer, professor of engineering at California State
University, Fullerton, immediately joined the project, as did one of his grad
students, Jose Garcia, Jr., a Boeing employee. Frank Lillehagen of Commitment
AS, Norway, agreed to share ideas and findings from his work with clients on
the knowledge-management aspect of an intelligent enterprise.

Expeditions
Our work is informed by the research and operating experiences of sev-

eral participants who joined this project along the way, and by notables such
as INCOSE Fellow A. Wayne Wymore (Model-based Systems Engineering,
Boca Raton, FL: CRC Press, 1993), INCOSE Pioneer, John N. Warfield (Under-
standing Complexity: Thought and Behavior, AJAR, 2002), Thomas Gilbert’s
advice (Human Competence: Engineering Worthy Performance, Amherst, MA:
HRD Press, 1996), and the 94 contributors to the INCOSE Intelligent Enter-
prises Working Group report, “About Intelligent Enterprises: A Collection of
Knowledge Claims” (March 2007, INCOSE-TD-2007-001-01).1

We decided to work from the specific to the general, starting with actual
cases and evolving to general principles. Although SysML and AP233 were
prominent in the MBSE initiative, we preferred to explore and understand
the challenges inherent in modeling intelligent enterprises before bothering
with the ways and means of doing so. We established three objectives: (1) to
clarify the factors to be addressed in producing descriptive and prescriptive
models of an intelligent enterprise, (2) to experiment with methods and tools
for producing such models, and (3) to determine the effectiveness of candi-
date methods and tools by observing how well they have served those who
engage in the real-world staffing and operation of intelligent enterprises.

We have explored intelligent enterprises in various business, education,
and military domains. Our more intriguing focus is on the kind of intelligent
enterprise that accomplishes systems engineering, probably the most
complicated and ambiguous kind of enterprise.

1. Available at http://www.incose.org/practice/techactivities/wg/intelent/docs/
IEWGKnowledgeClaimsCollectionReport2007-0315.pdf.

A

mailto:sysmoforum@googlegroups.com
mailto:sysmoforum@googlegroups.com
http://www.incose.org/practice/techactivities/wg/intelent/docs/IEWGKnowledgeClaimsCollectionReport2007-0315.pdf
http://www.incose.org/practice/techactivities/wg/intelent/docs/IEWGKnowledgeClaimsCollectionReport2007-0315.pdf

Special Feature

December 2009 | Volume 12 Issue 435

All of these results reveal that there is much more to be done because the current
standards, exhibits, guides, and handbooks for systems engineering do not explicitly
provide for the model-based systems engineering of intelligent enterprises, particu-
larly those enterprises that are intended to accomplish systems engineering.

Intelligent System/Enterprise Tenets
The following are a number of key current tenets regarding intelligent enter-

prises as systems:
An enterprise facilitates commerce between a marketplace and supplierplace.•	
An enterprise consists of two or more people taking action with limited resourc-•	
es toward mutual purpose.
Intelligent means that the purpose is mutual not only to the people taking •	
action but also to the stakeholders and to the principles of systems and society,
all while thriving throughout unpredictable change.
An enterprise must add sufficient value to marketplace–supplierplace com-•	
merce to sustain market standing, productivity, innovation, and liquidity.
An enterprise is not just an information-technology system or an enterprise-•	
architecture framework. An enterprise breaths, perspires, and celebrates.
Action consists of orchestrating “frontal lobes” and suppressing errors.
An enterprise is bounded only by the set of requests to which it responds, vol-•	
untarily or not.
An enterprise is intelligent when it can determine the gap between its situation •	
and its goal and formulate action that reduces the gap. “Intelligent” is a mode
of behavior, not a measure of performance.
An enterprise can be thought of as a system having context (stakeholders and •	
requests), content (operators and operands), structure (relationships among
the operators and operands and among the relationships), and behavior (the
stimulus-response characteristic exhibited by the system).
Enterprises differ in key dimensions of extent, variety, and ambiguity.•	
Intelligent enterprises are implicit systems in which, in the limit, every action •	
changes: (a) the gradient of a relationship (adjusts), (b) the pattern of relation-
ships among existing content (adapts), and (c) even the content of the system
(co-aligns).

MBSE Praxis
The praxis of intelligent enterprises should be informed by these key current

tenets:
MBSE contributes to a project in three ways: (1) establishing a common lan-•	
guage throughout the project, e.g., producing an ontology; (2) modeling the
intended system, and (3) converging creativity to closure.

Modeling an intelligent enterprise or system entails building a descriptive •	
model of the problematic situation (such as Boardman’s Systemigrams or sys-
tems dynamics modeling) and a prescriptive model of the intervention system
(such as SysML, OpEMCSS, or WattSystems).
Both models must represent: (a) the truth, the whole truth, and nothing but the •	
truth; and (b) the minimal implicate order (necessary and sufficient information
for those who will develop and test the system). Minimal implicate order typi-
cally includes explication of input/output, performance, cost, technology, test,
and tradeoff. Technology considerations include thermodynamics, informatics,
biomatics, teleonomics, human social dynamics, economics, and ecologics.
The order of design decision and priorities for tradeoff are (a) design for enthu-•	
siasm, (b) design for learning, (c) design for culture, as in axiology, including a
quality ethic, integrity, and an articulation of a standard of care regarding all
stakeholders.
Because any model of an intended system is a theory, the model must (a) reflect •	
uncertainties (no deterministic models), (b) provide an estimate of uncertainty
in its output, and (c) be accompanied by the modeler’s recommendations on
ways of determining the limits of applicability of the model.
MBSE of an intelligent enterprise must be accomplished at the rate of change of •	
the problematic situation, the resource limitations, and the knowledge growth
or refinement achieved. An enterprise is in continual flux. No activity, process,
or task is ever repeated exactly. An enterprise model that represents less than
the requisite implicate order or is not maintained at the requisite pace will be
inadequate, or worse, misleading. The enterprise that learns fastest wins, but
only if invention fosters innovation.
A system that is capable of adjusting, adapting and co-aligning must contain a •	
model of itself such that the model can be used to examine alternative change
scenarios before commitment. This indicates a highly cellular system with a
robust means of orchestrating cell participation based on the request, response,
and reward scenarios to be honored.
The appropriate language and modeling tool must accommodate implicit •	
(context-sensitive), and continually learning (knowledge-adapted) constructs
that accurately reflect the characteristics and properties of the underlying
technologies.

Invitation
Anyone interested in participating in current plans or in conducting a diverse

expedition is encouraged to contact the author. We are especially interested in
anyone willing and able to tackle the three test cases using SysML. 

December 2009 | Volume 12 Issue 436

Special Feature

The Challenge of Model-based Systems Engineering for Space Systems, Year 2
C. Delp, chris.delp@incose.org; L. Cooney, lauren.cooney@jpl.nasa.gov; C. Dutenhoffer, chelsea.dutenhoffer@incose.org; R. Gostelow, roli.gostelow@incose.org;
M. Jackson maddalena.jackson@incose.org; M. Wilkerson, marcus.wilkerson@incose.org; T. Kahn, theodore.kahn@incose.org; and
S. Piggott, stephen.piggott@incose.org

The benefit of formal

modeling is that we

can finally stop being

ambiguous and say

exactly what we mean.

— Robert Rasmussen, PhD,

Chief Engineer, Systems

and Software Division, Jet

Propulsion Laboratory

The INCOSE Space Systems Working Group (SSWG) Challenge
Team was formed to address the challenge of applying mod-
el-based systems engineering to a real-world space system. In

our first year of work the team explored the use of MBSE for space
systems (Delp et al. 2008) using the FireSat example from Space
Mission Analysis and Design, edited by Wiley J. Larson and James
R. Wertz (1999). In the second year we are building on the exist-
ing FireSat model to explore how reusable and descriptive model
libraries can describe and manage information for trade studies as
well as expanding the examples of modeling space systems.

Challenge Team Objective and Approach
An objective of the INCOSE MBSE Challenge is to demonstrate

the applicability of MBSE to a realistic, sharable problem space.
The SSWG has chosen a fictitious space mission. Over the last
two years, the team has developed a model of FireSat using the
Systems Modeling Language by treating Larson and Wertz’s Space
Mission Analysis and Design (SMAD) as a traditional document-
based design, and mapping textual artifacts to visual model-based
constructs. Development of the SysML model follows INCOSE’s
object-oriented systems-engineering method (OOSEM), outlined
by Friedenthal, Moore, and Steiner (2008), and the JPL-developed
State Analysis methodology (see http://mds.jpl.nasa.gov). The team
has also developed a library of reusable space-system model
constructs within the FireSat model itself. The members of the
SSWG challenge team represent NASA’s Jet Propulsion Laboratory,
Goddard Spaceflight Center and Glenn Research Center, the Japanese
Aerospace Exploration Agency, the European Space Agency, the
Canadian Space Agency, the Boeing Company, the Lockheed Martin
Corporation, and student teams at the Massachusetts Institute of
Technology and the Georgia Institute of Technology.

FireSat is a conceptual mission used by Larson and Wertz to
provide a unified context for the practical examples in their text-
book. The FireSat mission calls for a space-based system to detect,
analyze, and monitor forest fires, with data ultimately provided

to the U.S. Forest Service. Larson and Wertz then use the FireSat
context to document examples of mission analysis and design, from
mission characterization and requirements definition to specific
space and ground subsystems. The advantage of using the FireSat
example for the Space System Working Group’s MBSE Challenge
is that it is a non-proprietary example, and it offers complex and
challenging problems. Though SMAD does not contain a complete
documented system design, the text provides sufficient descrip-
tions and artifacts to create model-based analogs corresponding to
artifacts widespread in the space and aerospace industry.

The goal of this effort is not to demonstrate another way to simu-
late or numerically analyze a complex problem, but rather how a
descriptive model can serve to unite design and analysis artifacts in
a manner that is not possible with modern document-based office-
automation software. This integrated model overcomes issues with
scalability, consistency, and completeness; it also removes the mun-
dane bureaucratic chore of churning out document updates, leaving
the systems engineer with more time to engineer the system.

Design Representation: Integrated Models vs. Documents
Space-industry practitioners consider SMAD a foundation for

standard practices. It contains the essence of how systems engineer-
ing is applied to space systems in current practice. Most of the FireSat
examples are analytical design trades using models of the mission,
system, and subsystems for the FireSat spacecraft. Although the
scale and detail of information represented by the FireSat example
are much smaller, FireSat is appropriate to represent the systems-
engineering documents and artifacts used in flight-project architec-
tures and designs for the purposes of this exercise.

The examples the SSWG team used from SMAD reflect infor-
mation found in the corresponding documents typically used in
industry to describe space systems. Although the examples do not
represent complete documents, the information they contain is a
reasonable representation. The SSWG team described the FireSat
mission using SysML and stored it in a database. This procedure

Special Feature

December 2009 | Volume 12 Issue 437

results in graphical representations replacing traditional documents. These representa-
tions still contain the same textual narrative from the document. Capturing the descrip-
tion in this way conveys the information that would have been referenced or repeated
in the document through a single reusable location. Additionally, the description is
now formal enough that it can be integrated with computer simulations, computer-
aided design, and other quantitative design tools. The model captures design and trade
exercises, which are automatically propagated to the systems specification, including
requirements and other elements.

Models treat system and contextual elements and components as first-class citizens
of the design. Each component of the system, the system itself, and each system that the
system interacts with is explicitly defined in the model and contains all the information
relevant to its description. As such the components can easily be counted and analyzed
for complexity.

Although many documents are produced from templates, modeling facilitates a broader
architecture for reusability. The Space Systems Library is a collection of descriptive model
assemblies that encompass analyses, parts, and functions commonly used in the design of
space systems. Space missions reuse concepts, methods, requirements, and hardware from
prior missions in order to save time and money. A model library can capture this effectively,
negating the need to duplicate and tailor previous mission artifacts. Using the analyses
in the FireSat example, the Challenge Team constructed a library of reusable parametric
models that represented physical laws such as those related to orbital mechanics, heat
transfer, and structural analysis. These concepts attempt to capture parts of design that
are flexible enough for reuse. This allows for rapid prototyping and design, since these
concepts need only be parameterized for the specific mission that is applying the library.

Mission Design and Specification
The FireSat example outlines a fairly simple mission to provide a system of satellites

for detecting, identifying, and monitoring forest fires. Expanding on the previous use-

System Documents FireSAT Example

Concept of operations Mission objective, system requirements, orbit selection

Requirements (SRDs, FRDs etc.) System requirements

Interfaces (ICDs, etc.) Data-flow diagram, system requirements

Functional designs Power functional decomposition

Architecture description Mission objective

Analysis-specific engineering reports (trades, reliability, etc.) Solar array selection, orbit selection

End-to-end information systems specification Data-flow diagram

Table 1. Systems engineering documents and Firesat examples

Note: Common systems-engineering documents are matched with parts of the Firesat example to
establish the comparisons that will be made using models. Abbreviations: SRD, System Requirements
Document; FRD, Functional Requirements Document; ICD, Interface Control Document

case analysis and requirements (see Delp et al. 2008), the model now incorpo-
rates the requirements as measures of effectiveness (MOEs) and measures of
performance (MOPs).

The SysML model captures context specifications such as the operational
environment, the science target, and the enterprise that will carry out the
mission objectives. As shown in figure 1, the mission’s flight systems and

	

Figure 1. Mission internal block diagram

ground systems are depicted in a collective context. Ports describe the entire
end-to-end set of interfaces: from fire and instrument to data downlink to
forest-service notification. Since the model is formally described, it can also be
automatically checked to ensure that the connections between these elements
are correct and consistent. SysML notation makes this simple — no exotic soft-
ware is needed to parse natural language.

This SysML internal block diagram depicts a high-level interface schematic
for the whole FireSat domain. The earth and its various properties relevant to
forest fire detection are related to the FireSat Mission and its components and
enterprises. This mission-level view captures our desired FireSat system as a
black box exposing only interfaces in the context of the operational mission.
Every physical body, system, and enterprise that FireSat will interact with is
captured in the model. Context sets the stage for behavior and metrics. A sig-
nificant MOE for the mission is responsiveness: how quickly an existing fire is
detected, identified, and reported to the forest service. Modeling these parame-

Special Feature

December 2009 | Volume 12 Issue 438

ters as parametrics in SysML
(instead of “shall” or “must”
statements) now facilitates
the flexibility to analyze the
mission to determine if the
given requirements can be
accomplished. Conversely,
we can use parametric
models to define more-
demanding requirements for
frequency of coverage and
less-demanding require-
ments for responsiveness
(latency) based upon the
assumptions and constraints used for writing conventional requirements. The model
allows us to perform these trades at any level of the system, from the product level to
the subsystem level, to the level of individual pieces of hardware. At any of these lev-
els the MOEs will report the effects of our trades on requirements. These expressions
can now be tied to the orbit design.

Figure 2 shows the end-to-end response time depicted as a sum of all the mean
times between the detection of a fire on the ground and the time the forest service
receives the alert. This gives a clear quantitative understanding of how the FireSat
constellation of satellites should perform with the other elements of the system.

Mission Orbit and Trajectory Design
Observation strategy affects the responsiveness MOE through the ground cover-

age MOP. The ability to detect fires quickly depends on ground-coverage rate, which
in turn depends on number of satellites, their altitudes and orbits, and the payload
used to collect data. Physics models of orbits are the foundation upon which differ-
ent physical architectures can be compared against the MOEs. These MOEs encom-
pass power, mass, and thermal concerns, such as the health and safety of the
spacecraft, and the performance of the payload. To provide this foundation, exam-
ple orbit and trajectory designs are currently being incorporated into the FireSat
model, including satellite orbit parameters and equations of motion. Earth geom-
etry as viewed from the spacecraft is also modeled for mission analysis. Coordinate
systems are considered in order to appropriately describe the frame of reference in
which analysis is performed. Model elements are associated with a reference frame,
and transformations between reference frames (i.e., rotations and translations) are
related using constraint block relationships. In figure 3, orbit analysis is described
in an earth-centered inertial reference frame, while earth geometry viewed from

	
 Figure 2. Responsiveness Measure Of Effectiveness. This SysML
parametric diagram depicts how the MOE of maximum response
time can be used to constrain the figure that sums the times from
the different parts of the system’s behavior. Such a requirement is
key to various trades in FireSat.

space is in a spacecraft-
centered “RPY” (roll, pitch,
yaw) frame. The properties
of the coordinate systems
are related to the appropri-
ate model elements, as
depicted in figure 3.

Since the entire mis-
sion must achieve a certain
responsiveness, this
translates to a requirement
on FireSat depicted here
as daily coverage quan-
tity. The orbit design will
directly affect how respon-
sive FireSat is based on the
rate of ground coverage.

These models are part
of the Space Systems
Library now and are
usable for any mission.
Future versions of the FireSat model will benefit from this foundation as a reusable
method for characterizing the design space and trading different physical archi-
tectures. From this exercise it is easy to envision a complete model of solar-system
physics, astrodynamics, and even kinematics.

The FireSat system-of-interest block gives a complete black-box specification for
functional goals and measures of performance, as well as persistent information
stores, states, and interfaces. From this level, trades and other analyses that tie to
the measures of effectiveness will allow changes in a physical design to reflect in
the performance measures.

Logical and Physical System Architectures
To specify a spacecraft design that will accomplish the operational architecture

modeling, developing the logical (similar to functional decomposition) and physi-
cal architectures is the next step. These functional architectures can be traded for
how much and what types of capability the system requires. Similarly the physical
alternative architectures can be traded against how they meet a particular functional
scope. SMAD’s example of the FireSat power system provides traditional functional-
and physical-design information. The purpose of the power analysis in the SMAD
book is to determine the required size of the FireSat solar array and required battery

	
 Figure 3. Orbit model. This SysML parametric diagram uses model-
library definitions of earth, combined with kinematic reference frames
and Kepler’s laws to depict a very basic orbit-geometry framework for
a single spacecraft. This model can be used to separately capture any
number of specific orbit configurations for trade study or design. Such
data can be used to feed any number of execution tools for simulation
analysis and trade. The earth sets the stage for the frame of refer-
ence that depicts the abstraction of the spacecraft and the earth (as
the origin). For reference frames to make sense, the object the frame
abstracts must be owned by the object—in this case the earth.

Special Feature

December 2009 | Volume 12 Issue 439

capacity in order to meet the
power-system requirements.
The book gives multiple
types of power distribution
schemes, solar cell types,
and battery types. For the
purpose of FireSat, we chose
one combination, as shown
in figure 4. This illustrates
the complexity of the system
being modeled and the trades
that will be needed in order
to choose a particular system.

The power system for
FireSat can be viewed with
an eye to many concerns.
This parametric view shows
how parts of the power
system are constrained and
what parameters are under
constraint. The parametric
model of the power system
is probably one of the most powerful examples of MBSE for space systems. Quan-
titative constraints captured from the SMAD book in the Space Systems Library
illustrate how fundamental concepts common to space systems can be modeled
and reused as part of a causal analysis. The example involves solving for eclipse
and daylight time given power and area requirements and solving for area and
power requirements given a particular orbit’s daylight and eclipse time. These dia-
grams can be used to define many alternative combinations for the power system
as well as the chosen baseline. It also shows how properties of the chosen orbit and
mission-level information affect the power system.

2007–2009 Conclusions and Future Plans
In each example explored by the team, model-based systems engineering

showed several advantages from documents. These advantages include clarity
and communication. In the cases of figures (mission IBD and parametrics) we can
clearly see in a single view all of the information that would ordinarily be a collec-
tion of disjointed documents. Instead, the model provides the information of con-
cern as first-class citizens: this information is explicit with clear boundaries and
semantics, and does not need to be assumed or referenced from another document.

The information as shown in the model is the literal artifact. No churning will be
required to update either the diagrams or the documents generated from the model.
If the mission information changes, it will be propagated automatically.

The analytical relationships between responsiveness, coverage, and power
production are explicitly related by parametrics. It may be intuitive that these are
related based on orbit geometry and dynamics, but in the model, these equations
and parameters are clearly documented in a way that can be just as easily used for
calculation. Any changes to, for example, the orbit or number of spacecraft will
propagate to our desired metrics.

Figure 4 shows a complete specification for the FireSat system. In one compact
view, everything necessary to understand the system is presented. The document
generated from this block would be multiple pages long and cover numerous pages
in the book. In non-MBSE approaches, there would be a slew of documents contain-
ing the same information. Capturing the system in such complete detail without
having to dive into the mire of all that text is revolutionary.

The library and use of orbit design and power analysis offers the advantage of
reuse in a way that even the book itself cannot accomplish. This is a subtle but impor-
tant point. These models contain not only the analysis but also the description of
the analysis, since SysML is a descriptive modeling language. These foundations do
not change, and assumptions captured and tested can now be used across a variety
of missions without needing to start from scratch. For FireSat this would mean no
ambiguity about the nature of the orbit design. The MBSE approach captures every
aspect of the project, from flight software to launch vehicle to mission operations,
and provides an unambiguous definition of how the spacecraft is meant to be flown.
Finally, since all of the text narrative can be captured inside the model elements, the
documents themselves can be generated from the model. The MBSE approach really
involves comparing documents to the combination of documents and models.

The next year of effort for the FireSat project will include an attempt to incor-
porate a complimentary 3-D modeling tool called Satellite Tool Kit. This will allow
us to explore systems-level modeling across tools and a comparison of 3-D anima-
tions vs. 2-D blueprints of space systems. Another area of interest to the team is
the exploration of incorporating schedules and resources into the model. This will
allow a systems model to better predict combined effects on cost schedule and risk
in addition to product and performance topics.

References
Delp, C. L., with C.-Y. Lee, O. de Weck, C. Bishop, E. Analzone, R. Gostelow, and C. Dutenhoffer. 2008.

The challenge of model-based systems engineering for space systems. INSIGHT 11 (5): 14–18.

Friedenthal, S., A. Moore, and R. Steiner. 2008. A practical guide to SysML: The systems modeling lan-
guage. Burlington, MA: Elsevier/Morgan Kaufmann.

Larson, W. J., and J. R. Wertz, eds. 1999. Space mission analysis and design. 3rd ed. El Segundo, CA:
Microcosm.

	

Figure 4. Power-system analysis. This SysML parametric diagram
depicts a portion of the Firesat solar array trade as modeled. The
constraint block that has been cut off contains all of the equations
from the trade, along with the relationships and how it is connected
to the power-distribution unit; the battery; and parameters from the
spacecraft and the mission that affect power.

December 2009 | Volume 12 Issue 440

Special Feature

Integrating System Design with Simulation and Analysis Using SysML
Russell Peak, russell.peak@incose.org; Chris Paredis, chris.paredis@gatech.edu; Leon McGinnis, leon.mcginnis@gatech.edu;
Sanford Friedenthal, sanford.friedenthal@incose.org; and Roger Burkhart, roger.burkhart@incose.org

Modern life depends on the correct and efficient operation
of complex technical systems. The OMG Systems Modeling
Language (OMG SysML™) is one response to the challenge

of effectively integrating a broad range of disciplines across a spec-
trum of system lifecycle activities—from product conceptualization
through design, manufacturing, distribution, operation, support,
and finally to end-of-life processing. SysML provides the ability to
create formal models that express system requirements, structure,
behavior, and parametrics, and that interoperate with other types
of descriptive and analysis models to support a broad range of
systems modeling. This article describes work that demonstrates
this ability in the context of two mechatronics-related testbeds: (1)
designing hydraulic excavator systems and associated manufactur-
ing processes, and (2) developing and operating mobile robotics
systems. INCOSE’s Modeling and Simulation Interoperability (MSI)
Team as part of the Model-based Systems Engineering Challenge
did the work. This article summarizes the results from the over-
130-page Phase 1 report (covering August 2007 to July 2008),1 and
highlights progress from Phase 2 (August 2008 to July 2009).

In the Phase 1 work for the product domain of hydraulic excava-
tor systems, both mechanical and hydraulic systems are designed
and simulated, and SysML models are used to integrate design and
analysis models both within each design discipline and across
disciplines. In the manufacturing domain, the disciplines that are
integrated using SysML models include capacity planning, factory
layout, process engineering, and production planning. The design
and manufacturing domains are integrated using a SysML model of
the engineering bill of materials and a common model of measures
of effectiveness.

The primary achievements of the MSI team in the Phase 1
excavator case study are these: (1) capturing information about the

1. R. S. Peak, C. J. J. Paredis, L. F. McGinnis, S. A. Friedenthal, R. M. Burkhart, et al.,
“Integrating System Design with Simulation and Analysis Using SysML: An Excavator
Testbed” (Phase 1 Final Report [version 1.2] of INCOSE Modeling and Simulation
Interoperability Team, 2009), available at http://www.pslm.gatech.edu/projects/incose-
mbse-msi/. (Check this Web address for additional items, including the Phase 2 report,
expected in the winter 2010 time frame).

structure and behavior of the product and processes in a form that
is readily reused for trade studies and design evolution; (2) auto-
mating key analysis steps by enabling tight integration between
design authoring tools (e.g., CAD and SysML) and analysis tools
(e.g., finite element analysis and discrete event simulation); (3)
improving communication across disciplines; and (4) enhancing
requirements traceability.

The results of these focused case studies have potential for broad-
er impact: (1) the demonstration of MBSE and SysML may encour-
age a broader community of systems engineers to further explore
SysML; (2) the software prototypes of interfaces between SysML and
disciplinary design and analysis tools are potentially reusable in
other domains (and some 2  have already been commercialized for
that purpose ); and (3) the SysML model examples serve as potential
templates and reference models for other projects.

The Phase 1 work also identified three important areas for fur-
ther work: (1) strategies for knowledge capture, including domain
metamodels, profiles, and model libraries; (2) graph transforma-
tions as a powerful generic approach to model interoperability;
and (3) a generalized philosophy and strategy for model integration
called MIM — the Model Interoperability Method. Phase 2 continued
to explore these areas and other extensions including a testbed for
mobile robotics.

Background
Contemporary systems engineering is evolving to a model-based

approach to address the complexity of large-scale heterogeneous
systems. However, the model-based approach introduces its own
challenges related to model interoperability and model manage-
ment. A model-based systems-engineering approach must sup-
port collaboration and interoperability at several levels: across
global organizations, between disciplines involved in the systems
development effort, among design teams within a given discipline,

2. See for example http://www.intercax.com/sysml/, which has been aided by the
Georgia Tech VentureLab incubator program.

http://www.pslm.gatech.edu/projects/incose-mbse-msi/
http://www.pslm.gatech.edu/projects/incose-mbse-msi/

Special Feature

December 2009 | Volume 12 Issue 441

between design and analysis efforts, and between development and manufactur-
ing. As development and manufacturing become more intensely model-driven,
tools and methods for systems engineering must be capable of managing and inte-
grating this collection of models.

Project Context
This project leverages OMG SysML as a systems modeling language to address

both model interoperability and model management. SysML provides a formal
graphical language that has enough expressivity to be applied across diverse
disciplines during system development. Thus, SysML holds the promise of directly
enabling the necessary integrations through comprehensive system models, and
also directly enabling integration and interoperability across a broad spectrum of
models.

The work summarized here explores this promise. Our Challenge Team’s project
applies a model-based approach, using SysML modeling tools and other design
and analysis modeling tools to the design of an excavator as one demonstration
platform. The structure of the resulting SysML model is based on that outlined
by the Object-Oriented Systems Engineering Method (OOSEM).3 In the system-
development process, two primary product-design disciplines are engaged—fluid
power systems design for manipulating the excavator arm, and structural design
for the bucket and boom. In addition the integration of design with manufactur-
ing is explored, which translates the engineering bill of materials (EBOM) into a
manufacturing bill of materials (MBOM) with make/buy decisions, fabrication, and
assembly operations.

This project was initiated with the overall objective to define the methodology,
tools, requirements, and practical applications that demonstrate how to bridge a
SysML system specification and design model with multiple engineering analysis
and dynamic simulation models. Supporting objectives led to the definition of four
specific tasks:

Define a methodology for integrating a system model with multiple engineering •	
analysis models and dynamic simulation models.
Define requirements for the SysML specification, for SysML tools, and for •	
analysis tools that are needed to support such a methodology.
Demonstrate this methodology with several representative design and •	
simulation models.
Develop a roadmap for follow-on work.•	

3. For more information, see the Web site of INCOSE’s Object-Oriented Systems Engineering Method (OOSEM)
Working Group on INCOSE Connect at https://connect.incose.org/. As an example application of OOSEM, see
the residential security-system case study (chapter 16) in Friedenthal, Moore, and Steiner’s A Practical Guide
to SysML: The Systems Modeling Language (Burlington, MA: Elsevier/Morgan Kaufmann, 2008).

These tasks were exe-
cuted during Phase 1 of a
twelve-month collaborative
effort between Lockheed
Martin Corporation and the
Georgia Institute of Technol-
ogy, with additional related
work supported by Deere &
Company and other efforts.
The results of this combined
effort are being used to help
advance the practice of
systems engineering within
society as a whole and to
support educational objec-
tives at Georgia Tech and
beyond. Phase 2, which has
recently been completed, extended these techniques and the excavator testbed,
and also added a mobile robotics testbed.

Figure 1 illustrates the excavator testbed and the strategy adopted to achieve the
project objectives. Three distinct categories of commercial-off-the-shelf (COTS) tools
are employed: SysML tools, traditional descriptive tools (product CAD, factory CAD,
and Excel), and traditional analysis tools (Excel, FEA, math solvers, and simula-
tion solvers). In addition, the project team developed the necessary interfaces to
integrate the SysML modeling tools and other tools using a combination of COTS
interfaces (e.g., VIATRA and ParaMagic) as well as custom interfaces developed in
C#, Java, and Visual Basic.

Phase 1 Results
Figure 2 illustrates the resulting models and model interfaces from a perspec-

tive of model interoperability patterns. On the left are the COTS descriptive tools
(in the box labeled a0. Descriptive Resources), and on the right are the COTS solver
tools (labeled e0). The models in the middle boxes (labeled b0, c0, and d0) all are
implemented as SysML models (figure 3). The box labeled b0 is the federated sys-
tems model, which is primarily a descriptive model that collects together various
a0-type models and augments them where needed. In this testbed the b0 model
combines both the system of interest (the excavator product) and its manufacturing
system. Through the course of the project, reusable analysis and simulation build-
ing blocks that are context-independent (generic) were identified and collected into
libraries, illustrated in the box labeled d0.

Figure 1. Excavator testbed (Phase 1): tool categories view

SysML Tools

Traditional
Descriptive Tools

Excavator
Boom Model

Factory
Layout Model

Production
Ramps

NX/MCAD Tool

Reliability
Model

Mathematica

Factory
Simulation

eM-Plant

Dig Cycle
Model

Dymola

FEA Model

Ansys

Cost Model

Excel

Optimization
Model

Model Center

Factory
Model

RSA/E+/SysML
Excavator

Executable
Scenario

RSA/E+/SysML

Excavator
System Model

No Magic /SysML

Factory CAD

Excel

2009-02-25a

Traditional
Simulation & Analysis Tools

Operational
Scenario

Interface & Transformation Tools
(VIATRA, XaiTools,…)

Special Feature

December 2009 | Volume 12 Issue 442

Each context-specific simulation model in figure 2 (models in the box labeled
c0) applies selected generic d0 building blocks to the b0 system for a specific
purpose — typically to calculate values to verify one or more requirements or
performance objectives. Each c0 model is executed utilizing one or more e0 solvers,
which are typically general-purpose COTS solvers, but may also be specialized
company-proprietary codes. The c0 model pattern is the focal point for capturing
knowledge about domain-specific analysis intent including idealization decisions.
Depending on the nature of the b0 system aspect being analyzed, these c0 models
range from fixed-topology analysis templates (which analysts create directly) to
variable-topology analysis templates (which automatically generate a model with
simulation topology that is specific to a particular design instance). In our excavator
testbed the models for boom linkage are examples of the former, and the dig cycle
hydraulics model is an example of the latter.

Each arrow in figure 2 represents a specific interface that required development,
implementation, and testing by the project team. SysML modeling and interface
development represented the major part of the R&D effort for the project. To
demonstrate the model integration illustrated in figure 2, a series of scenarios was
created for the excavator example. Figure 3 contains several thumbnail highlights
from these scenarios (see the Phase 1 report for the actual figures and further

explanation). The initial scenario represents a design requirement (a target
rate for moving dirt), and a marketing requirement (a target rate for selling
excavators). The hydraulic and structural teams exercised a design process to
achieve a satisfactory product design, and the manufacturing team translated
the design into a manufacturing plan, capacity plan, and operational plan.
The design process was then confronted with changed requirements. A higher
required rate for moving dirt was found to necessitate a redesign of both the
hydraulic and the structural subsystems; this revised product design then
required a redesign of the manufacturing process. Finally, a higher target sales
rate required a further redesign of the manufacturing process to support the
corresponding increased manufacturing rate. Based on these results in the
context of the excavator domain, we have demonstrated how to bridge a SysML
system specification and design model with multiple engineering analysis and
dynamic simulation models—i.e., the overall Phase 1 project objective has been
met and exceeded.

Significance
The significance of these results is not in any single design decision or sup-

porting engineering analysis — all of these could be done individually without

Figure 3. Excavator testbed (Phase 1): sample SysML diagrams and native solver models

Figure 2. Excavator testbed (Phase 1): MIM model interoperability patterns view

Legend

1) The pattern nam
es and identifiers used here conform

 to HM
X 0.1—

a m
ethod

under developm
ent for generalized system

-sim
ulation interoperability (SSI).

2) All m
odels show

n are SysM
L m

odels unless otherw
ise noted.

3) Infrastructure and m
iddlew

are tools are also present (but not show
n)—

e.g.,
PLM

, CM
, param

etric graph m
anagers (XaiTools etc.), repositories, etc.

Notes

2008-02-20

Tool &
 native m

odel interface (via XaiTools, APIs,…
)

Param
etric or algorithm

ic relationship (XaiTools, VIATRA,…
)

Com
position relationship (usage)

N
ative m

odel relationship (via tool interface, stds.,…
)

c0. Context-Specific
Simulation Models

a0. Descriptive Resources
(Authoring Tools,…)

d0. Simulation Building Block
Libraries

b0. Federated
Decriptive Models

e0. Solver Resources

Excavator Sys-Level Models Optimizers

Generic Math Solvers

Sys Dynamic Solvers

FEA Solvers

Discrete Event Solvers
(Specialized)

Boom Linkage Models

Excavator Domain Models

MCAD Tools

Factory Domain Models

Stress/Deformation Models

Boom Mfg Assembly Models

Assembly Process Models

Optimization Model
ModelCenter

Mathematica

Dymola

Ansys

eM-Plant/
Factory Flow

Excel

Objective
Function

Cost
Model

Operations

Boom

Linkages

Dig Site

NX

Data Mgmt. Tools

System & Req. Tools

Factory CAD Tools

Excel

MagicDraw

FactoryCAD

RSD/E+

Dump Trucks

Req. &
Objectives

Req. &
Objectives

Hydraulics
Subsystem

Excavator
MBOM

Cost
Concepts

Reliability
Concepts

Queuing
Concepts

Fluid
Mechanics

Solid
Mechanics

Optimization
Concepts

Reliability
Model

Federated Excavator Model

Federated Factory Model

Assembly Lines

AGVs Work Cells

MachinesBuffers

Dig Cycle
Model

Extensional
Linkage Model

MM1 Queuing
Assy Model

Discrete Event
Assy Model

Plane Stress
Linkage Model

Special Feature

December 2009 | Volume 12 Issue 443

the SysML modeling and interface development, albeit not as effectively. Rather,
the significance is in the formal capture of modeling and design knowledge in a
manner that enhances the integration of design and analysis as well as the reuse
of knowledge and information. Integration fully or partially automates time-
consuming manual processes and thus enables faster design analyses with less
effort by the designer, which can result in faster design cycles and increased design
analysis and trade-space exploration. The impact of knowledge capture and reuse
is to enhance the capability of designers in terms of both design speed and design
quality. The impact of improved model management is better visibility and com-
munication across the entire design-manufacturing cycle, leading to fewer errors,
earlier problem identification, and faster problem resolution.

This knowledge capture, integration, and reuse occurs at two levels. First,
at the domain level, knowledge capture takes the form of libraries of concepts,
modeling elements, and interfaces that are directly reusable in the design of other
excavator products or other excavator manufacturing processes (and often in
other domains beyond excavators). The use of these libraries does not necessarily
require expertise in SysML; the captured knowledge can be accessed by potential
users in “wizard” forms or in tools with which they already are familiar. Second,
the captured knowledge takes the form of explicit system models that integrate the
design across multiple product-design disciplines and between product design and
manufacturing. The demonstration scenarios show that this knowledge has been
captured in a manner that enables very rapid and inexpensive redesign of both the
product and the associated manufacturing processes.

Phase 2 Highlights
Phase 2 (recently completed) has several facets including (1) extending the

excavator testbed, (2) enhancing fundamental techniques, and (3) adding a
new mobile robotics testbed. The graph transformation work has explored the
capabilities of the MOFLON tool and its advantages over VIATRA, which was
used in Phase 1. The EBOM-to-MBOM translation work has also applied MOFLON
and tested its usefulness in that context. More simulation tools have been added
into the factory simulation and parametrics testbed aspects, including AnyLogic
and Matlab/Simulink. A new way of visualizing and interacting with SysML
parametrics has been introduced: a flattened graph that gives a characteristic
“panoramic” DNA-like view of the model. The new mobile robotics testbed
demonstrates how SysML activity models can support system operations at both
the planning and execution levels (including live updates and execution on
physical units). Look for these and other additions in a public version of the Phase 2
report expected in 2010.

Future Work
Based on these experiences, a number of important next steps have been identified.

Generalization of model interoperability method. General-purpose solutions with
enhanced robustness are needed in a number of areas:

In the Phase 1 demonstration, the conversion from the EBOM to an MBOM •	
was formalized in SysML, but the conversion itself was performed manually.
Whether or not the conversion can be fully automated is an open question, but
it is clear that a suite of tools could be created to assist in the conversion and to
make it a more repeatable process.
Graph transformation technology has proven to be an excellent means for •	
implementing some of the key interfaces between different models, and it holds
great promise for making a more efficient process for developing these inter-
faces. Additional work is needed to better understand this technology (e.g.,
regarding breadth and scalability) and to develop better tools for using it in this
context.
When a number of different teams work concurrently on a federated model •	
(b0), there will naturally be inconsistencies between the federated model and
its source submodels as various aspects change over time. Thus, methods are
needed to manage these inconsistencies — to recognize and identify them,
to provide temporary “work-arounds,” and to ensure resolution (e.g., semi-
automated synchronization capabilities).
Reusability represents a very important opportunity both for generic and for •	
domain-specific modeling and integration. Fundamental questions — such as
how to identify opportunities for reusability and how to organize libraries to
best facilitate reusability — represent important areas for further work.

Workflow. As federated system models become more elaborate, and more design
teams are involved, methods and tools for workflow management and control
become critical, not only to automate the linkages between computerized tools and
files, but also to deal effectively with version and access control, inconsistencies,
and so on. Incorporating workflow models into federated system models may pro-
vide an entry point for more effective workflow management, and this represents
an opportunity for novel research and development.

Deployment. The move toward MBSE and SysML is in its relatively early stages
(analogous to the early days when moving from physical drafting first to 2-D CAD
and then to 3-D CAD). Achieving broad deployment (and realizing the associated
benefits) will require two kinds of efforts. First, education and training are needed

December 2009 | Volume 12 Issue 444

Special Feature

to create the necessary pool of
human resources. Leveraging the
experiences of projects like this
is one way to enhance education
and training (e.g., by developing
effective teaching materials based
on these examples). Second, it is
important to continue productizing
the results of projects like this (e.g.,
as is being done by InterCAX2),
including SysML-based interfaces
to specific tools (e.g., the interfaces
to NX and ModelCenter depicted in
figure 2).

Summary
This project demonstrates the

ability to integrate SysML with a
broad range of conventional models
for design and analysis. These
results indicate that this combined
technology does indeed hold great
promise to enable model-based
systems engineering (MBSE) for
large-scale, multidisciplinary,
complex system-design projects.
This must be augmented by new
methods for organizing and
managing models, by enhanced
interoperability methods, and by a
broad range of new tool interfaces.
The work summarized here and the
opportunities identified for further
work represent an important step
towards achieving true MBSE by
utilizing a SysML-based approach
for model interoperability. 

Peak et al. continued A Modeling Approach to Document
Production
Steven Jenkins, steven.jenkins@incose.org

Model-based systems engineering is often contrasted
with document-based systems engineering, but the
use of models does not eliminate the need for docu-

mentation or negate its utility. There is and will continue to be
a systems-engineering role for narrative prose that explains
the analyses, trades, and judgments that validate a system
design. Contract law, moreover, attaches special significance
to writings; contract statements of work will include natural
language for the foreseeable future. Rather than view them as
opposing styles, JPL has undertaken to integrate model and
document orientations. The research described in this article
was carried out at the Jet Propulsion Laboratory of the Califor-
nia Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Documents as Modeled Entities
The first step in integrating system modeling and docu-

ment production is to develop a model structure for docu-
ments. If we have such a structure, then the creation of a
document can be seen as a transformation that converts a
system model into a document model. Fortunately, major
industries that produce voluminous technical documentation
(e.g., information technology, aerospace, automotive, law)
have invested for more than thirty years in the development of
formal standards for document structure. The widely-adopted
Extensible Markup Language (XML) (Worldwide Web Consor-
tium 2006), for example, arose from an earlier Standard Gen-
eralized Markup Language (SGML) (ISO 1986) and yet earlier
Generalized Markup Language (GML), originally developed at
IBM for legal publishing.

Of course, there can be no “standard document” that
suffices for all purposes. Instead, modern markup languages
provide a set of elements and composition rules by which
a particular class of documents can be defined. XML, for
example, provides the ability to develop arbitrary element

schema, by which we may declare that there is an element
called article, that an article may contain sections, sections
may contain paragraphs, and so on. The XML standard then
allows us to mark up an actual document with these elements,
and to validate that the marked-up document complies with
the rules in the schema. If we had mistakenly included, for
example, a section within a paragraph, an XML validation
utility can tell us the document is not a valid instance accord-
ing to our schema. XML transformation tools can then convert
the XML into HTML, PDF, or a variety of other formats using
rule-based transformations.

One essential feature of the “markup” approach to docu-
mentation is that nearly all aspects of the visual appearance
of the document are specified in external style sheets. This
frees authors from the burden of complying with institutional
style requirements, and allows the same content to be reused
in specialized formats (e.g., for the visually impaired). Let’s
look at a specific XML standard for documents.

The DocBook Standard
The Organization for the Advancement of Structured

Information Standards (OASIS) is a not-for-profit consortium
that “drives the development, convergence and adoption
of open standards for the global information society.” One
such standard is DocBook (OASIS 2006), a system for writing
structured documents using SGML or XML. DocBook includes
two key components: a set of document type definitions or
XML schema that define the structure of a legal DocBook
instance, and a set of Extensible Stylesheet Language (XSL)
Transformations (Worldwide Web Consortium 1999) to process
DocBook instances, including conversion to HTML and PDF.
Both components are extensible: the user may create a custom
document type definition based on DocBook, and extend (or
create) style sheets to convert to some unique presentation
format. Because DocBook is based entirely on widely used
XML and related open standards, capable free software
tools are available for the entire processing chain, as well as
commercial offerings for specialized requirements. DocBook
is a mature standard; version 5.0 was released in 2008.
DocBook has been used most prominently in the information-

Special Feature

December 2009 | Volume 12 Issue 445

technology industry. A number of computer vendors and large software projects
include DocBook documentation.

There are alternatives to DocBook. One is the Darwin Information Typing
Architecture (DITA) (OASIS 2009). We have not experimented with DITA, but its
emphasis on separation of content from context and its support for content reuse
may be applicable to the general problem of machine-integrated documentation.
In summary, mature standards and supporting software exist for constructing,
analyzing, validating, and rendering large, complex documents of the types
typically produced in a systems engineering process. The following sections
address the use of one such standard (DocBook) and its associated software for
generating engineering documents from system models.

Incorporating Document Models into System Models
Suppose we have a system model containing a tree of components, each of which

represents an item in the product breakdown structure. A System Description Docu-
ment may describe some subset of these components, so we need to extend the
ontology (or class structure) of our system model to include the concept of document
and the association documents between a component and its associated documents.
We then define the concept of document element and the association aggregates that
relates one document element to another. Any given document instance will typi-
cally form a strict tree of document elements, but a more general association allows a

single subtree to be aggregated within more than one document (see figure 1).
Using these concepts we can construct a tree structure representing the nested

content structure of a System Description Document and associate it with a specific
system component. In the simplest possible case, we would populate each docu-
ment element with document fragments containing literal DocBook content, and
then develop a software engine that traverses the tree of document elements and
integrates this content into an actual DocBook instance by, for example, nesting
lower-level sections within higher-level sections (which is how DocBook indicates
subsectioning). While this approach can indeed construct a document, it is no
improvement over direct editing with a word processor.

A substantial feature increase can be gained by adding semantics to document
elements, so that the traversing software engine can execute instructions that
generate DocBook content as it executes. In particular, giving the engine the ability
to execute model queries directly means that the document content itself can be
generated directly from model content.

Consider a simple example. Using our product-breakdown-structure model from
above, suppose that each component includes three properties: an identifier, a
name, and a description. Name and identifier are simple strings, and description
is a string consisting of one or more DocBook paragraph elements describing the
component. And of course, each component also contains an array of references
to its child components. We can then define a recursive “component description”
function (in pseudo-code) as follows:

function component_description(comp) {
section_start(comp.identifier, comp.name)
paragraphs(comp.description)
for child in comp.children {

component_description(child)
}
section_end

}

This function creates a tree of DocBook sections whose structure matches some
branch of the product breakdown structure, each section describing a component.
This document fragment might be included under a top-level section titled
“Physical Architecture.”

If we give our software engine the ability to invoke this and other functions,
we have a very general capability to generate documents whose complexity and
content are determined entirely by the complexity and content of our system mod-
els. To be complete, we define three properties for a document element: entry code
to be executed by the engine on encountering this document element, marked-up
DocBook text to be inserted literally, and exit code to be executed after processing
all children of the document element.

Document ModelingINCOSE INSIGHT[Profile] bdd []

values
entryCode : String
exitCode : String
text : String

<<block>>
DocumentElement

values
title : String
publicationID : String

<<block>>
Document

values
name : String
description : String
identifier : String

<<block>>
Componentdocuments

0..10..*

aggregates

0..*

0..1

contains

0..*

0..1rootElement

0..1

0..*

Figure 1. Document model concepts

Special Feature

December 2009 | Volume 12 Issue 446

One obvious benefit to this approach is that a properly constructed document
model cannot be inconsistent with the system model. If the system model changes,
the generated document will change accordingly. There is no separate update step
for documentation. (Of course, the narrative text in the system model should be
updated if necessary, but that’s simply sound practice.)

With a little thought, we can come up with generators for document fragments
commonly appropriate for other model elements and their relationships: interfaces,
functions, requirements, risks, processes, work elements, and others. We can then
conceive of a document architecture with multiple related document types, each
defined by a unique composition of reusable elements. In addition to simplifying
the generation of document products, the approach also enhances readability by
employing common conventions for common purposes.

Analysis Model Elements
Adding a description property to individual model elements eases the

construction of documents that explain what a design is. In order to better describe
why a design is what it is, we introduce the concept of analysis. An analysis is simply
a narrative that explains some aspect of a design, and has explicit relationships to
the model elements involved in that aspect. The physical decomposition of a system
into subsystems, for example, could be described in an analysis and linked directly
to the system and its subsystems. A System Design Document generator might
then query the model database for any analysis (or perhaps a specialized physical
decomposition analysis subclass) related to that system, and insert the resulting
narrative into the document at the appropriate point. Any arbitrary set of analysis
types (e.g., trade study, risk assessment) can be distinguished through subclassing.

Designing Document Families
The wide availability of personal computers and desktop publishing has, regret-

tably, made it easier to simply “start typing,” often at the expense of a thoughtful
analysis of the concepts to be expressed and the best ways to express them. Hall-
marks of professional publishing, such as the disciplined use of metadata, design
for readability, cross-referencing, and proper mathematical typesetting, are too
easily neglected in this manner of working.

The document-model approach offers a division of labor that exploits the
strengths of two distinct types of contributors. The systems engineer or design
engineer is freed to concentrate on the correctness, consistency, and clarity of the
system model, the only requirement being to follow standard markup conventions
in any narrative content in the system model. A context-sensitive editor (e.g., a
what-you-see-is-what-you-get applet that understands the DocBook content model)

can enforce these conventions in a natural, non-intrusive way. Correspondingly,
the document designer can create well-thought-out document structures and
express them in rigorous forms that permit software applications to create
compliant instances with essentially no human effort. In addition, he or she can
create or apply institutional stylesheets that reduce struggling with visual style.

Other Benefits
Because the document generator creates content that corresponds directly

to model elements, it can easily insert index references to those elements. One
document we generated in our prototyping contains over 7,700 separate index
references, which considerably increases the value of the document as a design
specification. It is also straightforward to generate tables showing associations
of interest: requirement to component, requirement to requirement, component
to function, etc. The document mentioned above, for example, contains more
than 150 pages of software-generated tables representing 47 different pairwise
data associations. Generation of glossaries is similarly straightforward: DocBook
specifies a simple mechanism for tagging glossary terms. Processing software
can look up definitions in one of several repositories, and construct a glossary
containing definitions for those terms (and only those terms) actually used in a
document. Similar considerations apply for lists of applicable documents and
bibliographies.

Implementation Details
There are three main parts to our implementation: the model database back

end that handles queries against the system and document models, the DocBook
generation engine, and the DocBook processing tool chain that produces HTML,
PDF, and other presentations. Our prototype applications use one of several Web
Ontology Language (OWL) repositories as a backend (Worldwide Web Consortium
2004). We are investigating SysML tools as back end repositories — one alternative is
to build on a specific tool’s API, another is bulk export and conversion to an existing
OWL repository. The DocBook generation engine is written in Ruby, primarily due
to the author’s preference. Scripting languages in general provide convenient tools
for constructing domain-specific languages, but there is no reason to prefer any
particular implementation language. The processing tool chain for producing HTML
is based on the xsltproc free software XSL Transformations utility and DocBook
HTML style sheets. The PDF tool chain uses a locally written DocBook-to-LaTeX
translator (Lamport 1994) and free software from the TeXLive distribution. We will
likely replace our translator with dblatex, a free xsltproc-based software utility, and
customized XSL and LaTeX style sheets.

December 2009 | Volume 12 Issue 447

Special Feature

Prototype Results
In the context of larger efforts on model-

based systems engineering, we have built a
system model consisting of approximately
8,000 OWL statements and defined
document models for two different classes
of requirements documents and a project-
implementation plan. The resulting eight
documents total over 640 pages in PDF form,
and are generated end-to-end in PDF and
HTML form in less than eight minutes on
commodity desktop hardware. Processing
scales directly to multiprocessor systems. Our
efforts in the future will focus on adaptations
to SysML (Object Management Group 2008)
modeling tools and to developing document
families for JPL projects.

References

ISO (International Organization for Standardization).
1986. ISO 8879: Information processing; Text and
office systems; Standard Generalized Markup Language
(SGML). Geneva: ISO.

Lamport, L. 1994. LaTeX: A document preparation sys-
tem. Boston: Addison-Wesley.

OASIS (Organization for the Advancement of Structured
Information Standards). 2006. The DocBook document
type. http://www.docbook.org/specs/docbook-4.5-
spec.html.

 . 2009. Darwin Information Typing Architecture
(DITA XML). http://xml.coverpages.org/dita.html.

Worldwide Web Consortium. 1999. XSL Transformations
(XSLT) Version 1.0. Ed. J. Clark. http://www.w3.org/
TR/1999/REC-xslt-19991116.

 . 2004. OWL Web ontology language overview. Ed.
D. McGuinness and F. van Harmelen.
http://www.w3.org/TR/owl-features.

 . 2006. XML 1.1. 2nd ed. Ed. T. Bray, J. Paoli, C. M.
Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan.
http://www.w3.org/TR/2006/REC-xml11-20060816.

Object Management Group. 2008. OMG Systems
Modeling Language (OMG SysML™). http://www.omg.
org/spec/SysML/1.1.

MBSE for European Space-Systems Development
Harald Eisenmann, harald.eisenmann@incose.org; Juan Miro, juan.mirocarretero@incose.org; and
Hans Peter de Koning, hanspeter.dekoning@incose.org

Systems-engineering methods, practices, and tools
have been successfully used in European space
programs over the last decades. The common refer-

ence for the systems-engineering process is the Euro-
pean Cooperation for Space Standardization’s E-10 series
of standards (see, for example, ECSS 2009b). Although
many kinds of models are used to support the develop-
ment and operation of space systems, the process still
very much relies on documents to capture all project
information, in particular for the major reviews. In line
with INCOSE’s Systems Engineering Vision 2020, there
is a vision that wider and more integrated application
of model-based systems engineering will enhance the
effectiveness and efficiency of space-system develop-
ment. In particular MBSE is expected to facilitate and
improve early validation and verification, to enhance
data consistency, to help develop increasingly demand-
ing and complex systems, and to enable the successful
development of systems of systems.

A number of activities have been initiated in the last
ten years to help real-
ize the vision. In some
areas there has been good
progress, so that mature
operational solutions are
now in place, while in
other areas there is still a
long way to go. The most
significant advances have
taken place in two areas:
(1) early mission definition
and conceptual design in
concurrent engineering
processes, and (2) system
verification for spacecraft
control and data handling,

where functional simulation models are used for system-
level integration and verification.

Today, most individual domain-specific engineering
disciplines — such as power, propulsion, mechanical,
thermal, optical, aerothermodynamics, space environ-
ment and effects, radio frequency communication and
sensing, guidance and navigation, attitude and orbit
control, avionics, software, data handling, operations, as
well as project management, logistics, and cost estima-
tion — all have their own well-established modeling
methods and tools for design, analysis, or simulation.
However the tools are often not well connected, exchang-
ing or sharing data is cumbersome, and there is a lot of
data duplication with the risk of inconsistencies. In order
to achieve the next level of improvements, engineers
need an integrated model-based approach at the system
level that ensures overall consistency, timely provision,
and proper consolidation of all data in the system’s
lifecycle. This kind of coordination is a typical systems-
engineering task.

Figure 1. Typical space-system lifecycle from ECSS-M-ST-10C, depicted as a SysML activity diagram

act [Activity] ECSS Typical Life Cycle[ECSS Typical Life Cycle]

: Identify
Needs And

Analyze
Mission

«review»
Mission

Definition
Review

«review»
Preliminary

Requirements
Review «review»

System Requirements
Review

«review»
Preliminary Design

Review

«review»
Critical Design

Review

«review»
Qualification

Review

«review»
Acceptance

Review

«review»
Operational Readiness

Review

«review»
Commissioning Result

Review

«review»
Launch Readiness

Review

«review»
Flight Readiness

Review

«review»
Mission Close-out

Review

«review»
End-of-Life

Review

:Elaborate
Requirements
and Concepts

and Determine
Feasibility

Start

Phase B
Preliminary
Definition

Phase D
Qualification and

Production

Phase C
Detailed

Definition

End

Phase F
Disposal

Phase E
Utilization

Phase A
Feasibility

Phase 0
Mission Analysis/

Needs Identification

:Finalize
Requirements

Select Preferred
Concept, Initiate

Preliminary Design
and Verification

Approach

:Manufacture,
Assemble,

Integrate and
Verify Final
Product(s)

: Verify
Integrated

System
Operation

:Manufacture,
Assemble,

Integrate and
Qualify

Representative
Product(s)

:Establish
Preliminary Design,
Development and
Verification Plans

ans Elaborate
Schedule, Cost and

Organizational
Breakdown

:Establish
Detailed
Design

:Operate
System

:Dispose
System

:Commission
System

:Prepare for
Launch

:Prepare for
Flight

http://www.docbook.org/specs/docbook-4.5-spec.html
http://www.docbook.org/specs/docbook-4.5-spec.html
http://xml.coverpages.org/dita.html
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/owl-features
http://www.w3.org/TR/2006/REC-xml11-20060816
http://www.omg.org/spec/SysML/1.1
http://www.omg.org/spec/SysML/1.1

Special Feature

December 2009 | Volume 12 Issue 448

Understanding Systems Engineering for European Space Programmers
Most of the definitions of systems engineering stress multi- or interdisciplin-

ary aspects and full lifecycle considerations. Figure 1 shows the typical European
space-system lifecycle (defined in ECSS 2009a), which is quite similar to the NASA
or ISO 15288 lifecycles. In addition, ECSS (2008) defines a recursive customer–
supplier model that can be used at any level in the supply chain. One organiza-
tion can be both supplier to the next-higher level and customer for the next-lower
level. One of the critical systems-engineering tasks along the lifecycle (in Phases
A and B) is the derivation of requirements for the next-lower system-element level
from requirements for the next-higher-level system element. This requires a very
robust and reliable system-level design, in particular stable function and product
trees. The ECSS documents define function tree as the hierarchical decomposition
of the system performances into functions and subfunctions, which, when all are
fulfilled, complete the overall system mission. ECSS defines product tree as the
hierarchical structure that depicts the product-oriented breakdown of the project
into successive levels of detail, down to the configuration items that are necessary
to deliver the required functions.

These decompositions are used to trace the system-level requirements to its
intended realization, as well as the intended realization to the derived require-
ments on the next-lower level. The system-level design must also reflect the con-
straints identified in the different domain specific analysis activities as well as
constraints imposed by integration and verification.

In the different lifecycle phases the following trends can be observed. In Phases
0 and A, the process is driven by all kinds of system budgets — such as overall mass,
volume, and power consumption — and performance measures. The European Space
Agency has made a particular effort to standardize the key parameters and a basic
data model for system decomposition. This model with parameters is implemented in
the tools in the Concurrent Design Facility at ESA/ESTEC (http://www.esa.int/CDF); this
model is increasingly being adopted by similar facilities of other organizations across
Europe to ease exchange and collaboration (see ECSS forthcoming 3).

In Phase B the system design is elaborated by using different domain-specific
engineering tools. The most mature tool support exists for electrical and mechani-
cal aspects of the system design. In these domains, powerful analysis tools support
system-level design, and data-exchange interfaces between design and analysis tools
exist. For functional and operational aspects, no dedicated tools are currently avail-
able. Requirements-management tools and classical product-data-management (PDM)
tools (for project-configuration control) are well established and frequently used.

To better support systems-engineering tasks, several things are needed. First,
there is a need for improved modeling of functional aspects, e.g., overall func-
tion identification and decomposition, decomposition into operational modes for

different system levels, and reference-timeline definition. There is a lack of support
for functional system simulation. Such simulation is needed for improved design
consolidation and validation, and operational design definition. It would also pave
the road toward functional system simulation in Phases C and D.

Second, comprehensive system modeling will always require multiple tools. There
will never be a single tool capable of addressing all needs. Therefore interconnection
and integration of the tools is very important. Open interfaces for data exchange and
for application-programming are essential. However, experience shows that many
COTS tools have significant restrictions with respect to tool integration.

Third, even where powerful analysis tools exist — e.g., for thermal, mechani-
cal, attitude, and orbit control — the effort to create the models and share common
data between them is quite large and often involves a lot of manual work. Here also
improved interfaces are needed.

Phase B is concluded with the preliminary design review (PDR), which releases
the specifications for the next-lower-tier subcontractors. During the subcontractor
work in Phase C, the activities on the system level can be summarized as follows.
First, the preliminary design baseline is the subject of a refinement during the sub-
contractor work. Refinement in particular of the interfaces (not only mechanical,
electrical, or information but also operational) is performed. This requires continu-
ous analysis of and adaptation to new details and change requests. An integrated,
comprehensive system model representation would ease the maintenance of the
design baseline.

Second, a characteristic of European space programs is that the suppliers are
selected during the program based on the specifications released with the PDR. In
the course of the design refinement, it is crucial to set up efficient interfaces to the
subcontractors, in order to allow data exchange beyond documents. Although in
some cases exchange through spreadsheets already turns out to be a real improve-
ment over simple documents, it would significantly ease the process to have lean,
efficient, and commonly agreed-upon data-exchange interfaces.

Third, in parallel to the consolidation of the design baseline, the system inte-
gration and verification facility is prepared. Here a specific challenge is to set up,
verify, and validate the facility without yet having a system element serving as a
mock-up. A simulator can provide a virtual system that is functionally representa-
tive and can be used as the mock-up. The preparation of the functional system
simulator can effectively start with the PDR, when the overall system design is
consolidated. The requirements for the functional system simulators can then be
derived, taking into account the verification approach. A comprehensive system
model would ease the development and configuration of such simulators.

In Phase D, the space-system elements developed by the subcontractors are
integrated and verified. A key element here is a model-based representation of the

Special Feature

December 2009 | Volume 12 Issue 449

Figure 2 shows how
these kinds of models
are related to each
other.

Product instance
models are the clas-
sic hardware-oriented
models. They comprise
first of all the flight
model for a one-off or
FM1, FM2, etc. and the
traditional predeces-
sor, the qualification
model. The qualifica-
tion model is used to
verify the design before the actual manufacturing of the flight model. If the risk is
assessed as acceptable, there is today a trend to combine these models into one proto-
flight model. While above models always include functional elements of the system,
there may be additional models such as a structural thermal model, which is used
to test structural and thermal aspects. There is also an increasing trend to rely on an
electrical functional model that combines elements of the qualification model and
the proto-flight model with a virtual element, the functional system simulator.

Static or structure models capture the evolving specification and definition of
the system along the lifecycle. Basically these models are data sets (instance data)
in the databases of the supporting tools. With MBSE these models form major arti-
facts, which need to be exchanged and shared between the project’s participants.
They capture information that is common to all disciplines involved in a project.
These models include the following information:

System requirements as specified by the customer and possibly refined by the •	
supplier.
Next-lower-level (derived) requirements as specified to lower-tier suppliers, •	
based on the design process.
Functional decomposition of the system of interest, representing a model of •	
the problem space. The focus is on what the system shall achieve, not on how.
The function tree is the core element. Often the interfaces between the differ-
ent functions are elaborated as well. This representation is also used to capture
detailed engineering properties as identified in different analyses.
Physical architecture and decomposition on how the system of interest will be •	
built and modularized. The focus is on how the design problem will be solved
and how complexity is managed. The core information is the product tree that

functional aspects of the system in a functional system simulator. Many different
configurations of the functional system simulation are required, for example:

Software-in-the-loop (SITL, SWIL, or SIL) and hardware-in-the-loop (HITL, •	
HWIL, or HIL) for progressive integration and verification of the software down
to the target hardware and environment
Open-loop and closed-loop configurations for the attitude- and orbit-control loop•	
Complete software simulation and integration of real equipments in the •	
simulation loop
Hard-real-time configurations for HITL and significantly faster than real-time •	
configurations for SITL.

The work comprises integration testing, verification of software elements, and
also validation of onboard control procedures and ground-station operation-control
procedures. Although this practice is now state-of-the-art and applied in all proj-
ects, the development of this kind of simulator and its integration in the test bench
or electrical ground-support equipment requires a significant engineering effort,
partly because the reuse of design simulation is seldom attempted and a link of this
simulator to the design baseline is not implemented.

In late Phase D, during mission-operations preparation, and in Phase E, the
mission-operations team uses the functional system simulator — or an evolved
version of it — to develop and validate control procedures or to investigate and
resolve anomalies.

Classification of Models in Use
In ECSS (2004), a model is defined as a “physical or abstract representation of

relevant aspects of an item or process that is put forward as a basis for calculations,
predictions or further assessment.” Historically the term model is also used to iden-
tify particular instances of the product to be delivered, such as the qualification
model or the flight model. In the space industry, models of both kinds have always
played an essential role in the validation-and-verification approach. An important
part of the verification-and-validation plan is the so-called model philosophy,
which describes what models will be used when and for what purpose in the life
cycle. Evolving computer technology increasingly enables the creation and use of
virtual models for many purposes. In discussing MBSE it is essential not to restrict
models only to simulation models. The following enumeration provides a taxonomy
of the different kinds of models in use:
•	Product instance models	 •	 Data (meta)models
•	Static or structure models	 •	Modeling infrastructure models
•	Dynamic or behavior models	 •	 Process models

Figure 2. Interrelations between different kinds of model

bdd [Package] MBSE Models and Interrelations [

defines input and output
data structure

defines what data
is used in process steps

defines structure
for dynamic modeling

defines requirements,
architecture, design,

procedures for product

models dynamic
behavior of product

specifies how
modeling is applied

defines tools and interfaces
for static modeling

«block»
Modeling Infrastructure Model

«block»
Static or Structure Model

«block»
Process Model

«block»
Data Meta-Model

«block»
Dynamic or Behavior Model

«block»
Product Instance Model

defines tools and interfaces
for dynamic modeling

specifies data required
to capture process

Model Classification and Interrelations

Special Feature

December 2009 | Volume 12 Issue 450

is also used to set up the organizational breakdown of the supply chain. This
needs to be complemented with definition of all interfaces between the different
elements and the 3-D spatial configuration. Eventually this decomposition will
contain the complete product structure. Associated to its elements are all the
actual properties of the envisaged solution.
Operational decomposition into the modes that are required to command and •	
monitor the system of interest. The operational modes may be attached to any
system element. Operational modes may also be hierarchically nested over the
different system hierarchies.
Operational definitions capture how the system will be used, e.g., the sequenc-•	
es in which particular elements are switched on and off. This is closely related
to the operational decomposition.
Assembly, integration, and verification definitions capture the information •	
that is required for the bottom-up assembly, integration, and verification of the
system. This information is closely aligned with, and must be consistent with,
the functional and physical decompositions. It is a basic input for the project
logistics and planning, in particular of all tests.

Dynamic or behavior models are virtual models that represent expected or
actual behavior of the system of interest, or aspects of that system. They are execut-
able through use of an appropriate computer tool. They are always idealizations of
reality, with different degrees of fidelity, and usually allow for analysis of behavior
over time. These models can be classified into the subcategories of domain-specific
analysis models and functional system simulators.

Domain-specific analysis models are independent models that are used by the
individual engineering disciplines, in support of the overall systems-engineering
process. Typically the models focus on the aspects that are important for a par-
ticular discipline. Other aspects are neglected or only captured rudimentarily.
For example, for attitude and orbit control, a model is formed around the control
loop with all its contributors like controller, sensors, actuators or disturbances,
while the 3-D physical geometry is only represented schematically or completely
abstracted into the relevant centers of gravity and moments of inertia. In some
domains the conversion between a design (definition) model and an analysis model
is automated or semi-automated with manual assistance, while in other domains
it is still fully manual. This implies a significant effort for the model’s creation and
maintenance. Often the structure of the analysis models is decomposed along the
system functions of the corresponding subsystem. The product structure is often
not captured. Only selected properties of the system design are assigned to the
functions. The analysis models are used for two purposes: (1) during the design
phases they are used to understand the problem, identify constraints, and assist in

finding design solutions, and (2) during the later phases they are used to verify the
system that is realized (verification by analysis). Models for design and for verifica-
tion are not necessarily the same, but the latter may evolve from the former.

Functional system simulators can be considered as a virtual representation of
a system that can be used or operated like the “real” system. Telecommands are
received and processed, corresponding telemetry is provided. Typically the flight
software or at least elements of it are in the loop. The functional system simula-
tor follows the system design on (at least) the top decomposition level: therefore
top-level elements (equipments) typically have a direct virtual representation. The
equipment models closely reflect their behavior according to the corresponding
specifications. This applies in particular to operational and electrical interfaces,
which are represented on the protocol level. Besides the virtual representation
of the system architecture, the physical behavior of the system as a whole is also
represented. Typically, at least the following physical behavior is represented: rigid
body dynamics, power, and thermal. Therefore the functional system simulator is
by definition a multidisciplinary representation. The configurations of a functional
system simulator typically comprise the following:

Functional validation of the attitude- and orbit-control algorithm•	
System-level software integration and verification•	
Hybrid configuration (electrical functional model) with hardware and software •	
in the loop
Operations simulator for the ground segment•	

Data models and meta models capture the structure of data in computer
applications. As mentioned above, the static or structure models are stored as
data sets inside the databases of the supporting computer tools. As most tools
have proprietary native data structures and at best restricted data import/export
interfaces, their integration is very costly. However, for effective integration of
the tools one needs a precise definition of what data is used or required along the
lifecycle. This information can be used to map native tool data structures and
develop data-exchange solutions. Having powerful (ideally standardized) data
models in place is crucial for selecting or integrating tools effectively. As these data
models define the structure of other model data, they are often called metamodels.
Typically data models are defined in dedicated languages, such as UML class
diagrams (with the Object Constraint Language), ISO 10303 EXPRESS, Object Role
Modeling (ORM), or XML schema.

Modeling infrastructure models is needed for the deployment of effective model-
based systems engineering, which requires the integration of the supporting tools
in a modeling infrastructure. This infrastructure can be regarded as a kind of “super-
tool,” which needs to be configured according to the needs of a specific project. The

Special Feature

December 2009 | Volume 12 Issue 451

infrastructure itself needs to be designed, implemented, operated, and maintained,
and should therefore itself be the subject of a systems-engineering approach that
extends across different projects and their development teams. Such an approach
would maximize the effectiveness of investments — both in infrastructure and train-
ing — and promote reuse and knowledge sharing across different projects.

Process models can be used to capture and improve engineering processes and
workflows. Proceeding with the integration of tools also enables more comprehen-
sive integration of the engineering processes. We expect that through the use of
emerging tools for business-process modeling and execution, MBSE-based process-
es can be improved as well.

The Way Ahead in Model-based System Engineering for European Space Programs
Based on the successful application of systems-engineering processes for

many European space programs, ESA and the major European space-system
integrators started ambitious research-and-development activities to enhance
systems engineering with a set of supportive models and enable MBSE. Although
the attempt was to support the complete systems-engineering process from early
analysis through final verification, the focus has been on modeling and simulation.
Demands for providing more powerful, flexible, and modular functional system
simulators mainly caused this. ESA developed (for example) the System Simulation
and Verification Facility, Generic Project Testbed, and EuroSim, while Astrium
developed the Model-based Design and Verification Environment.

Meanwhile these simulators, their infrastructures (for development and run-
time) and the simulator engineering processes are consolidated. However, the lack
of reliable system models becames more and more obvious. Modeling and simulation
often just meant modeling for simulation, as the only purpose of the modeling was
the development of the simulator. In general, static models that represent system
structure and are shared between disciplines have not yet been achieved. This kind
of integration remains a major issue. In some areas like mechanical engineering and
production (often called PLM), there have been significant advances which integrate
the mechanical subset of disciplines, but in other areas like functional systems
engineering, the available solutions cannot be considered adequate, and important
parts of the process are only supported with typical office tools (like word processors
and spreadsheets). The way forward is to continue with, on the one hand, a top-down
systems-engineering approach with conceptual, semantic, data models to help real-
ize a true MBSE infrastructure, and on the other hand, a bottom-up software-and-
simulator-engineering approach starting from the actually realized infrastructure.

A number of initiatives are under way today to evolve and promote the use of
MBSE methods and tools in early project phases and during verification activities.
MBSE is the focus of a multidisciplinary research-and-development initiative called

Virtual Spacecraft Design under ESA contract in the frame of its Technology Research
Program and General Support Technology Program. It is part of a three-year plan
(2008–2010), which is expected to yield tangible results in the near future.

Within Virtual Spacecraft Design a conceptual data metamodel for the whole
space-system lifecycle is further elaborated. An initial version has been established
and is being finalized for publication (see ECSS forthcoming 2). This data metamod-
el has been validated with a number of industrial scenarios, and is also already
partially used in actual space projects. An overall comprehensive validation is
currently under preparation. It also includes the quantities, units, dimensions, and
values model defined in SysML v1.2. Another task is the implementation of a space-
system data repository called the Space System Reference Database that provides
integrated data-management services. The repository complies with the conceptual
data metamodel. It contains a systems-engineering data hub that also acts as a
central store for data that is common to all engineering disciplines, and for results
consolidated at system level. Its functionality comprises persistent data storage and
retrieval, version-and-configuration control (including branching and merging of
design options), data consistency and completeness checking, support for automat-
ed model transformation, and report generation. Furthermore, a comprehensive set
of tools called the Space System Design Editors was developed as well as the Space
System Visualisation Tool. Figure 3 shows an architectural overview of the Virtual
Spacecraft Engineering Environment of the Virtual Spacecraft Design project. The
software-engineering approach for the project itself is highly model-driven.

Figure 3. Overview of the European Virtual Spacecraft Engineering Environment (currently being
developed as part of the Virtual Spacecraft Design project)

Virtual Spacecraft Engineering Environment

Space System Design Editors (DEs) Space System
Design Browser

Wiki Service

VSEE Application Server

Requirements Functional Operational Physical Assy, Int., Test Oper. Activity Verification

Space System Virtual Model

Space System
Function Simulator

Space System Virtual Model Integration Bus

Space System
Visualization Tool

Space System Reference Database

SSRDB Services

SSRDB

SSDE Services

SSVM Services

VDEOADEAITDEPDEODEFDERDE

Special Feature

December 2009 | Volume 12 Issue 452

SysML vs. SysML Tools vs. MBSE
While SysML is sometimes considered as equivalent to MBSE, our view is

that SysML is one of many means that can be used for MBSE for space systems.
SysML is adequate to represent the overall high-level design of the system to be
developed. These high-level models are appropriate in the early lifecycle phases
(0 and A), to elaborate requirements, develop concepts, assess feasibility, and
perform trade studies. However, once the project reaches Phase B (preliminary
design), the models require so much detail that they are best handled by engineers
using their discipline-specific modeling tools. We propose that engineers maintain
a high-level model in SysML that reflects the common systems-engineering data
during the whole lifecycle, such as system budgets, critical design parameters, and
the main decomposition trees together with the interface definitions. We do not
consider it useful to implement in SysML the complete space-system design to the
lowest level of detail, since the sheer amount of data would render it unusable to
the systems engineer. Specific-discipline engineers would typically be unfamiliar
with SysML and be more efficient with their discipline-specific representations. The
ongoing INCOSE MBSE Challenge for Space Systems is seeking to apply SysML to
the representative textbook example called FireSat (Larson and Wertz 1999). The
results will provide useful hints on the best practice for using SysML for space-
systems engineering.

Today we see the primary application of SysML in early space-system
specification and trade-offs, by using its standardized graphical notation for
high-level system design, directly fed from the space-system data repository.
Research into the feasibility and effectiveness of this approach is currently in
progress, among others in the Virtual Spacecraft Design project mentioned
above. SysML can fill the gap between the established requirements-management
tools and the discipline-specific tools for modeling and simulation. Such usage
appears attractive, in particular the SysML graphical notation, known as the
“concrete syntax.” However, the current implementation of SysML in existing
tools raises doubts with respect to the feasibility for application in Phase B, C,
and D. The underlying metamodel of SysML (its abstract syntax) is very rich but
complicated and carries a lot of weight from its UML and Meta Object Facility (MOF)
heritage. Mapping other data repositories to and from SysML data repositories
is not straightforward. In this respect it is interesting to note and investigate the
possibility for a kind of “light-SysML” approach based on the much simpler Ecore
metamodel established in the open-source Eclipse project.

Most current SysML tools are adaptations of existing UML computer-aided
software-engineering tools, which have advantages in terms of the quality of the
user interface and the maturity of graphics manipulation, but also disadvantages
because the software-engineering background and software concepts keep shining

through. For engineers that do not have experience with UML, the learning curve can
be quite steep, and a number of constructs may not be intuitive. This is a potential
barrier to the uptake of SysML by systems engineers. Another important limitation
concerns data exchange. A systems-engineering tool needs to connect with many
other different tools. For this, efficient and high-quality data exchange is necessary.
Currently the reliability of data interchange based on SysML or XMI is very limited,
and the exchange of diagram layouts is not yet supported at all. Also, incremental
changes to data are very hard to achieve through XMI. These issues are well known
and being worked on by the UML/SysML community, but it will take quite some time
before robust industrial solutions are available. This is a critical success factor.

SysML tools (like all UML-based tools) have the built-in capability — called
profiling — to customize and extend the standard language and notation with user-
defined additional concepts. On one hand it is very powerful and flexible to have
this kind of low-cost customization capability, but on the other hand, if profiling
is used too easily or heavily, it can lead to many cumbersome usability aspects,
in particular for data exchange and use by different organizations. Nevertheless,
SysML seems to be the best candidate for capturing and maintaining a system syn-
thesis representation that can be maintained throughout the system’s lifecycle and
provides a standardized graphical notation as well as a mature editing interface.
The recently updated UPDM specification, which promotes SysML in many of its
diagrams for system-of-systems development, reinforces SysML’s position.

Enabling Technologies
One of the key elements for pursuing MBSE is the availability of a conceptual

data metamodel that captures the semantics of all data relevant to systems engi-
neering in a certain application domain, in our case space-systems engineering.
The model needs to be defined in a formal, computer-readable way, for two reasons.
First, the model is sufficiently large that without formalism and data-modeling
tools it is almost impossible to make it consistent and correct, and to evolve it in a
controlled way over time. Second, it should be possible to use the model in a model-
driven-architecture (MDA) framework (see http://www.omg.org/mda).

In our experience the MDA approach is very efficient and robust for the devel-
opment of adaptations to MBSE tools, such as user interfaces and data-exchange
adapters. Very large parts of the required software can be generated automatically,
and automated consistency checking of implementations also becomes possible. We
would identify the following use cases for the formal conceptual data metamodel:

Support to the overall definition of an MBSE methodology for a specific •	
application domain
Design-editor development and customization, e.g., profile definition for a •	
SysML tool

Special Feature

December 2009 | Volume 12 Issue 453

Generation of data-exchange interfaces and adapters•	
Generation of database schemas in different implementation languages•	
Reference model to enable central or distributed data repositories for systems •	
engineering that can act as a “data hub” for the tools of all participating
disciplines

For space-systems engineering an ECSS technical memorandum with a concep
tual data metamodel (specified in UML class diagrams) has been developed (see
ECSS forthcoming 2). This model is currently being used and validated in ESA
research-and-development projects.

Besides the conceptual data model, a formalized and generalized representation
of value properties is also essential to succeed with MBSE. A value property — which
is a SysML term — is a property with a simple value, like a design parameter or a
physical quantity like length, mass, power, force, volume, speed, or electric current.
Today in many tools and databases, such properties are still represented as “string”
types or even hidden in larger text fields, and often just as values without any
measurement units or physical dimension, which severely impedes correct usage
and can be a source of serious errors. An agreed-upon and standardized value-
property model will greatly improve this situation. On the basis of earlier work
on STEP data-exchange standards, ESA has contributed to the development of
a very powerful and comprehensive Quantities, Units, Dimensions, and Values
(QUDV) data model in SysML version 1.2, annex C (see http://www.omgsysml.org).
QUDV is based on, and is fully compatible with, the emerging ISO/IEC 80000
standard on quantities and units. The same model is adopted in an ECSS document
(forthcoming 2).

With the emerging technologies for advanced graphical user interface and
editors (such as using the open-source Eclipse modeling framework), alternatives
to classic proprietary COTS system-modeling tools become feasible for some
applications. Instead of using the conceptual data metamodel to customize or adapt
a COTS tool for integration into a model-based systems-engineering infrastructure,
a dedicated tool for domain-specific application can be generated for the most
part and then manually completed at acceptable cost. Early prototypes have
yielded very promising results, and this work will be continued. In the validation
activities in support of the new ECSS document (forthcoming 2) Eclipse editors
have been automatically generated—implementing the SysML graphical notation.
Another example is from functional simulator development where classic tools
from SysML and UML have been replaced with editors based on Eclipse Modeling
Framework / Graphical Modeling Framework, derived from a conceptual data
metamodel for simulator engineering.

Conclusions
A fully operational MBSE process with a corresponding tool set has not yet

been realized in space projects today. A number of elements have, however, been
implemented successfully, like an integrated design model (IDM) for concurrent
engineering in the early lifecycle phases, end-to-end performance simulation for
earth-observation instruments, and operations simulation for mission preparation.
ESA has started a dedicated set of research-and-development initiatives to further
develop MBSE for space missions. All these initiatives will remain ineffective,
though, if they are not accompanied by representative pilot applications, where
benefits can be measured in the context of a real project and made visible to
space-project managers. For this purpose, ESA and the European space-system
integrators will need to sponsor shadow application of MBSE elements in ongoing
projects. Technology demonstration projects should also be used to demonstrate
advanced MBSE development methods and tools in addition to the more traditional
focus on innovating the space-system products directly.

Adoption of MBSE methods and tools requires initial investments in time and
money by project teams before actual benefits can be obtained. This is why MBSE
will only be adopted if reasonably substantiated quantitative evidence of such
benefits can be provided. This is a very difficult endeavor, but examples from
outside the space sector where such methods have been adopted can be a great
help. It is also important to realize that smart technical ideas and approaches
are not enough, but need to be supported by mature tools and documented in
standards, handbooks, and tutorials, and finally adopted in internal company
procedures. Dissemination in seminars, training courses, and technical
publications is also essential. Last but not least, systems engineers and project
managers need to embrace the ideas and incorporate them into their daily practice.
As always, incremental evolution rather than revolution seems the way to go. 

References

ECSS (European Cooperation for Space Standardization). 2008. ECSS-S-ST-00C: ECSS system;
Description, implementation and general requirements. This and the following ECSS documents are
available at http://www.ecss.nl.

 . 2004. ECSS-P-001B: Glossary of terms.

 . 2009a. ECSS-M-ST-10C Rev. 1: Space project management; Project planning and implementation.

 . 2009b. ECSS-E-ST-10C: Space engineering; System engineering general requirements.

 . Forthcoming 1. ECSS-E-TM-10-21A: Space engineering; System modelling and simulation.

 . Forthcoming 2. ECSS-E-TM-10-23A: Space engineering; Engineering database. (Note: This
establishes a conceptual data metamodel for space-system lifecycle-data repositories.)

 . Forthcoming 3. ECSS-E-TM-10-25A: Space engineering; Engineering design model data
exchange. (Note: Scope is the exchange of conceptual design data between concurrent design
facilities.)

Larson, W. J., and J. R. Wertz. 1999. Space mission analysis and design. 3rd ed. El Segundo, CA:
Microcosm.

December 2009 | Volume 12 Issue 454

Special Feature

SysML is the Point of Departure for
MBSE, Not the Destination
Anatoly Levenchuk, anatoly.levenchuk@incose.org

Engineers today use the word model in such a vague way that
it means almost the same thing as description. When we
write model-based systems engineering, it could also be read

as description-based systems engineering. But isn’t any engineering
description-based, with text, drawings, and formula descriptions?
Why did we coin a new term to describe ordinary practice, and
stress that this is the future of systems engineering?

I guess the new term would appear to reflect new types of
models. However, MBSE is not about any descriptions usually
associated with “models.” MBSE is not about simulations and
emulations. MBSE is not about using Modelica, a non-proprietary,
object-oriented, equation-based language to conveniently model
complex physical systems containing mechanical, electrical, elec-
tronic, hydraulic, thermal, control, electric power or process-ori-
ented subcomponents, nor finite element analysis models. Neither
is MBSE about using complex multi-physics models in simulations
of cyberphysics systems, where we simultaneously compute several
different nature models (Sztipanovits 2008). Nor is MBSE about
Reference Process Models that we can see in ISO 15288 and other
systems-engineering standards.

Model-based systems engineering is about generative models.
I am using the term generative here in the same sense as Noam
Chomsky’s “generative grammar”; this should not be confused
with generative models from statistics. According to Chomsky,
“when we speak of a grammar as generating a sentence with a
certain structural description, we mean simply that the grammar
assigns this structural description to the sentence” (Chomsky
1965: 9). Models in MBSE generate system descriptions in the same
sense that generative grammar generates sentences. Generative
production systems (Fox 2009) use the same notion of generative
grammars — to shape grammars used in a generative design
domain. I suppose that such an approach is valid not only to shape
languages of mechanical engineering but to all languages that
systems engineers experience in interdisciplinary projects.

In essence, model-based systems engineering, as described by

the Object Management Group, is about the use of metamodel lay-
ers (description-of-descriptions layers, language layers) to describe
systems. Every layer of the model stack (model M0, metamodel M1,
meta-meta-model M2, etc.) can be detailed and/or transformed to
“generate” another description that addresses interest of one or
more stakeholders, and eventually these comprehensive descrip-
tions will be sufficient to the realization, integration, verification
and validation of a system. A key characteristic of model-based
systems engineering is the support of multiple viewpoints, that
is, multiple methods of modeling to provide multiple views, or in
other words, multiple groups of description that address differ-
ent interests of appropriate stakeholders. Fifteen years ago it was
not common to accent this multiple-view approach. Modeling was
usually mono-modeling that provided one type of view every time,
and providing links between relations and objects in different
views was a big problem to engineers. The OMG’s Unified Model-
ing Language was a breakthrough that brought the paradigm of
multiple viewpoints or views to mainstream software engineering.
UML describes five types of diagram to enable the user to capture
different aspects of software systems. Moreover, UML is expandable
in a formal manner, and after a ten-year lag, systems engineering
now has a means to provide these multiple viewpoints (ISO 42010)
description in the form of SysML.

UML, along with the OMG’s (2006) Meta Object Facility (which
provides interoperability for all UML-based models), is a core lan-
guage of the OMG (2003) model-driven architecture (MDA). The MDA
community is rethinking their scope and approach from a software-
centric to a system-centric view (Cloutier 2006; Dickerson 2007). Key
features of MDA include multiple layers of abstraction (metamodel-
ing) and multiple viewpoints with definite correspondence rules,
provided by its metamodels. The main disadvantage of MDA is that it
is bounded by UML. Why is UML a disadvantage? Because in a multi-
disciplinary project we cannot expect that all specialists speak UML
or SysML, even if we extend it with domain-specific stereotypes.

Along those lines, the software-engineering community has
started down another branch of the modeling movement related
to the domain-specific-language (DSL) approach to modeling.
Domain-specific languages provide a viewpoint for expert’s view
to particular domain. The domain-specific-languages approach
combines domain-specific metamodels and notation. This is

Systems engineers are

just now using SysML

to create consistent

models instead of

domain-specific

languages — much like

programmers a few years

ago used Java only, not

Java + DSLs.

Special Feature

December 2009 | Volume 12 Issue 455

different from the MDA approach, which prescribes MOF/UML-based metamodels
and notations. Thus programmers should provide separate integrated development
environments for each domain-specific language. Then experts can use such a
suite of specialized, integrated development environments to model their systems.
A corollary is that all contemporary CAD suites can be regarded as integrated
development environment suites for “programming” of engineering domain
models in domain-specific languages such as piping-and-instrumentation-diagram
languages for modeling of hydraulic systems or 3-D graphical “language” for the
modeling of spatial shapes. If we want to capture a facility model of a process plant
we have a difficult choice between MDA/SysML modeling of hydraulic systems or
modeling it with piping-and-instrumentation-diagram notations. Domain-specific
languages for contemporary CADs win hands down by capturing the specific
concepts and notation used in specific domains. Yet we need to combine all these
incompatible domain-specific languages into one coherent facility model.

There exist two options to be consistent among the zoo of different domain
specific languages: (1) ontology-based mapping of different DSL metamodels and,
therefore, linking domain-specific models in a common data-centric model reposi-
tory; or (2) using a language workbench.

The ontology-based mapping that is now used by all major CAD vendors uses
different upper ontologies and domain taxonomies—for example, ISO 15926 (ISO
2004a) for process industries, ISO 18629 (ISO 2004b) for a process-specification
language, or ISO/PAS 16739 (ISO 2005) for building information modeling in con-
struction industries. This is a viable option to cope with legacy systems that support
“good old” domain-specific languages for engineering modeling. It is a relatively
fresh movement (started from 1994 work on Shell’s downstream data model: see
West 2009), originating from the data-modeling branch of software development.
Now adopters of this approach are moving toward using the readily available
semantic Web tools (AIFB 2009) to perform data modeling and data integration,
starting with experiments in logical reasoning for “executing” of ontology-based
models. Today most ontologists (or data modelers) are former programmers, soft-
ware analysts, and database architects; in other words, this field is de facto now
part of software engineering, not systems engineering.

Language workbenches are newly emerging integrated development environ-
ments that are especially devoted to multiple domain-specific languages (Fowler
2005). Developing a language-independent interpreter/compiler and language-
independent graphical editor is a challenging and complex task. But the pros-
pects are attractive: every expert can get her own customized DSL, and all of
these domain-specific languages that addresses multiple stakeholders’ interests
will work in concert with one another. Moreover, these distinct descriptions that
provide separations of concerns can be used for different purposes and in different

ways: they can be validated for consistency, transformed to output language suited
for manufacturing tools, or transformed to executable simulation models.

This approach may prove superior to that of model-driven architecture with
UML or SysML), because it provides freedom of language choices and still retains
a coherent model. Engineering-domain experts will get integrated development
environments (editors, interpreters, repositories) for languages that they are accus-
tomed to using (both the metamodel part of these languages and notational part),
not stereotypes of UML with predefined UML semantics in predefined UML syntax.
Language workbenches permit programmers to easily produce domain-specific
integrated development environments while still providing a common repository
for different domain-specific models that are produced by different experts in the
different languages. You may think about language workbenches as “CAD for CAD”
that preserve the freedom of an arbitrary domain language (metamodel + notation)
choice. A language workbench is unlike UML models, which permit a choice from
UML-defined metamodels only and from UML stereotype notation only. Program-
mers will add languages to the common language environment (viewpoints), and
domain experts will develop model (views) with these languages. Everyone will be
doing what they do best.

Today, language workbenches are limited to the software community. Language
workbenches first appeared in the form of integrated development environments
for compiling multiple domain specific languages to Java or C#, not to “compile”
multiple engineering-domain-specific languages to a facility model in contemporary
CAD suites. So far, systems engineers have ignored the domain-specific language
and language-workbench approaches. Systems engineers are just now using SysML
to create consistent models instead of domain-specific languages — much like
programmers a few years ago used Java only, not Java + DSLs.

Systems engineers may continue to lag behind the software community in
adopting these new modeling approaches from software engineering. However, I
believe they should overcome their resistance to change, and begin to experiment
with these new technologies. This would result in SysML being merely the point of
departure for model-based systems engineering, not the destination point.

References
AIFB (Institut für Angewandte Informatik und Formale Beschreibungsverfahren). 2009. Semantic

Web. Wiki for Semantic Web community. Hosted by AIFB at the Karlsruhe Institute of Technology,
Karlsruhe, Germany. http://semanticweb.org (accessed 11 Nov. 2009).

Chomsky, N. 1965. Aspects of the theory of syntax. Cambridge, MA: MIT Press.

Cloutier, R. 2006. MDA for systems engineering: Why should we care? Paper presented at the Telelogic
Americas User Group Conference. Available at http://www.calimar.com/Papers/Model%20Driven%20
Architecture%20for%20SE-Why%20Care.pdf (accessed 11 Nov. 2009).

Dickerson, C. E. 2007. Model driven architecture for model based systems engineering. Paper pre-
sented at SEDC Integration Workshop. Available at http://www.lboro.ac.uk/departments/el/sedc/
documents/presentations/model-driven-architecture.pdf (accessed 11 Nov. 2009).

http://semanticweb.org
http://www.calimar.com/Papers/Model%20Driven%20Architecture%20for%20SE-Why%20Care.pdf
http://www.calimar.com/Papers/Model%20Driven%20Architecture%20for%20SE-Why%20Care.pdf
http://www.lboro.ac.uk/departments/el/sedc/documents/presentations/model-driven-architecture.pdf
http://www.lboro.ac.uk/departments/el/sedc/documents/presentations/model-driven-architecture.pdf

Special Feature

December 2009 | Volume 12 Issue 456

Fowler, M. 2005. Language workbenches: The killer-app for domain specific languages? Personal Web
site. http://martinfowler.com/articles/languageWorkbench.html (accessed 11 Nov. 2009).

Fox, S. 2009. Generative production systems for sustainable product creation. VTT working papers
129. Espoo, Finland: VTT Technical Research Centre of Finland. http://www.vtt.fi/inf/pdf/
workingpapers/2009/W129.pdf (accessed 11 Nov. 2009).

ISO. 2004a. ISO 15926-1: Industrial automation systems and integration; Integration of life-cycle data
for process plants including oil and gas production facilities. Part 1: Overview and fundamental prin-
ciples. Geneva: ISO.

 . 2004b. ISO 18629-1: Industrial automation systems and integration; Process specification
language. Part 1: Overview and basic principles. Geneva: ISO.

ISO and IEC. 2008. ISO/IEC 15288: Systems and software engineering; System life cycle processes.
Geneva: ISO.

ISO and IEEE. 2007. ISO 42010/IEEE 1471: Recommended practice for the creation, analysis, and
maintenance of software-intensive system architectures. Geneva: ISO.

ISO. 2005. ISO/PAS 16739: Industry foundation classes, release 2x; Platform specification (IFC2x plat-
form). Geneva: ISO.

OMG (Object Management Group). 2003. OMG Model Driven Architecture. Object Management Group
Web site. http://www.omg.org/mda/ (accessed 11 Nov. 2009).

 . 2006. OMG’s MetaObject Facility. Object Management Group Web site. http://www.omg.org/
mof/ (accessed 11 Nov. 2009).

Sztipanovits, J. 2008. Convergence: Model-based software, systems and control engineering. Paper
presented at OOPSLA 2008. Available at http://www.infoq.com/presentations/Model-Based-Design-
Janos-Sztipanovits (accessed 11 Nov. 2009).

West, M. 2009. Matthew West’s publications. Personal Web site. http://www.matthew-west.org.uk/
Publications.html (accessed 11 Nov. 2009). 

Convenient Online and Distance Education that Fits into Your Busy Career

Online Master of Engineering or Certifi cate in Systems Engineering

Gain skills and training in high demand by employers from a University with more
than 40 years of experience providing distance education to working professionals.

Apply or enroll today for fl exible and convenient online education in Systems
Engineering that meets workforce needs and helps you achieve your career goals.

www.learn.colostate.edu/inc • (877) 491-4336

Levenchuk continued

26-29 April 2010 • Salt Lake City, Utah

22nd Annual

PLAN NOW TO ATTEND!

Conference Registration Opens 5 January 2010
Exhibitor Registration Available Now

WWW.SSTC-ONLINE.ORG

120 + TECHNICAL PRESENTATIONS

TRAINING AND CERTIFICATION
OPPORTUNITIES AT A REDUCED COST

COLLABORATIVE NETWORKING

TRADE SHOW

SCENIC LOCATION

TECHNOLOGY AND MANAGEMENT TRAINING • TELECOM • WIRELESS • IT • BUSINESS • SPECIAL PROGRAMS • NETWORKING • SYSTEMS ENGINEERING • ENTERPRISE ARCHITECTURE •

INSTRUCTIONAL DESIGN

• CUSOMER SERVICE • CURRICULUM DESIGN • FLEXIBILITY • INFORMATION ASSURANCE • TOGAF CERTIFICATION • NARTE CERTIFICATION • CUSTOMIZE TRAINING • TECHNOLOGY AND

MANAGEMENT TRAINING • TELECOM • WIRELESS • IT • BUSINESS • SPECIAL PROGRAMS • NETWORKING • SYSTEMS ENGINEERING • ENTERPRISE ARCHITECTURE • INSTRUCTIONAL

DESIGN • TECHNOLOGY AND MANAGEMENT TRAINING • TELECOM • WIRELESS • IT • BUSINESS • SPECIAL PROGRAMS • NETWORKING • SYSTEMS ENGINEERING • ENTERPRISE

ARCHITECTURE • INSTRUCTIONAL DESIGN • CURRICULUM DESIGN • FLEXIBILITY • INFORMATION ASSURANCE • TOGAF CERTIFICATION • NARTE CERTIFICATION • CUSTOMIZE TRAINING

• TECHNOLOGY AND MANAGEMENT TRAINING • TELECOM • WIRELESS • IT • BUSINESS • SPECIAL PROGRAMS • NETWORKING • SYSTEMS ENGINEERING • ENTERPRISE ARCHITECTURE

• INSTRUCTIONAL DESIGN • TECHNOLOGY AND MANAGEMENT TRAINING • TELECOM • WIRELESS • IT • BUSINESS • SPECIAL PROGRAMS • NETWORKING • SYSTEMS ENGINEERING •

http://martinfowler.com/articles/languageWorkbench.html
http://www.vtt.fi/inf/pdf/workingpapers/2009/W129.pdf
http://www.vtt.fi/inf/pdf/workingpapers/2009/W129.pdf
http://www.omg.org/mda/
http://www.omg.org/mof/
http://www.omg.org/mof/
http://www.infoq.com/presentations/Model-Based-Design-Janos-Sztipanovits
http://www.infoq.com/presentations/Model-Based-Design-Janos-Sztipanovits
http://www.matthew-west.org.uk/Publications.html
http://www.matthew-west.org.uk/Publications.html

December 2009 | Volume 12 Issue 457

Cutting-edge techniques you can apply
to any workplace or research program

Architecture and Principles
of Systems Engineering
C.E. Dickerson
Loughborough University, Leicestershire, UK

D.N. Mavris
Georgia Institute of Technology, Atlanta, USA

• Explains how Model-Driven Architecture (MDA™) and
other initiatives will greatly affect the evolution of
architecture and SE

• Introduces tools for optimizing model-based
architecture and systems engineering practices

• Reinforces understanding with practical case studies
Catalog no. AU7253
ISBN: 978-1-4200-7253-2
November 2009, 6-1/8 x 9-1/4, 496 pp.
Suggested Price: $89.95 / £54.99

Models and procedures to optimize
systems design and performance

Designing Complex Systems
Foundations of Design in the Functional Domain
Erik W. Aslaksen
Sinclair Knight Merz, Sydney, Australia

• Presents specific models and procedures for carrying out
systems design and optimizing system performance

• Examines the purpose and basic features of design and
the development of design methodology

• Defines functional elements and investigates their
properties and interactions

Catalog no. AU7533
ISBN: 978-1-4200-8753-6
January 2009, 6-1/8 x 9-1/4, 176 pp.
Suggested Price: $69.95 / £44.99

Model-Oriented Systems
Engineering Science
A Unifying Framework for
Traditional and Complex Systems
Duane W. Hybertson
MITRE, McLean, Virginia, USA

• Extends existing modeling approaches into an MO that
views all science and engineering artifacts as models of
systems

• Organizes approaches into a virtual “SE model space”—
effectively a container for the accumulating body of SE
and SES knowledge in the form of models and patterns

Catalog no. AU7251
ISBN: 978-1-4200-7251-8
June 2009, 7 x 10, 379 pp.
Suggested Price: $89.95 / £54.99

Series Editors:

International Council on
Systems Engineering (INCOSE)

Dr. Paul R. Garvey and Brian White
The MITRE Corporation, Bedford, Massachusetts, USA

Order securely online at www.crcpress.com • Free Standard Shipping on All Orders

*Enter promo code 606LA at checkout to receive your discount.
Offer good through January 31, 2010

December 2009 | Volume 12 Issue 458

Fellows’ INSIGHT

Fellows’
Insight

Key Issues of Systems Engineering
Presented by the INCOSE Fellows
Introduction by William Mackey, william.mackey@incose.org

When I became chair of the INCOSE Fellows in 2007,
I quickly realized that I was meeting with some of
the finest minds in the metadiscipline of systems

engineering. I began to ask myself and others how we could make
our time together in business meetings more stimulating and
how we might create the opportunity for all of those experienced
systems engineers to share their ideas with regard to the discipline.
I asked for a volunteer to collect information regarding the most
important issues related to the metadiscipline. For a year, Bill
Schoening collected a small database of what we called “The Key
Issues of Systems Engineering.” The Fellows identified 35 major
issues related to systems engineering with a large number of sub-
issues numbering almost 100 issues in all.

The Process
I decided that an experiment was in order, so in 2008 I asked

for a vote on which of the issues we as a body should address first.
I also asked who might address those issues. The list narrowed to
eleven, with Fellows’ names attached to each of the eleven issues.

For the 2009 International Workshop in San Francisco, I cre-
ated ten teams of three Fellows each and requested those Fellows
to prepare their views on these defined issues. The discussions at
IW09 required a full day and were so in-depth that we were only
able to complete the discussion of five of those issues. Everyone
was extremely pleased with our experiment, and began to ask how
we might share our intellectual day with the rest of the INCOSE
membership. My view of the day was that it had been the best
sharing of ideas that I had ever experienced in INCOSE including
symposia, workshops, chapter meetings, and hundreds of work-
ing group sessions that I had attended since becoming an INCOSE
member in 1992.

I had assigned a lead speaker for each issue, so I requested the
leaders to draft a white paper for each of the key issues we had
discussed. Each leader created a draft and got a level of consensus
with each of his or her team members. Once the team had agreed

on the content of the white paper, the team sent the white paper
to every Fellow for review. Gaining consensus from such a large
body is not at all easy, but with a few rules we now have five white
papers we will present to you in INSIGHT. This issue of INSIGHT
contains the first white paper, and the remaining key issues will be
discussed in future issues. I wish to indicate the following provisos
related to these white papers:

The summaries are the consensus of the Fellows’ teams, and •	
not necessarily the Fellows as a whole. The teams solicited
comments from the Fellows as a whole and incorporated them
where they thought they were valid and pertinent.
The summaries are not prescriptive; they are simply opinions •	
and starting points for future discussions. They are not position
statements, but rather discussion papers to provide insight to
stimulate further discussion.
The summaries do not represent the position of INCOSE nor do •	
they necessarily agree with published INCOSE documents, such
as the Systems Engineering Handbook. They represent ideas that
may or may not be incorporated in INCOSE documents in the
future.
The summaries do not represent direct or indirect criticism of •	
any person or group. Many ideas exist within INCOSE, and only
the future will determine the consensus of INCOSE as a whole.

The Key Issues of Systems Engineering
The five issues that were discussed at the Fellows’ IW09 meeting

and the teams that presented and documented these issues are as
follows:

Issue 1. What are the general principles applicable to systems?
Speakers: D. Hitchins (lead), B. Boehm, S. Sheard

Issue 2. What is the “systems approach” and why is it fundamental
to systems, systems thinking, systems methodology, systems design,
and systems engineering?
Speakers: S. Jackson (lead), D. Hitchins (online), H. Eisner (online)

Issue 3. How can you “prove” that your systems design will solve the
customer’s problem before you build and prove that design?
Speakers: J. Ring (lead), H. Eisner (online), M. Maier

December 2009 | Volume 12 Issue 459

Fellows’ INSIGHT

Issue 4. What is the return on investment (ROI) for using systems engineering?
Speakers: B. Boehm (lead), S. Sheard, M. Maier

Issue 5. What distinguishes complex adaptive systems from other kinds of systems?
Speakers: A. Sage (lead), J. Ring, S. Sheard

1. Early in 2009, a small team of INCOSE Fellows—Barry Boehm, Sarah Sheard, and I—explored this ques-
tion; this article resulted from our reflections.

What Are the General Principles Applicable to
Systems? Derek Hitchins, profhitchins@incose.org 1

Uncertainty reigns over the question of what might reasonably be consid-
ered as a general systems principle, reflecting the confusion between
systems-as-a-discipline, systems thinking, systems engineering, project

management, engineering, engineering management, operations analysis, defense
procurement, etc. Each of these may lay claim to being the source of general
systems principles. Identifying the principles of systems and of systems engineer-
ing, then, depends upon what you think systems and systems engineering are. For
instance, is systems engineering about systems, engineering, management, or is
systems engineering something else: a unique metadiscipline, perhaps, as viewed
by the doyen of systems engineering, Arthur D. Hall III (1989: 3–52)?

Reflecting this identity conflict, candidate principles might include the following:
Give the customers what they want.•	 This is the so-called “service principle,” so
specifically neither systems, nor systems engineering: more, perhaps, commerce?
Faster, better, cheaper.•	 This is less a systems-engineering principle, perhaps;
more a commercial lean-manufacturing mantra.
Brook ’s law:•	 “Adding people to a late project makes it even later.” This is project
management rather than systems engineering.
Bellman’s principle of optimality.•	 Concerned with dynamic programming, so pos-
sibly with the “best” systems-engineering process?
Popper’s principle of falsifiability.•	 If systems engineering is scientific problem-
solving, then solutions should be testable, i.e., open to being proved false.
Systems engineering looks upwards and outwards.•	 This is more about systems-as-
a-discipline and systems-engineering philosophy than a general systems prin-
ciple.
Kaizen, the philosophy of continual improvement.•	 Kaizen is generally viewed as a
philosophy, or school of thought, rather than a principle, but this is a possibility.
Optimize the whole, not the parts.•	 A principle for systems design or architecting,
so this would be a possible general systems-engineering principle.

Form follows function•	 . Louis Sullivan (1947: 208) famously formulated this well-
known principle: “It is the pervading law of all things organic, and inorganic, of
all things physical and metaphysical, of all things human and all things superhu-
man, of all true manifestations of the head, of the heart, of the soul, that the life
is recognizable in its expression, that form ever follows function. This is the law.”
No confusion there, then! At the time, Sullivan was concerned with the design of
skyscrapers—but is it a general systems principle?

In addition to these, I have previously collected several “principles of creativity
in systems engineering” (Hitchins 1992: 246 – 248), associated with the conception
and design phases of systems engineering:

• Highest level of abstraction
• Disciplined anarchy
• Breadth before depth
• One level at a time

• Decomposition before integration
• Functional before physical
• Tight functional binding
• Loose functional coupling

• Functional migrates to physical

Some of these so-called principles (practices?) guide abstract problem solving,
others guide top-down design elaboration, while still others guide the development
of systems architecture and some guide procedure. According to this approach,
the concepts of “functional before physical” and “functional migrates to physical”
reflect Sullivan’s “form follows function.” But, are they “general systems princi-
ples,” or are they confined to only a part of orthodox systems engineering?

What is a principle in this context? According to the Oxford American Dictionary,
a principle is “a general scientific theory or law that has numerous special appli-
cations across a wide field.” If we take this definition, then we are seeking some
underlying or extensive, or systemic, characteristic that relates to all systems, to all
systems engineering — or, ideally to both. These characteristics might be the way
systems form, sustain, operate, adapt, evolve, fade, and die. Such principles are
likely to be founded in systems science, the science of wholes and of complexity,
which incorporates the physical, natural, and life sciences. General systems prin-
ciples are hard to find in the literature, however, without some prefix: for example,
one finds “operational systems principles,” “control systems principles,” or “dis-
tributed systems principles.” Examination of supporting literature shows these
terms to refer less to systems in general, and more to operations, control, distribu-
tion, and so on. On the other hand, it appears reasonable to suppose that general
systems principles will also have relevance to systems engineering.

General Systems Principles
Propositions that are self-evidently true are axioms, and the following appear

axiomatic:

December 2009 | Volume 12 Issue 460

Fellows’ INSIGHT

First principle of systems. The properties, capabilities, and behavior of a system
derive from its parts, from interactions between those parts, and from interac-
tions with other systems.
Corollary to the first principle. Altering the properties, capabilities, or behavior
of any of the parts, or any of their interactions, affects other parts, the whole
system, and interacting systems.

The first principle, which seems to derive from general systems theory (for
which see Bertalanffy 1968), may be axiomatic, but is it helpful? Research into the
formation and behavior of systems considers not a single system, but networks of
interacting systems. General systems principles emerging from such work should,
in principle, prove more useful.

In one approach, known as “systems-lifecycle theory” (Hitchins 2003: 107–121),
the following general systems principles are expounded to form an integrated set,
which together form a systems-lifecycle map (see figure 1). See Hitchins (2003) for
further explanation of how these systems principles apply to the creation, manipu-
lation, demise, and design of systems; I have also explained them in a brief video
available at http://www.hitchins.net/SystemsPrinciples.mov. Note that the seven systems
principles apply collectively to any open system or network of such systems.

The principle of system reactions1.	 (after Le Chatelier’s principle). If a set of
interacting systems is in equilibrium and either a new system is introduced to
the set, or one of the systems or interconnections undergoes some change, then,
insofar as they are able, the other systems will rearrange themselves to oppose
the change and, in so doing, move to a new point of equilibrium.
The2.	 principle of cohesion. A system’s form is maintained by a balance, static or
dynamic, between cohesive and dispersive forces.
The principle of adaptation.3.	 For continued systems cohesion, the mean rate of sys-
tem adaptation must equal or exceed the mean rate of change of the environment.
The principle of connected variety.4.	 The stability of interacting systems increases
with variety, and with the degree of cohesion of that variety within the
environment.
The principle of limited variety.5.	 Variety in interacting systems is limited by the
available degrees of freedom and minimum degree of differentiation.
The principle of preferred patterns.6.	 The stability of interacting systems increases
both with the variety of systems and with their cohesion.
The7.	 principle of cyclic progression. Interconnected systems driven by an external
energy source will tend to a cyclic progression in which variety of systems (and
variety within systems) is generated, dominance emerges to suppress the variety,
the dominant mode decays or collapse, and survivors emerge to regenerate variety.

The principle of cyclic progression and the lifecycle map of figure 1 address the
phenomenon of “entropic cycling,” in which order and disorder among complex
networks of systems are observed to cycle repeatedly over time. Economic, ecologi-
cal, and climate systems display this characteristic, as do teams, businesses, and
industries, leading me to propose a new law of complexity (Hitchins 2008): “The
entropy of open, interacting systems cycles continually at rates and levels deter-
mined by available energy.”

How does the map work? The lives of systems move around the map in a clock-
wise direction. Starting at one o’clock, energy promotes environmental change
and variety generation; environmental change promotes adaptation, which also
promotes variety generation. Varieties may act and interact with others to form
complementary sets and connected variety, promoting a tendency to stability (five
o’clock). This in turn leads to preferred patterns, and to systems cohesion, the latter
being threatened by dispersive influences, in which generated variety, which has
not been taken up as connected variety, may behave destructively — as with patho-
gens and viruses in organisms and computers, and sociopaths in society.

Environmental
Change

Adaptation
Energy

Variety
Limits

Connected
Variety

Tendency
to StabilityPreferred

Patterns

Dominance

Suppressed
Variety

Decay and
collapse

System
Cohesion Complementary

Sets

Interactions/
Reactions

Variety
Generation

Dispersive
Influences

+

+
+

++

+

++

++

+

+

+

+ +

+

+

+

+
+

+

+

Figure 1. Systems-lifecycle map

December 2009 | Volume 12 Issue 461

Fellows’ INSIGHT

Preferred patterns give way to dominance, in which one aspect of the network of
systems dominates — commands the bulk of resources, energy, and so on — so weak-
ening the others, leading to suppressed variety; this in turn presages decay and
collapse, if system cohesion is inadequate or when environmental change arises,
finding the systems with insufficient variety to respond to changing circumstances.

Note the positive feedback loop: decay and collapse, variety generation, dis-
persive influences, system cohesion, decay and collapse. This positive feedback
loop suggests that collapse, when it occurs, may be sudden and catastrophic. We
see such situations in the domino collapse of the former Soviet Union, for instance.
Collapse is not inevitable, however: restoring variety may, instead, redirect the
path of the weakened system back around the connected variety loop again. Such
a system is seen to undergo periodic perturbations or upheavals. IBM underwent
such an upheaval in the not-too-distant past when it was slow to recognize market
environmental change, and the consequent limitations of its computer mainframe
range. Some organizations find it beneficial to undergo periodic upheaval (reorga-
nization), to avoid becoming moribund; others absorb new variety by taking over
companies. Could this be systems engineering of a kind?

The systems-lifecycle map is not limited to explaining past situations in sys-
tems terms: it also offers potential for a different kind of systems engineering. For
instance, by preventing dominance and by maintaining and refreshing variety in
systems, they may exist indefinitely — without end. Alternatively, encouraging dom-
inance and/or restricting variety leads to moribund systems, poised to collapse.
This pattern has been observed in some political systems, and, as (inadvertently?)
practiced by some accountants in industry during periods of recession. This “dif-
ferent take” on systems engineering, with its emphasis on variety, dominance, and
entropic cycling, offers a new perspective on viruses, and how to deal with them. It
may even shed some light on the evolution of organization, of industry, society, and
even of life from the primordial soup!

Systems-Engineering Principles
The following are fundamental, guiding principles that have been the foun-

dation of systems engineering, apparently since its inception. In many respects,
systems-engineering principles A through D define and characterize systems
engineering. It might actually be reasonable to consider them as the four “pillars of
systems engineering.”

SE Principle A: The Systems Approach
The systems approach (Jenkins 1969) will be addressed fully elsewhere in this

series of articles. Essentially, the systems approach addresses the system of interest

(SOI) in context, as an open1 system that (1) interacts with and adapts to other
systems in its operational environment, (2) contains open, interacting subsystems,
and (3) forms part of some wider or greater whole. The systems approach, then,
considers an SOI to be open and dynamic, and to be comprised of open, dynamic,
interacting subsystems. It also understands the SOI to exist in an environment; to
interact with, and adapt to, other systems in that environment; and to form part of
a larger, wider, or containing system.

SE Principle B: Synthesis
Synthesis brings parts together to act and interact as a unified whole. Parts

or subsystems of a system cooperate, coordinate, contribute, and behave
synergistically, enabled by their interconnections and interactions. Such
patterns or orchestrations of interaction are preserved during design elaboration,
development, construction, and integration; otherwise, integration will not
reconstitute the original, designed whole. “The ‘essence’ of systems engineering
is in choosing (conceiving, designing, selecting) the right parts, bringing them
together to interact in the right way, and in orchestrating those interactions to
create requisite properties of the whole, such that it performs with optimum2
effectiveness in its operational environment, so solving the problem that prompted
its creation” (Hitchins 2008: 120).

SE Principle C: Holism
As the contributors to Wikipedia explain it, “the properties of a given system

(biological, chemical, social, sociotechnical, economic, mental, linguistic, etc.)
cannot be determined or explained by its component parts alone. Instead, the sys-
tem as a whole determines in an important way how the parts behave.”3 The saying
attributed to Aristotle puts it more succinctly: “The whole is greater than the sum
of its parts; the part is more than a fraction of the whole.” Kast and Rosenzweig
(1981: 46) define holistic as “emphasizing the functional relation between parts
and whole; pertaining to totality, or to the whole. The holistic view is basic to the
systems approach.”

Holism pervades our systems thinking and systems-engineering activity: we
consider each and every part of a system always as connected, active, in context,
not in isolation. Further, we avoid addressing only part of a problem, to avoid
exacerbating the whole problem. So, consistent with the first principle of systems,
systems engineering addresses the whole problem, and creates the whole solution.
Similarly, systems design and systems engineering seek to optimize the whole

1. An open system is one that exchanges energy, substance, and information with its environment.
2. Optimum in this context means simply “best” or “greatest.” “Best effectiveness” may be cost-constrained,
and expressed colloquially as “most bangs per buck,” or “the best value for the money.”
3. Wikipedia, s.v. “holism,” http://en.wikipedia.org/wiki/Holism (accessed 20 Oct. 2009).

December 2009 | Volume 12 Issue 462

Fellows’ INSIGHT

system, not the parts: it can be shown that optimizing the parts independently of
each other may actually de-optimize the whole.

SE Principle D: Organismic Analogy (Organicism)
The organismic analogy (Bertalanffy 1962) compares society and social systems,

to the human body, with organic subsystems containing organs. This analogy does
not claim that society actually is an organism, but that in some ways it behaves as
one. One can think of society as having these organic subsystems:

• legal, judicial
• power, energy, water, sanitation
• waste disposal

• education
• economic
• penal

Like organisms, such societal systems also display lifecycles (see figure 1). Sys-
tems engineering creates organized, purposeful sociotechnical systems, suggest-
ing that systems engineering might generally employ the organic metaphor, rather
than the mechanistic metaphor of classic technology engineering. The organic
metaphor is consistent with open systems that interact with, and adapt to, other
systems in their environment.

William Emerson Ritter coined the term organicism in 1919 to denote the concept
that (as Wikipedia puts it) “reality is best understood as an organic whole.” 4
Organicism is close to holism. Organicism stresses the organization, rather than the
composition, of organisms or organizations. Practicing systems engineers may find
themselves concerned primarily with the conception, configuration, architecture,
arrangement, interfacing, behavior, and integration of parts or subsystems into
a functioning whole, performing effectively in its operational environment,5 and
only indirectly with the “internals” (such as technology or structure) of the parts or
subsystems. Hence the systems-engineering mantra, “form, fit and function.”

These four guiding principles of systems engineering (the systems approach,
holism, synthesis, and organicism) inform and address all forms and “styles” of
systems engineering. Indeed, if these guiding principles are not observed, it may
be unreasonable, perhaps, to categorize such activities and processes as systems
engineering. If, on the other hand, they are observed, then systems engineering
will be based on system science.

SE Principle E: Adaptive Optimizing
Complex systems adapt to maintain their performance optimally effective in

changeable, problematic situations. For purposeful, manmade sociotechnical sys-

4. Wikipedia, s.v. “organicism,” http://en.wikipedia.org/wiki/Organicism (accessed 20 Oct. 2009).
5. This is “looking upwards and outwards,” consistent with the philosophies of systems-as-a-discipline,
systems thinking, and systems engineering.

tems, one way to keep abreast of continual change is continual redesign (Hitchins
2008: 436 – 437). Continual redesign addresses the problem space, detecting and
addressing changes in situation, operational environment, other interacting
systems, and other factors; it continually conceives, designs, and implements or
reconfigures the whole solution system to perform with optimal effectiveness in the
contemporary operational environment.6

Optimal effectiveness analyses may employ, as the objective function, cost-
effectiveness (effectiveness divided by cost), casualty-exchange ratios, cost-
exchange ratios, or some combination of these and others. Optimal effectiveness
may also be examined over a range of operational scenarios, to avoid undue
specificity, and, in appropriate situations, may be achieved by changes in training,
organization, procedures, strategy, and tactics.

Defense and aerospace organizations presently may redesign the whole after
the operational and support systems have been “put to work,” creating a so-called
“midlife update,” designed to re-optimize the effectiveness of the whole system, in
line with the contemporary, evolving problematic situation — and to take advantage
of new technology that has become available in the intervening period. Continual
redesign takes periodic upgrade a stage further, to become continual or even con-
tinuous, starting before the first delivery of an operational system. The objective is
to maintain operational performance in an optimally effective state from the point
of delivery and throughout changing situation and circumstance. Continual rede-
sign requires that corresponding operational and support systems are designed for,
and amenable to, continual change. Continual redesign is compatible with kaizen,
the Japanese philosophy of continual (or continuous) improvement.

Continual redesign can be built into “fielded” systems: operational systems may
reconfigure themselves to maintain optimal effectiveness. This capability already
exists in some remote space systems, where physical human access is not feasible.
Similarly, every time the operating system updates on my iMac, it goes into a pro-
tracted process of “re-optimizing”: I hope it knows what it is doing …

SE Principle F: Progressive Entropy Reduction
The process of systems engineering moves from problematic abstraction,

disorder, and dysfunction, progressively towards order and function, resulting in
a tangible, purposeful solution. As systems engineering moves from the problem
space towards the fielded solution, the knowledge of the whole, the parts, and their
interrelationships moves from the vague, abstract, incoherent, disordered, and
incomplete towards the comprehensive, structured, organized, specific, complete,

6. Continual performance and capability improvement of systems in operation is sometimes called opera-
tional systems engineering, and may be undertaken by customer or user organizations with or without
support from industry, as they seek to “get the best” out of their systems in demanding situations.

December 2009 | Volume 12 Issue 463

Fellows’ INSIGHT

and tangible. In terms of knowledge or information, this process involves progres-
sively reducing entropy, going from a condition of high entropy (that is, disorder) at
the outset to low entropy (order) at the finish.

Satisficing versus Optimizing
Systems engineering may be viewed as a problem-solving paradigm. Decision

theorists identify three archetypal ways to address a problem (Ackoff 1981):

Solve•	 the problem — find a correct (or optimum) answer, as in an equation.

Resolve•	 the problem — find an answer that is “good enough,” to “satisfice.” 7

Dissolve•	 the problem — change the situation such that the problem no longer
arises (often the “smart” choice of politicians).

The long-standing debate between satisficing and optimizing is of great sig-
nificance to systems engineering.8 Advocates of satisficing (Simon 1997: 295–298)
believe that it has an advantage over optimizing. The theory of bounded rationality
(Simon 1997: 291–294) postulates that decision-makers lack the ability and resourc-
es to arrive at optimal solutions, so instead they apply rationality only after having
greatly simplified the choices available. Consequently the decision-maker is seen as
a satisficer, one seeking a satisfactory solution rather than the optimal one.

Simon’s theory of bounded rationality is not without its detractors: “This theory
does not categorically assert that it is better to satisfice than optimize… If a decision
maker could optimize, it surely should do so. Only the real-world constraints on
its capabilities prevent it from achieving the optimum. By necessity, it is forced to
compromise, but the notion of optimality remains intact” (Stirling 2003: 10).

Satisficing may be seen as a pragmatic approach in constrained situations. A
particular instance arises in defense procurement, where the operational environ-
ment in which the solution system will operate is continually changing. At the
same time, complex defense and aerospace systems may take many years to real-
ize, during which the initial, “most effective” design configuration would no longer
be “most effective” under changed conditions and operational environments.
Operational systems may be obsolescent upon delivery. Even in the relatively stable
1960s, large command-and-control systems had to be 67% and 95% redone to fit
the environmental changes that had occurred during their development (Boehm
1973). Since many defense systems-engineering projects continue to operate in this
way (primarily due to contractual constraints on the defense systems-engineering
process), it is worth enunciating one final systems-engineering principle.

7. Satisficing (a portmanteau of satisfy and suffice, coined by Herbert Simon) is a decision-making strategy
that attempts to meet criteria for adequacy, rather than to identify an optimal solution.
8. See Sniedovich 2009 for a balanced discussion of optimization versus satisficing, Pareto optimization,
adaptive optimization, and related issues.

SE Principle G: Adaptive Satisficing
“Successful systems engineering involves a continuing process of adapting the

system’s requirements and solutions to enable the system to produce mutually sat-
isfactory results for its success-critical stakeholders” (Boehm and Jain 2006). In the
context of the INCOSE definition of systems engineering as enabling the realization
of successful systems, principle G implies two sub-principles, as given by Boehm
and Ross (1989):

SE Sub-Principle G1: System Success. “A system will succeed if and only if it
makes winners of its success-critical stakeholders.”

SE Sub-Principle G2: System Success Realization. “Making winners of your
success-critical stakeholders requires
1. identifying all of the success-critical stakeholders (SCSs);
2. understanding how the SCSs want to win;
3. having the SCSs negotiate a win-win set of product and process plans;
4. controlling progress toward SCS win-win realization, including adaptation to

change.” 

References
Ackoff, R. L. 1981. Creating the corporate future. New York: Wiley.

Alexander, C. 1964. Notes on the synthesis of form. Cambridge, MA: Harvard Univ. Press.

Bertalanffy, L. von. 1962. General systems theory: A critical review. General Systems 7:1–20.

 . 1968. General system theory: Foundations, development, applications. New York: George
Braziller.

Boehm, B. 1973. Software and its impact: A quantitative assessment. Datamation 19 (May): 48–59.

Boehm, B., and R. Ross. 1989. Theory-W software project management: Principles and examples. IEEE
Transactions on Software Engineering 15 (7): 902–916.

Boehm, B., and A. Jain. 2006. A value-based theory of systems engineering. Paper presented at the
Sixteenth Annual International Symposium of INCOSE (Orlando, FL).

Hall, A. D., III. 1989. Metasystems methodology: A new synthesis and unification. Oxford, U.K.:
Pergamon Press.

Hitchins, D. K. 2008. Systems engineering: A 21st century systems methodology. Chichester, U.K.: Wiley.

 . 1992. Putting systems to work. Chichester, U.K.: Wiley. Also available at
http://www.hitchins.net/SysBooks.html#PSTW.

 . 2003. Advanced systems thinking engineering and management. Boston, MA: Artech House.

Jenkins, G. M. 1981. The systems approach.In Systems behaviour, 3rd ed., ed. R. J. Beishon and G.
Peters, 142–168. London: Open Univ. Press (Harper & Row).

Kast, F. E., and J. E. Rosenzweig. 1981. Organization and management. In Systems behaviour, 3rd ed.,
ed. R. J. Beishon and G. Peters, 44-58 London: Open Univ. Press (Harper & Row).

Sniedovich, M. 2009. The satisficing vs optimizing debate. Decision-making under severe uncertainty
Web site, http://www.moshe-online.com/satisficing/ (accessed 20 Oct. 2009).

Simon, H. 1997. Empirically grounded economic reason. Vol. 3 of Models of bounded rationality.
Cambridge, MA: MIT Press.

Stirling, W. C. 2003. Satisficing games and decision making. Cambridge, U.K.: Cambridge Univ. Press.

Sullivan, L. 1947. The tall office building artistically considered. In Kindergarten chats (revised 1918)
and other writings, ed. I. Athey, 202–13. New York: Wittenborn, Schultz.

http://www.hitchins.net/SysBooks.html#PSTW

December 2009 | Volume 12 Issue 464

REGISTRATION IS OPEN!

Register early and take advantage of our Early bird
conference fee. Last date for early bird registrations
is March 31, 2010. Please, visit our web page for more
information about the conference, registration, and
Stockholm – the Capital of Scandinavia.

IMPORTANT DATES
No  ca on of accepted papers:
Last date for “Early bird” discount:
Final Papers Due:
Conference:

CONTACT
For more informa on please contact Linda Christersson,
E-mail EuSEC2010@congrex.com or visit our website.

March 8, 2010
March 31, 2010
April 12, 2010
May 23-26, 2010

7th European Systems Engineering Conference
EuSEC 2010, Stockholm, Sweden,

May 23 - 26, 2010

Systems Engineering and Innovation

www.incose.org/eusec2010

WELCOME TO EUSEC 2010!

Make sure to mark your calendar for the European Systems
Engineering Conference (EuSEC) organized by INCOSE
Region 3 in Stockholm, Sweden, May 23-26, 2010!

The theme for EuSEC 2010 is “Systems Engineering and
Innova on” and it addresses industry, government and
academia.

At EuSEC 2010 you will meet a balanced mix of quality
technical papers sessions, panels, tutorials, as well as
full-day industrial and academic tracks.

We warmly welcome you, your colleagues and everyone
you bring along, to a thrilling event in the beautiful
Nordic spring in Stockholm!

December 2009 | Volume 12 Issue 465

Forum

Forum
In Harnessing Complexity: Organizational Implications of a

Scientific Frontier (New York: Free Press, 1999), R. Axelrod
and S. Cohen describe the use of genetic algorithms as the

interaction of twelve concepts. These twelve concepts interact
according to the following scenario (numbers added to annotate
the twelve concepts):

Agents [1] of a variety [2] of types [3] use their strategies [4] in
patterned interaction [5] across both physical space [6] and con-
ceptual space [7] with each other and with artifacts [8]. Perfor-
mance measures [9] on the resulting events drive the selection
[10] of agents and/or strategies through processes of error-prone
copying [11] and recombination [12] thus changing the fre-
quencies of the types within the system thereby changing the
emergent characteristics of the system and creating a new gap
relative to desired performance. (Axelrod and Cohen 1999: 154)

A later survey by Robert Plotkin in his article, “The Automation

Are You Programmable, Inventive, or Innovative? Jack Ring, jack.ring@incose.org

of Invention” (The Futurist, July – August 2009, http://www.wfs.org/

futurist.htm), describes how genetic algorithms converge on a product
design or discover the content and structure of an intervention
system for complex, problematic situations.

Now consider your personal participation in a systems-engineer-
ing project. Read the annotated paragraph above again, this time
envisioning yourself as one of the agents. Do you interact with the
diversity of practitioners, exchanging knowledge and adapting your
ideas and practices in pursuit of the best set of trade-offs? What com-
petencies, information base, intuition base, and risk-aversion policy
can you apply to producing a descriptive model of the problematic
situation, and then a responsive prescriptive model of an effective
solution? Do you simply apply prescribed practices regardless of
outcome, or can you collaboratively devise and evaluate various
alternatives, as do genetic algorithms, estimating the likelihood of
an effective system being realized? Better yet, can you rapidly co-
evolve with your colleagues to discover a previously unforeseen idea
that makes a dramatic difference for the sponsors?

The Use of Systems Engineering Methods to Explain the Success of an
Enterprise Sonia Bhar Ahluwalia, sahluwal@stevens.edu

Systems-engineering methods are gaining momentum for build-
ing and maintaining systems throughout industry and govern-
ment. These methods have also been used to understand the

intangible forces behind the success of a system. In this article, I
present a case study based on my work as a master’s student at the
Stevens Institute of Technology that shows how systems methodolo-
gies can be used to pinpoint the reasons for the success of a Fortune
500 company that is renowned as a great place to work.

Google is a simple yet powerful search engine. It connects users
worldwide to an abundance of free information, literally at their
fingertips. Advertisers have generated nearly 100 percent of Google’s
revenues (Google 2008: 20), yet there is another force to be reckoned
with—corporate culture. Google’s corporate culture views the

employee as an individual with the unique potential to “change the
world” (Google 2009b).

History
Google was begun unintentionally by two Stanford PhD students,

Larry Page and Sergey Brin, who were investigating ways to help
users locate information on the Internet. They believed that there
should be a way to bring order and structure to the seemingly cha-
otic and random Internet based on the example of citing references
in research papers. In order for a scholar’s research paper to be gain
the respect of other scholars, the author must cite the research of
other respectable scholars. The two PhD students believed that the
Internet could be understood similarly as a long chain of references

http://www.wfs.org/futurist.htm
http://www.wfs.org/futurist.htm

December 2009 | Volume 12 Issue 466

Forum

and cross-references (Boardman and Sauser 2008: 12).
Initially, the students wanted to sell their search algorithm to AltaVista for USD

1 million, but the company refused. These students were disappointed by the rejec-
tion, not so much because of the monetary loss, but rather, the loss for humanity,
who would never experience powerful ways of getting the information they want.
Not taking no for an answer, the students dropped out of the PhD program, created
their own company, and blazed a new trail for the Internet—which humanity now
knows as Google. This USD 200 billion company’s signature search engine has
proven so useful for searching information that its name has become a common
verb (Boardman and Sauser 2008: 14).

A User’s Perspective
To understand Google’s business model and how corporate culture factors in, we

must first acknowledge its principle, “focus on the user and all else will follow” (Au
et al. 2008). Google strives to bake user-friendliness into its products and services,
which are mainly Web-deployed applications. Hence Google.com greets all its users
with a plain, yet versatile interface where someone can type in a search query and
potentially unlock the mysteries of the universe (well, according to some, at least).

“Rich pictures” provide the best way to describe how Google serves their users.
The Open University System Group’s Web site (http://systems.open.ac.uk/materials/t552/

pages/rich/richAppendix.html) explains that this term refers to a particular kind of visu-
al representation used to simplify complex situations, as opposed to brainstorming
and writing ideas, “because our intuitive consciousness communicates more easily
in impressions and symbols than in words.” A person can make a rough model of a
complex situation by drawing objects, and positioning these objects based on their
interpreted relationship to one another. An actor is the driving force behind such
depictions: the picture thus represents how the entity in question interacts with the
overall situation.

The rich picture in figure 1 shows how the actor, in this case the user, interacts
with Google (which encompasses the search engine and the company that works
behind the scenes). The user views Google as a simple program that provides access
to information of different types (depicted by different colors of the rainbow) based
on the user’s requests ideas. Google empowers ordinary users by making them feel
they have the opportunity to accomplish extraordinary things.

Google’s Business Model
At first blush, Google seems like a paradox: its simple interface provides the user

with a world of free knowledge, while Google rakes in profits. How is this all possible?
It’s very simple (of course): Google’s automated online-advertising program AdWords
allows advertisers to create concise three-line text ads and enables them to specify

Figure 1. Rich picture: User’s interaction with Google

possible search terms and Web content that closely match these ads. Then, whenever
Google runs a program to display the results of a search query, or Web content,
AdWords will execute, and determine which ad to display, based on how well the ad
matches the search query or Web content, how often users have clicked the link to the
ad in the past, and how much the advertiser is willing to pay Google each time a user
clicks on the ad. This ensures that high-paying advertisers are not simply “squatting”
on precious Google real estate but that advertisers with relevant ads get a higher
return on their investment by displaying these ads to users who are most likely to
express interest (Google 2008: 12). Figure 2 uses a “systemigram” (Boardman and
Sauser 2008: 87) to illustrate this entire process, which ultimately generates profit for
both the advertiser and Google.

As you may note, third-party network members are considered part of Google’s
family of products and services. The thousands of third-party network members
comprise of Web-site owners that use Google’s advertising program, AdSense, to
profit from their Web content. AdSense is a syndication of AdWords that will pull
relevant ads for display along with the Web content to these third-party network
member Web sites (free of charge to the network member). Every time a visitor to a
network member’s Web site clicks on a link for an ad, the advertiser pays Google,
who in turn shares the profit with that network member.

http://systems.open.ac.uk/materials/t552/pages/rich/richAppendix.html
http://systems.open.ac.uk/materials/t552/pages/rich/richAppendix.html

December 2009 | Volume 12 Issue 467

Forum

Google’s Corporate Culture
Google competes to attract and retain marketable advertisers by enabling them

to create simple ads and ensure these ads are displayed to users who are most likely
to respond to them. On the other hand Google also competes to attract and retain
highly talented employees. Google was started by two graduate students who, USD
200 billion later, want to maintain a close-knit atmosphere by treating employees as
individuals with unique talents and dreams. They believe that knowledge trumps
experience and thus hire most employees straight out of college. Google’s facilities
are a cross between the fun of a theme park and the knowledge hub of world-class
universities. Employees bounce technical ideas back and forth while lounging on big
comfy sofas and playing with dogs (Google 2009a stresses that Google is a canine-
friendly environment where employees can bring their dogs to work).

Google encourages employees to spend 20 percent of their time working on inde-
pendent projects. Initiatives such as AdWords were shaped under these auspices.
Studies in management have demonstrated time and time again that employee
appreciation plays a significant role in a company’s success, and entire books have
been published on this subject (Heskett et al. 1997). Figure 3 shows how corporate
culture drives profit.

Amid all the fun, there is the risk that the company might lose site of its ultimate
goal, which is to serve the user (Capek 2007). Google addresses this by making it
a priority to incorporate user-friendliness into its products and services. This is

Figure 2. Advertisers drive Google’s profit

view and
express

interest in

create
and

display

influence
pervasiveness
and quality of

influence
pervasiveness
and quality of

create
and

display

view and
express

interest in

match

match

match

generate

based on

match

trigger

trigger

trigger

leverage

leverage

monetize

Goods and
Services

Automated
Online

Advertising
Program

ability to invest

leverage
syndicated by

enter

Users

Search
Query

Web
Content

AdvertisersAds

Profit

AdWords

AdSense

Sites

Third-Party
Network

Members

Google

accomplished by introducing all new Google employees (also known as “Nooglers”)
to the User Experience (UX) team. This team is comprised of Google employees
located across the globe with diverse skill-sets who teach an orientation course
called “Life of a User,” which complements the Nooglers’ technical training when
they first join Google. “Life of a User” immerses the new employees in user-friend-
liness concepts and principles. UX team members are available to dispense advice
on user-friendliness for the hundreds of active projects worked on at any given
time. Plus, there are reference materials available that allow development teams to
learn and benefit from previous designs (Au et al. 2008).

At later phases of application development, the initial product is posted onto
Google Labs, where users can use and test the application to provide feedback.
User interactions with applications are tracked using Web analytics, which the
UX team studies to understand how applications are being used, what is working,
or not working so that development teams can make improvements and upgrades
accordingly (Au et al. 2008).

Since employees can choose to work on independent projects that fascinate
them rather than projects that address a specific user need, it is imperative for
Google to make the applications attractive to users. At the same time, AdWords will
“push” relevant ads for display on these applications based on what the user is
viewing, so that the users will be more likely to reply to the ads and thus generate
profit for advertisers and Google.

view and
express

interest in

create
and

display

influence
pervasiveness
and quality of

influence
pervasiveness
and quality of

create
and

display

view and
express

interest in

match

match

match

generate

based on

match

trigger

trigger

trigger

leverage

influence

ensure
quality of

influence

that create

perform

of

for

for
for

for

influences quantity of

leveragemonetize

Goods and
Services

Automated
Online

Advertising
Program

ability to invest

leverage
syndicated by

enter

Users

Search
Query

Web
Content

AdvertisersAds

Profit

AdWords

AdSense

Sites

Testing

Corporate
Culture

Third-Party
Network

Members

Google

Innovations

Respect

Flexibility

Fun
Training

Employees

Figure 3. Corporate culture drives Google’s profits

December 2009 | Volume 12 Issue 468

Forum

Possible Ways to Weather the Economic Storm
The current economic crisis has created a break in the profit-generating models

that I illustrated above. Users are being laid off from their jobs, which mean they
have less disposable income and are less likely to respond to ads that are relevant
to their search queries and Web content they are viewing. In turn, advertisers
are getting less return on their investments from their ads, which may cause
advertisers to break their agreements with Google.

Because advertisers contribute most of Google’s profits, there is a legitimate fear
in the company that the amount of advertisements, and therefore the profits, will
be drastically slashed. Hence, Google had no choice but to freeze hiring and lay off
hundreds of human-resources positions (Das and Lawsky 2009). News of layoffs is a
terrible blow to corporate culture because the prospect of losing one’s job is always
at the back of the employee’s mind. Figure 4 demonstrates how the economy could
damage Google’s business model. Once the bubbles for advertisers and ads are
removed, note that there is no longer any indication of how profit will be generated.

However, there are ways to remain resilient and weather this storm. Google’s
2008 annual report dealt with many challenges to Google’s operations (Google
2008a). Several of these challenges can be addressed, and used to (at the very least)
sustain profits.

Modernization and talent are Google’s lifeline; CEO Eric Schmidt warned in the

influence
pervasiveness
and quality of

create
and

display

view and
express

interest in

match

trigger

leverage

influence

ensure
quality of

influence

that create

perform

of

for

for

influences quantity of

leveragemonetize

Goods and
Services

Automated
Online

Advertising
Program

syndicated by

enter

Users

Search
Query

Web
Content

Profit

AdWords

AdSense

Sites

Testing

Corporate
Culture

Third-Party
Network

Members

Google

Innovations

Respect

Training

Employees

Figure 4. Google’s business model without advertisers and their ads. Plus a lack of flexibility and fun
for employees.

annual report, “If we do not continue to innovate and provide products and services
that are useful to users, we may not remain competitive, and our revenues and
operating results could suffer” (Google 2008: 20). He also said, “We rely on highly
skilled personnel and, if we are unable to retain or motivate key personnel, hire
qualified personnel or maintain our corporate culture, we may not be able to grow
effectively” (Google 2008: 27). Currently, Google allows its employees to devote 20
percent of their time to pursue independent projects. Google should raise this to 30
thirty percent at least temporarily. This will further expand the employee’s skill set
and create peace of mind for the employees in case they are the next to receive a
pink slip. This peace of mind may allow the employees to innovate and extend their
network of professionals to interact with. An employee with varied skill sets who
can think outside the box and is in touch with a large network of individuals across
different industries will have the confidence to survive this economic storm. In the
unfortunate event that the employee is laid off, the employee will have the opportu-
nity to apply and qualify for more jobs with varying skill sets.

Mr. Schmidt also acknowledged another problem facing Google: “Because our
users need to access our services through Internet access providers, they have
direct relationships with these providers. If an access provider or a computer or
computing device manufacturer offers online services that compete with ours, the
user may find it more convenient to use the services of the access provider or manu-
facturer” (Google 2008: 18). To respond to this problem, Google should consider
becoming an Internet service provider (ISP) itself, and provide services that are
comparable, or exceed other reputed ISPs.

Another problem Google faces is with regard to international users: “In order
to compete, we need to better understand our international users and their
preferences, improve our brand recognition, our selling efforts internationally,
and build stronger relationships with advertisers. If we fail to do so, our global
expansion efforts may be more costly and less profitable than we expect” (Google
2008: 19). Google should encourage international studies by establishing projects
that study lesser-known international users and their preferences, for which there
is great potential for Google to have market share. It should establish partnerships
with university programs that specialize in these areas of study. By this, Google
would also be creating goodwill with the university world so when the economy
improves it will be easier to hire and retain recent graduates. These efforts may
ensure that Google stays afloat until it can restructure its business model to better
dodge the punches and blows of the economy, while continuing to focus on the
user above all else.

Conclusion
Systems-engineering methods can be used to understand the inner workings of

December 2009 | Volume 12 Issue 469

Technical ActivitIes

an enterprise and explain why it has
flourished. By the same token these
methods have been used to provide
solutions for sustaining success in
troubling times.

References
Au, I., R. Boardman, R. Jeffries, P. Larvie,

A. Pavese, J. Riegelsberger, K. Rodden,
and M. Stevens. 2008. User experience at
Google: Focus on the user and all else will
follow. Paper presented at the Conference
on Human Factors in Computing Systems
(Florence, Italy). Available at http://portal.
acm.org/citation.cfm?doid=1358628.1358912
(accessed 7 July 2009).

Boardman, J., and B. Sauser. 2008. Systems
thinking: Coping with 21st Century problems.
Boca Raton, FL: CRC Press.

Capek, F. 2007. A break in the service
profit chain: Why increases in employee
engagement don’t improve the
customer experience. Customer innovations:
Driving profitable growth Weblog, 16
November 2007. http://customerinnovations.
wordpress.com/2007/11/16/ (accessed 7 July
2009).

Das, A., and D. Lawsky. 2009. Google orders
first layoffs in its history. Financial Post,
15 January. http://www.financialpost.
com/news-sectors/story.html?id=1180389
(accessed July 7, 2009).

Google. 2008. Google 2008 annual report
http://investor.google.com/pdf/2008_
google_annual_report.pdf (accessed 7 July
2009).

 . 2009a. Google code of conduct. Google
investor relations Web site.
http://investor.google.com/conduct.html
(accessed 7 July 2009).

 . 2009b. Google jobs. http://www.google.
com/intl/en/jobs/ (accessed 7 July 2009).

Heskett, J. L., W. E. Sasser, and L. A.
Schlesinger. 1997. The service profit chain:
How leading companies link profit and growth
to loyalty, satisfaction, and value. New York:
Free Press.

Open University Systems Group. 2009. Rich
pictures. The Open University. http://
systems.open.ac.uk/materials/t552/pages/
rich/richAppendix.html (accessed 7 July
2009).

Announcing BKCASE: Body of Knowledge and
Curriculum to Advance Systems Engineering
Alice Squires, alice.squires@stevens.edu; Art Pyster, arthur.pyster@incose.org; David Olwell,
david.olwell@incose.org; Stephanie Few, smfew@nps.edu; and Don Gelosh, donald.gelosh@incose.org

Technical Activites

In September 2009, Stevens Institute of Technology, together with the Naval
Postgraduate School, began the Body of Knowledge and Curriculum to Advance
Systems Engineering (BKCASE, pronounced “bookcase”) project. BKCASE is

a three-year effort to create a robust Systems Engineering Body of Knowledge (SE
BoK) and a Graduate Reference Curriculum in System Engineering (GRCSE, pro-
nounced “Gracie”). Endorsed by the INCOSE Board of Directors, with significant
funding from the U.S. Department of Defense and support from the IEEE Systems
Council, BKCASE is the response to a call from government and industry for a
globally recognized, community-created foundation for the discipline of systems
engineering. The BKCASE project hopes to materially influence standard practice,
workforce models, certification, and graduate education around the world.

Figure 1 describes BKCASE, showing the project in the upper left-hand corner,
and the products — comprised of SE BoK and GRCSE — in the lower right-hand
corner. The BKCASE systems diagram describes the project development through
a “story” of the relationships between the project and products, the systems-
engineering community, and the various products in the community that will
be developed based on BKCASE. The BKCASE vision is that competency models,
certification programs, textbooks, graduate programs, and related workforce-
development initiatives for systems engineering around the world will align
themselves with BKCASE.

The SE BoK will define and organize the vast knowledge of the discipline of
systems engineering, including its methods, processes, practices, and tools. Within
that organization, the SE BoK will point to many thousands of pages of articles,
books, Web sites, and other sources of knowledge about systems engineering. The
SE BoK will facilitate a common understanding of the core of the field, and will
aid fast and efficient knowledge retrieval. The SE BoK will build consensus on the
boundary of the discipline and facilitate communication among systems engineers.

GRCSE will be based on the SE BoK and will define the entrance expectations,
curriculum architecture, curriculum content, and expected student outcomes for
graduate programs in systems engineering. GRCSE will recommend that students

TECHNOLOGY AND MANAGEMENT TRAINING • TELECOM • WIRELESS • IT • BUSINESS • SPECIAL
PROGRAMS • NETWORKING • SYSTEMS ENGINEERING • ENTERPRISE ARCHITECTURE •
INSTRUCTIONAL DESIGN • CUSOMER SERVICE • CURRICULUM DESIGN • FLEXIBILITY •
INFORMATION ASSURANCE • TOGAF CERTIFICATION • NARTE CERTIFICATION • CUSTOMIZE
TRAINING • TECHNOLOGY AND MANAGEMENT TRAINING • TELECOM • WIRELESS • IT • BUSINESS •
SPECIAL PROGRAMS • NETWORKING • SYSTEMS ENGINEERING • ENTERPRISE ARCHITECTURE •
INSTRUCTIONAL DESIGN • TECHNOLOGY AND MANAGEMENT TRAINING • TELECOM • WIRELESS • IT
• BUSINESS • SPECIAL PROGRAMS • NETWORKING • SYSTEMS ENGINEERING • ENTERPRISE
ARCHITECTURE • INSTRUCTIONAL DESIGN • CURRICULUM DESIGN • FLEXIBILITY • INFORMATION
ASSURANCE • TOGAF CERTIFICATION • NARTE CERTIFICATION • CUSTOMIZE TRAINING •
TECHNOLOGY AND MANAGEMENT TRAINING • TELECOM • WIRELESS • IT • BUSINESS • SPECIAL
PROGRAMS • NETWORKING • SYSTEMS ENGINEERING • ENTERPRISE ARCHITECTURE •
INSTRUCTIONAL DESIGN • TECHNOLOGY AND MANAGEMENT TRAINING • TELECOM • WIRELESS • IT
• BUSINESS • SPECIAL PROGRAMS • NETWORKING • SYSTEMS ENGINEERING • ENTERPRISE
ARCHITECTURE • INSTRUCTIONAL DESIGN • CURRICULUM DESIGN • FLEXIBILITY • INFORMATION
ASSURANCE • TOGAF CERTIFICATION • NARTE CERTIFICATION • CUSTOMIZE TRAINING •
TECHNOLOGY AND MANAGEMENT TRAINING • IT • BUSINESS • SPECIAL PROGRAMS •
NETWORKING • SYSTEMS ENGINEERING • ENTERPRISE ARCHITECTURE • INSTRUCTIONAL
DESIGN • CUSOMER SERVICE • CURRICULUM DESIGN • FLEXIBILITY • INFORMATION ASSURANCE •
TOGAF CERTIFICATION • NARTE CERTIFICATION • CUSTOMIZE TRAINING

Ahluwalia continued

http://portal.acm.org/citation.cfm?doid=1358628.1358912
http://portal.acm.org/citation.cfm?doid=1358628.1358912
http://customerinnovations.wordpress.com/2007/11/16/
http://customerinnovations.wordpress.com/2007/11/16/
http://www.financialpost.com/news-sectors/story.html?id=1180389
http://www.financialpost.com/news-sectors/story.html?id=1180389
http://investor.google.com/pdf/2008_google_annual_report.pdf
http://investor.google.com/pdf/2008_google_annual_report.pdf
http://investor.google.com/conduct.html
http://www.google.com/intl/en/jobs/
http://www.google.com/intl/en/jobs/
http://systems.open.ac.uk/materials/t552/pages/rich/richAppendix.html
http://systems.open.ac.uk/materials/t552/pages/rich/richAppendix.html
http://systems.open.ac.uk/materials/t552/pages/rich/richAppendix.html

December 2009 | Volume 12 Issue 470

Technical ActivitIes

learn about the application of systems engineering in an application domain
or business segment. The use of GRCSE for guidance will enable consistency in
student proficiency at graduation, making it easier for students to select where to
attend and for employers to evaluate prospective new graduates.

The BKCASE team includes invited authors and volunteer reviewers from
around the world representing different locales, business segments, professional
societies, and areas of expertise. The team has representation from government,
industry, and academia. Authors volunteer their time for one or two days per
month, attend quarterly workshops, and participate in periodic virtual meetings.
Reviewers work as time permits. Once fully staffed, the team will have thirty to
forty authors and several hundred reviewers. Some authors and reviewers will
work on both SE BoK and GRCSE; others will work on only one product.

Two interim drafts and the final products will be developed in one-year
intervals starting in June (SE BoK) and September (GRCSE) of 2010, with version
1.0 products due out in 2012. Both INCOSE and the IEEE Systems Council will be
heavily involved from the beginning, possibly leading them to take up mainte-
nance responsibility for BKCASE products and to adopt them in their own prod-
ucts such as the INCOSE Systems Engineering Handbook and INCOSE professional
certification program. Anyone interested in supporting BKCASE in any capacity,
or anyone who has source material to offer, please contact the project leader, Art
Pyster, by e-mail at art.pyster@stevens.edu. For additional information on BKCASE,
please see http://www.bkcase.org.

New Guidelines for Graduate Software-
Engineering Education
Mark Ardis, mark.ardis@stevens.edu; Tom Hilburn, hilburn@erau.edu; and Art Pyster,
art.pyster@incose.org

A new set of guidelines for graduate software-engineering education was
recently published by Stevens Institute of Technology. In 2007 academia,
industry, government, and professional societies formed a coalition called

the Integrated Software and Systems Engineering Curriculum (iSSEc) project to
create a reference curriculum that reflects current development practices and
the greater role of software in today’s systems. The guidelines are published as
the Graduate Software Engineering 2009 (GSwE2009): Curriculum Guidelines for
Graduate Degree Programs in Software Engineering and are available at http://www.

gswe2009.org. Earlier versions of this work used the name “Graduate Software Engi-
neering Reference Curriculum (GSwERC).”

One of the primary goals of the iSSEc project was the incorporation and inte-
gration of systems-engineering knowledge and practices into graduate software-
engineering programs. Large systems today include significant software content.
The software engineers who work on these systems need to understand better the
relationships between hardware, software and human components. INCOSE has
been an active member of the iSSEc project, participating in authorship, review,
and promotion of the effort.

We are indebted to the many experts who helped create the guidelines. A
complete list of those participants and their supporting organizations is included
in the report. We are especially grateful to Kristen Baldwin and others in the U.S.
Office of the Secretary of Defense for their consistent, generous, and thoughtful
support of this project.

History of the Project
In 1989 the Software Engineering Institute (SEI) of Carnegie Mellon University

published a landmark report on graduate education in software engineering (Ardis
and Ford 1989). Several universities in establishing their software-engineering
degree programs used the recommendations in that report. Since then, the way
software is developed has changed dramatically. Software’s scale, complexity, and
criticality have mushroomed, yet no significant effort has been made to revisit and
update the original SEI recommendations.

GSwE2009 builds on the SEI curriculum foundations plus those of other initia-
tives, such as the Guide to the Software Engineering Body of Knowledge (SWEBOK;
Bourque and Dupuis 2004) and Software Engineering 2004: Curriculum Guidelines Figure 1. Systems diagram describing BKCASE

Best
Practices

Tools

Process Proven
Techniques

Experienced
Guidance

Lessons
Learned

Standards

ESEP

CSEP CSEP-Acq

ASEP

that
shapes and

endorses

that simplifies

that enables

that will
maintain

leveraged
to build

to
evaluate

to
develop

to
author

by

by

for

informs

to

provides

used to
certify to

developto
define

drive

resulting
in

that
together
create

for
use
by

SE Masters
Program
Selection

Consistent
Proficiency in
SE graduates

Curriculum
Content

Alice Squires 11/2/2009

SE
TextbooksDefined Student

Outcomes

Curriculum
Architecture

Entrance
Expectations

Evaluation
of Job

Candidates

The
Boundary fo

Systems
Engineering

metadata

Pointers

Graduate
Programs

in SE

SE Body of
Knowledge (SEBok)

BKCASE Products

BKCASE
Project

INCOSE

SE
Community

Graduate Reference
Curriculum in SE

(GRCSE)

SE Certification
Programs

SE Knowledge

Professional
Societies

IEEE

Government

IndustryAcademia

ACM

SE Workforce
Development

Initiatives

SE
Competency

Models

informs

drives

builds
consensus on

organizes/
defines

to
guide

to developto guide

that facilitates
searching of

is supported by
SE experts in

http://www.gswe2009.org
http://www.gswe2009.org

December 2009 | Volume 12 Issue 471

Technical ActivitIes

for Undergraduate Degree Programs in Software Engineering (ACM and IEEE 2004).
The iSSEc project followed an iterative, evolutionary approach in creating GSwE2009,
beginning with the formation of a curriculum author team (CAT). First established in
July 2007, the CAT is a set of invited experts from industry, government, academia,
and professional associations. CAT membership grew as GSwE2009 matured.

The CAT met in workshops approximately every three months between August
2007 and September 2009, leading to the release of GSwERC 0.25 in February 2008,
GSwERC 0.5 in October 2008, and GSwE2009 1.0 in September 2009. The software-
engineering community was invited to review versions 0.25 and 0.5 to provide the
necessary feedback to develop the current version (1.0). The review of version 0.5
generated more than 800 individual review comments, which were adjudicated for
use in creating version 1.0. The detailed comments and their adjudication can be
found at http://www.GSwE2009.org.

Professional-society participation in the creation of GSwE2009 has been
essential to ensuring that GSwE2009 will have the desired impact on global
graduate education. Both INCOSE and the U.S. National Defense Industrial
Association (NDIA) Systems Engineering Division were early participants in
GSwE2009, and each contributed authors. In 2008, the Institute of Electrical and
Electronics Engineers (IEEE) Computer Society Education Activities Board became
an official participant. In 2009 the Association for Computing Machinery (ACM),
the IEEE Computer Society, and the Brazilian Computer Society (BCS) also chose
to participate. GSwE2009’s success has motivated the start of related efforts by the
BKCASE project to create a Systems Engineering Body of Knowledge and a Graduate
Systems Engineering Reference Curriculum — each with an “appropriate” amount of
software-engineering perspective and content. The BKCASE efforts should lead to
version 1.0 products in 2012.

Content of Curriculum Recommendations
GSwE2009 includes the following elements:
A set of outcomes to be fulfilled by a student who successfully completes a •	
graduate program based on the curriculum
A set of student skills, knowledge, and experience assumed by the curriculum, •	
not intended as entrance requirements for a specific program, but as the start-
ing point for the curriculum’s outcomes
An architectural framework to support implementation of the curriculum•	
A description of the fundamental or core skills, knowledge, and practice to be •	
taught in the curriculum to achieve the outcomes. This is termed a Core Body of
Knowledge (CBOK) and includes topic areas and the depth of understanding a
student should achieve.

A university considering the creation or modification of a graduate software
engineering program should be able to use the CBOK and the architectural frame-
work to design appropriate courses and degree requirements. The outcomes and
entrance assumptions should help in determining the expected market and value
of the program to potential students and their employers.

In addition, GSwE2009 includes the following:
The fundamental philosophy for GSwE2009 development as described in a set •	
of guiding principles
A discussion of how GSwE2009 will evolve to remain effective•	
A mapping of expected outcomes to the CBOK and to the total GSwE2009 pro-•	
gram recommendations
A description of Knowledge Areas (KAs) discussed in GSwE2009 that are not •	
yet fully integrated into the current version of the Software Engineering Body of
Knowledge (SWEBOK)
Glossary, references, and other supporting material.•	

Expected Student Outcomes
Graduates of a master’s program that satisfies GSwE2009 recommendations will

do the following:
Master the Core Body of Knowledge (CBOK).•	
Master software engineering in at least one application domain, such as •	
finance, medical, transportation, or telecommunications, and one applica-
tion type, such as real-time, embedded, safety-critical, or highly distributed
systems. That mastery includes understanding how differences in domain and
type manifest themselves in both the software itself and in its engineering, and
includes understanding how to learn a new application domain or type.
Master at least one Knowledge Area (KA) or subarea from the CBOK to at least •	
the Bloom Synthesis level (Bloom 1956).
Be able to make ethical professional decisions and practice ethical professional •	
behavior.
Understand the relationship between software engineering and systems •	
engineering and be able to apply systems-engineering principles and practices
in the engineering of software.
Be an effective member of a team, including teams that are international and •	
geographically distributed, effectively communicate both orally and in writ-
ing, and lead in one area of project development, such as project management,
requirements analysis, architecture, construction, or quality assurance.
Be able to reconcile conflicting project objectives, finding acceptable compro•	
mises within limitations of cost, time, knowledge, existing systems, and
organizations.

December 2009 | Volume 12 Issue 472

Technical ActivitIes

Understand and appreciate feasibility analysis, negotiation, and good communi-•	
cations with stakeholders in a typical software development environment, and be
able to perform those tasks well; have effective work habits and be a leader.
Be able to learn new models, techniques, and technologies as they emerge, and •	
appreciate the necessity of such continuing professional development.
Be able to analyze a current significant software technology, articulate its •	
strengths and weaknesses, compare it to alternative technologies, and specify
and promote improvements or extensions to that technology.

Curriculum Architecture
Figure 1 provides an overview of the curriculum architecture. GSwE2009 identi-

fies the fundamental skills and knowledge that all graduates of a master’s program
in software engineering must possess. This is captured in the half-circle area
labeled Core Materials. These skills and knowledge include such topics as systems-
engineering fundamentals, requirements engineering, software design, and ethics
and professional conduct.

The next half-circle in figure 1, labeled University-Specific Materials, represents
materials that an institution might include in order to tailor its program to meet its
specific objectives. These will vary by institution or degree program. For example,
a program that emphasizes safety-critical systems might have a required course on
such systems that would be part of the university-specific materials.

Baseline: expected capability
Graduates with a BS in Computing

Core
Materials

University-Specific
Materials

Elective
Materials

Capstone Experience

Prep
Materials

other degree, some experience

old degree, recent experience

BS and extensive
experience

business graduates BSEE and BSCE graduates

BSSE and BSCS graduates

Figure 1. GSwE2009 curriculum architecture

Elective Materials accommodate different interests of individual students, but
may still reflect a program focus. For example, a program may focus on informa-
tion security, verification and validation (V&V), or health-care systems, providing a
series of courses that allow a student to gain depth in a technical area.

Core Body of Knowledge
The Core Body of Knowledge (CBOK) includes all of the fundamental or core

skills, knowledge, and experience to be taught in the curriculum to achieve the
expected student outcomes. The primary source for developing the CBOK was the
SWEBOK. Knowledge elements were also derived from the Software Engineering
2004 curriculum guidelines (ACM and IEEE 2004), the INCOSE Guide to Systems
Engineering Body of Knowledge (INCOSE 2004), and especially the INCOSE Systems
Engineering Handbook (Haskins 2007).

Figure 2 shows the knowledge elements of CBOK and their expected relative
proportions of the GSwE2009 curriculum. Although specific systems engineering
knowledge elements only represents 2–3% of the CBOK, they are considered a

crosscutting concern
that arises in many
other areas. For
example, systems-
engineering material
would also be covered
under requirements
engineering, testing,
configuration
management, and
project management.

Systems Engineering in
the Curriculum

Of particular inter-
est to INSIGHT readers
should be the discus-
sion of the systems-

engineering knowledge area and its integration into the curriculum guidelines. You
are encouraged to review, for example, section 6.5 on “Systems Engineering Issues”
of the CBOK and appendix C.2, “Systems Engineering.”

The iSSEc project has just completed two companion reports to help schools
interested in creating or modifying graduate software engineering programs.
The first report compares current programs to the guidelines, and the second

Ethics and
Professionalism

(1-2%)

Systems Engineering
(2-3%)

Requirements
Engineering (6-8%)

Software Design
(9-11%)

Software Process
(3-4%)

Software Quality
(3-4%)

Non-Core
Curriculum

(~50%)

Software Construction
(1-3%)

Software Maintenance
(3-4%)

Testing (4-6%)

Configuration
Management (2-3%)

Software Engineering
Management (7-9%)

Figure 2. CBOK knowledge elements as percentages of GSwE2009
curriculum

December 2009 | Volume 12 Issue 473

Notes To The Editor

answers common questions about
implementation of graduate degree
programs in software engineering.
Please visit the GSwE2009 Web
site, http://www.gswe2009.org, to
download the reports. You may also
use the site to submit comments or
questions. Your help in improving
the recommendations is greatly
appreciated. 

References
ACM and IEEE (ACM/IEEE Computer Society

Joint Task Force on Computing Curricula).
2004. Software engineering 2004:
Curriculum guidelines for undergraduate
degree programs in software engineering.
http://www.acm.org/education/curricula-
recommendations.

Ardis, M., and G. Ford. 1989. SEI report on
graduate software engineering education.
CMU/SEI 89-TR-21. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon
University.

Bloom, B. S., ed. 1956. Taxonomy of education-
al objectives: The classification of educa-
tional goals; Handbook I, cognitive domain.
Place: Longmans.

Bourque, P., and R. Dupuis, eds. 2004.
SWEBOK: Guide to the Software Engineering
Body of Knowledge. Los Alamitos, CA: IEEE
Computer Society Press.

Haskins, C., ed. 2007. Systems engineering
handbook: A guide for system life cycle pro-
cesses and activities. Version 3.1. Rev. by K.
Forsberg and M. Krueger. Seattle: INCOSE.

INCOSE. 2004. Guide to Systems Engineering
Body of Knowledge.

Notes to the Editor
Reviewer’s Response to Author’s Reply—Mark Powell, mark.powell@incose.org

Book Review  |  Analytical Methods for Risk
Management:  A Systems Engineering Perspective

In the October 2009 issue of INSIGHT, Paul Garvey took
rather vigorous exception to my review of his new book
Analytical Methods for Risk Management: A Systems Engi-

neering Perspective (review published in the April 2009 issue
of INSIGHT). Mr. Garvey lists eleven different comments in
my review that he considers to be “reviewer inaccuracies.”
Strangely, most of his response and commentaries to these
“inaccuracies” are largely orthogonal to my review comments.
In the interest of INCOSE members who are involved in risk
management in their jobs, I believe it is necessary to respond
to Mr. Garvey’s rebuttal of my review of his book. But first let
me provide some background.

I volunteered to review this book because the title intrigued
me. Analytical methods in my experience refers to mathematics
beyond multivariable calculus, but more generically suggests
a quantitative vice qualitative/subjective approach. The term
risk management covers a lot of territory. So the title, Analytical
Methods for Risk Management, implied that this book would
discuss quantitative mathematical approaches beyond simple
four-function math to be used in performing all of the functions
of risk management, addressing as a minimum risk identi-
fication, risk analysis, risk assessment, risk mitigation, risk
tracking, and risk metrics. I have yet to encounter a text that
attempts this. Then there is the subtitle, A Systems Engineering
Perspective. We systems engineers seem to always get the dirty
job of risk management on projects. We face a lot of challenges
in risk management that the graduate business-school texts
on risk management do not address. I anticipated as a result of
this subtitle that this book would indeed address a generous
sampling of those challenges specific to systems engineering
with quantitative analytical solutions. This title heralded much
promise for INCOSE members for improving their performance
of risk management in their jobs.

The preface of this book reinforced my initial expectations
as generated by the title. Terms were used in describing the

intent of the book such as “analytical principles” and “imple-
mentation” and “practice.” Then it recommended for its read-
ing a “mathematical background in differential and integral
calculus.” The preface, in reference to the body of literature
available on risk management, stated that this book “provides
managers and systems engineers a guide through the founda-
tional processes, analytical principles, and implementation
practices of engineering risk management.” This sounded
analogous to what James Martin’s great Systems Engineer-
ing Guidebook (1997) accomplished for systems-engineering
management in general. Fulfillment of the objectives Garvey
stated in his preface would greatly benefit INCOSE systems
engineers, and would address a number of topics often dis-
cussed in the INCOSE Risk Management Working Group.

To prepare for my original review, I read Garvey’s book
cover to cover three times and took copious notes. I have
scanned this book again considering Mr. Garvey’s rebuttal
to my review. I will now address Mr. Garvey’s misidentified
“reviewer inaccuracies.” Rather than take up a lot of space
quoting my original review comment and Garvey’s rebuttal
point, I will use Garvey’s point numbering, synopsize my
original review comment, and then respond.

Point 1. My comment on Garvey’s lack of coverage of the
literature in Bayesian statistics. Garvey’s discussion of things
Bayesian, as he points out in his rebuttal, covered seven pages
and five problems for the students. However, Garvey’s pages
24–31 merely state Bayes’ law and provide examples of alge-
braic manipulations of it. Garvey provides five problems for the
student to exercise this simple algebra of Bayes’ law, problems
one might find in a general undergraduate text on probability
and statistics. This sum total of coverage does not constitute a
guide to over eighty years of development of modern Bayesian
statistics. While Garvey uses the term “Bayesian inference”
rather loosely in pages 28–31, there is much, much more to
Bayesian inference and statistics than simply exercising the

http://www.acm.org/education/curricula-recommendations
http://www.acm.org/education/curricula-recommendations

December 2009 | Volume 12 Issue 474

Notes To The Editor

algebra of Bayes’ law. For a sampling of textbook coverage of modern Bayesian infer-
ence and statistics, I recommend considering just a few of the many texts available on
the subject: Jeffreys (1939), Raiffa and Schlaifer (1961), Schmitt (1969), Box and Tiao
(1973), Berger (1985) (a personal favorite of mine), Bernardo and Smith (1994), Gelman,
et al. (1995) (used as a text in a number of my courses), Sivia (1996), and Robert and
Casella (1999). This is by no means an exhaustive bibliography on this subject, even
in my own personal library. Garvey’s title and preface led me to expect to see at least a
few of these listed in the references in Garvey’s book, with some actual discussion of
the type of Bayesian “inference” and “statistics” covered in these texts.

Point 2. My comment praising Garvey for addressing the invalid use of ordinal scales
and the product formula. Garvey clearly identifies that there are some serious problems
using the product formula to develop “risk score” isocontours (actually, there are prob-
lems using it with both ordinal and cardinal scales). On page 115, Garvey states that
“an impact times probability approach for ranking risks within an ordinal risk matrix
should not be used.” How else should the reader interpret that statement other than
“Do NOT use this formula”? I agree with Garvey very strongly on this, by the way.

Point 3. My note on Garvey’s lack of discussion of the risk aversion artificially
introduced by the product formula. Garvey’s rebuttal refers to figure 4.21, which
does show the concave isocontours for risk scores as produced by the product
formula. Garvey’s rebuttal statement about these being the consequence of the
“mathematical behavior of the product formula” is true, and fully consistent with
my point. Even with “proper calibration” of both axes in the matrix (the scaling of
both the probability and consequence axes into something approaching linearity),
the product formula still produces these concave isocontours. The product formula
artificially imparts “risk aversion” via the math, which is its inherent problem. This
becomes glaringly obvious if one borrows a utility-construction method to develop
the risk-score isocontours and compares with those produced using the product
formula. Risk aversion and tolerance should only be applied by the decision maker,
who must decide whether or not to expend resources on mitigation of a risk, not by
the math. Garvey’s rebuttal refers to page 153, which I reread again looking intense-
ly for hints of “risk aversion,” but found nothing. This is a really important pathol-
ogy of the product formula that is not widely understood. The very fact that Garvey
identified that something was wrong with the product formula is in my opinion
laudable, something few risk management texts do. A clear explanation of specifi-
cally what is wrong can really help systems engineers avoid a number of pitfalls in
performing risk management.

Point 4. My use of the term “risk factors” in my review. Garvey did not use this
term in his book, because as stated in his rebuttal, it is “imprecise.” I will contend
that it is certainly no more imprecise than the terms risk scores or risk levels, all
used synonymously with risk factors across a variety of sources. Back in the 1970s

when I got into risk management, nobody used the term risk scores; they used the
term risk factors. Old terminology apparently sticks with you even when it becomes
out of vogue. I refer the reader to old versions of MIL-STD 882 from back then, and
the DSMC System Engineering Management Guide (1983) for examples. In INCOSE,
we still see the term risk factors used quite often, and we all know that it means the
same thing as risk scores.

Point 5. My comment on Garvey’s lack of comprehensive coverage of “risk factor
formulae.” Garvey found fault with the product formula for calculating risk score
isocontours. It is then appropriate that his book address a comprehensive sampling
of other risk score formulae, and further explain the issues associated with each.
None of them is perfect. The formula I presented in my review as an example of an
important one omitted in Garvey’s book, sometimes referred to as the parallel risk
factor formula (analogous to calculating the overall resistance of a network of resis-
tors in parallel), was the primary formula used for risk-factor calculations in the
U.S. Department of Defense up until sometime in the 1990s. See the aforementioned
DSMC System Engineering Management Guide. By the way, this parallel formula I
mentioned artificially imparts, due to the math, risk tolerance, and is just as faulty
as the product formula. Ironically, the weighted probability and impact formula that
Garvey repeatedly uses for risk ranking can be used as a formula for calculating risk
score isocontours, but it is not obvious that Garvey suggests that it be used for such.

Point 6. My recommendation that this book be considered for optional readings
for a graduate-level risk-management course. This is a favorable comment for this
book. I am sent two or three texts on risk management each year by various text-
book publishers to consider for use in my courses in risk management and applied
decision analysis. Few of these offer any added value to my courses; much less have
sufficient and comprehensive material to use as a central text. I thought Garvey,
however, had enough good points in his book to recommend it to other professors
for additional readings for their students.

Point 7. My comment on Garvey’s omission of discussion of risks with severe
impacts and very low probabilities. Systems engineers face this problem in risk
assessment — the statistical processing of data to calculate the assurance that a risk
will be realized above or below a specified level. Garvey’s book completely ignored
the task of risk assessment in general. Proper quantitative risk assessment requires
the use of modern-day Bayesian statistics. Garvey’s neglect of risk assessment per-
haps explains his lack of coverage of Bayesian statistics. The problem that systems
engineers face is that for very low-probability risks, you seldom get many if any
event data to process statistically. This becomes especially aggravated if the con-
sequence is severe. Garvey’s rebuttal referred to pages 147–152, which address risk
ranking, something entirely different from risk assessment. Two other important
points relative to this comment regarding the preface of this book: (1) the Bayesian

December 2009 | Volume 12 Issue 475

Notes To The Editor

statistics used for proper risk assessments are mathematically intense, requiring
a “mathematical background in differential and integral calculus”; and (2) the
Bayesian statistics texts I identified earlier as not referenced by Garvey offer valid
analytical and numerical methods for solving this problem for systems engineers.

Point 8. My comment on Garvey’s absence of any discussion of “risk analysis.”
Garvey’s rebuttal refers to section 4.3, and rereading it once again, I saw nothing
more than a discussion on risk ranking, as Garvey confirms in his rebuttal com-
ment. “Risk analysis” is that activity in risk management where engineering analy-
ses are performed to understand what factors can produce the consequence and at
what level, what the sensitivities of the consequence level might be to various fac-
tors, what the sensitivities might be for the probability of the consequence at some
level being realized, and what data might be available or needed for a risk assess-
ment. Risk analysis, and the analytical methods employed, is highly dependent on
the type of technology involved in the specific consequence being considered: for
example, electronic failures must be analyzed quite differently than aeronautical
failures. An introduction to the spectrum of analytical methods employed by sys-
tems engineers in risk analysis would have significantly expanded Garvey’s book,
and have been quite useful and appreciated by systems engineers.

Point 9. My comment on Garvey’s lack of discussion of the myriad of risk-man-
agement standards. Systems engineers often find themselves working on a wide
variety of projects in a wide variety of industries during a career. Risk management
on one project may have a certain standard proscribed, on the next project another
one, and it is not unusual for the engineer to have to select a standard to use on a
project where one is not proscribed. Garvey in his rebuttal commentary justified
omitting any such discussion of risk-management standards because of the vari-
ety of terminology and methods offered between the existing standards. Systems
engineers greatly need a good translation matrix between these standards to be
effective in performing risk management over the course of their careers. Garvey’s
book could have been of incalculable value had it addressed these various stan-
dards, with caveats about the differences between them, especially in the terminol-
ogy vagaries. Here again I refer to Garvey’s stated intent in his preface to provide
“implementation practices.” Dealing with this variety of existing standards of risk-
management practice remains a serious challenge for systems engineers, and has
been identified as a major problem for INCOSE members. The INCOSE 2005 Interna-
tional Symposium panel discussion I mentioned in my review (and documented in
the 2005 International Symposium proceedings) did not solve this problem.

Point 10. My comment on Garvey’s limited discussion of risk management for
enterprise systems. Garvey’s rebuttal refers to section 4.6 to find this coverage.
Upon rereading this section, I confirmed that it does have a top-level discussion of
“what an enterprise is.” I did not, however, find a substantial set of methods ana-

lytical or otherwise that would help project managers implement and effectively
use a risk-management program within an enterprise. I could find nothing in this
section or the entire book to justify the use of risk management in an enterprise.
Systems engineering and risk management for the enterprise were major themes for
the INCOSE International Symposium in 2007, the proceedings of which were not
referenced by Garvey. Garvey did provide some interesting discussion on portfolio
management from a capability perspective, and tried to tie it to risk management,
but that does not address the scope of risk management for the enterprise.

Point 11. My comment about Garvey leaving systems engineering on the title page.
The systems engineers in INCOSE face serious challenges in the performance of risk
management that are unique to their field. There were many systems-engineering-
type words used in a lot of places in the book. But after my third cover-to-cover
reading, I was still left wondering where in the book were the analytical methods to
help the systems engineer address any of these discipline-specific challenges. The
discussion of TPMs seemed a bit strange and out of place in this book on risk man-
agement, and that was about the only real substantive systems-engineering content
I remembered after three readings.

I eagerly await a text on risk management that fulfills the expectations that
Garvey’s title and preface inspired. Despite that, I stand by my comments and
recommendations for Garvey’s book as stated in my original review, including
those that were favorable. Should any INCOSE members require further clarifi
cation of my original review comments or the discussion in this rebuttal response, I
welcome e-mail contact at the address above. 

References
Berger, J. O. 1980. Statistical decision theory and Bayesian analysis. New York: Springer-Verlag.

Bernardo, J. M., and A. F. M. Smith. 1994. Bayesian theory. West Sussex, U.K.: Wiley.

Box, G. E. P., and G. C. Tiao. 1973. Bayesian inference in statistical analysis. Reading, MA: Addison-Wesley.

Defense Systems Management College. 1983. System engineering management guide. Fort Belvoir, VA:
Defense Systems Management College.

Gelman, A. B., J. S. Carlin, H. S. Stern, and D. B. Rubin. 1995. Bayesian data analysis. Boca Raton, FL:
Chapman & Hall/CRC.

Jeffreys, H. 1939. Theory of probability. Oxford: Oxford University Press.

Martin, J. N. 1997. Systems engineering guidebook: A process for developing systems and products. Boca
Raton, FL: CRC Press.

Raiffa, H., and R. Schlaifer. 1961. Applied statistical decision theory. Cambridge, MA: Harvard
University Press.

Robert, C. P., and G. Casella. 1999. Monte Carlo statistical methods. New York: Springer-Verlag.

Schmitt, S. A. 1969. Measuring uncertainty: An elementary introduction to Bayesian statistics.
Reading, MA: Addison-Wesley.

Sivia, D. S. 1996. Data analysis: A Bayesian tutorial. Oxford, U.K.: Oxford University Press.

U.S. Department of Defense. 1969. MIL-STD 882: Department of Defense; Standard practice for system
safety. Washington, DC: Office of the Under Secretary for Defense Acquisition, Technology, and
Logistics.

December 2009 | Volume 12 Issue 476

Final Thoughts
From the Chief Editor
Bob Kenley, insight@incose.org

This is the first issue of INSIGHT published in the new horizontal format.
We hope that you find that this format enhances readability on a com-
puter screen and that you take advantage of some of the other features,

such as hyperlinks to the table of contents on each page, a thumbnail view of
the pages, bookmarks for navigation, and live hyperlinks to the Internet and
e-mail applications. If you have any suggestions for further enhancements to
the layout of INSIGHT, I would like to hear from you.

Our upcoming editions of INSIGHT have theme topics on our Council’s
Technical Operations, the symposium in Chicago, and knowledge manage
ment for systems engineering. As always, I am thankful to those who have
volunteered to serve as theme editors, and I am delighted to receive proposals
for future theme editions.

Upcoming submission deadlines and themes for INSIGHT

Presort Std
U.S. Postage

PAID
Seattle, WA
Permit #4

INSIGHT
International Council on Systems Engineering
7670 Opportunity Road, Suite 220
San Diego, CA 92111-2222

Issue Submission Date for
General Articles

Theme Theme Editor

1st Qtr 2010 15 Feb 2010 Technical Operations Timothy Dilks

2nd Qtr 2009 15 May 2010 The Best of Loughborough: Highlights
from the Conference on Systems
Engineering Research and SEANET

Roy Kalawsky and
Ricardo Valerdi

3rd Qtr 2010 8 Aug 2010* 2010 International Symposium
Coverage: Chicago, Illinois, USA

Jack Stein

4th Qtr 2010 15 Oct 2010 Systems Development from Deep Sea
to Deep Space:

Mike O’Driscoll
and Sam Seymour

1st Qtr 2011 15 Feb 2011 Knowledge Management for Systems
Engineering**

Regina Griego

* Submission deadline moves according to International Symposium date
** Please contact the theme editor by 21 May 2010 to propose a theme article.

	Front Cover vol 12 issue 4
	President’s Corner
	Inclusive Thinking for INCOSE’s Future

	Special Feature
	Introduction to this Special Edition on Model-based Systems Engineering (MBSE)
	SysML: Lessons from Early Applications and Future Directions
	Model-based Systems Engineering for Systems of Systems
	MBSE Methodology Survey
	Using Model-based Systems Engineering to Supplement the Certification-and-Accreditation Process of the U.S. Department of Defense
	Executable and Integrative Whole-System Modeling via the Application of OpEMCSS and Holons for Model-based Systems Engineering
	MBSE in Telescope Modeling
	Model-based Systems Praxis for Intelligent Enterprises
	The Challenge of Model-based Systems Engineering for Space Systems, Year 2
	Integrating System Design with Simulation and Analysis Using SysML
	A Modeling Approach to Document Production
	MBSE for European Space-Systems Development
	SysML is the Point of Departure for MBSE, Not the Destination

	Fellows’ Insight
	Key Issues of Systems Engineering
	What Are the General Principles Applicable to Systems?

	Forum
	Are You Programmable, Inventive, or Innovative?
	The Use of Systems Engineering Methods to Explain the Success of an Enterprise

	Technical Activites
	Announcing BKCASE: Body of Knowledge and Curriculum to Advance Systems Engineering
	New Guidelines for Graduate Software-Engineering Education

	Notes to the Editor
	Final Thoughts
	From the Chief Editor

	Forward 4:
	Back:
	Page 2: Off
	Page 4:
	Page 6:
	Page 8:
	Page 9:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 17:
	Page 18:
	Page 20:
	Page 22:
	Page 23:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 37:
	Page 38:
	Page 39:
	Page 41:
	Page 42:
	Page 43:
	Page 45:
	Page 46:
	Page 48:
	Page 49:
	Page 50:
	Page 51:
	Page 52:
	Page 53:
	Page 55:
	Page 56:
	Page 57:
	Page 59:
	Page 60:
	Page 61:
	Page 62:
	Page 63:
	Page 64:
	Page 66:
	Page 67:
	Page 68:
	Page 69:
	Page 70:
	Page 71:
	Page 72:
	Page 74:
	Page 75:
	Page 76:

	Forward:
	Page 2: Off
	Page 4:
	Page 6:
	Page 8:
	Page 9:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 17:
	Page 18:
	Page 20:
	Page 22:
	Page 23:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 37:
	Page 38:
	Page 39:
	Page 41:
	Page 42:
	Page 43:
	Page 45:
	Page 46:
	Page 48:
	Page 49:
	Page 50:
	Page 51:
	Page 52:
	Page 53:
	Page 55:
	Page 56:
	Page 57:
	Page 59:
	Page 60:
	Page 61:
	Page 62:
	Page 63:
	Page 64:
	Page 66:
	Page 67:
	Page 68:
	Page 69:
	Page 70:
	Page 71:
	Page 72:
	Page 74:
	Page 75:

	TOC:
	Page 2: Off
	Page 4:
	Page 6:
	Page 8:
	Page 9:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 17:
	Page 18:
	Page 20:
	Page 22:
	Page 23:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 37:
	Page 38:
	Page 39:
	Page 41:
	Page 42:
	Page 43:
	Page 45:
	Page 46:
	Page 48:
	Page 49:
	Page 50:
	Page 51:
	Page 52:
	Page 53:
	Page 55:
	Page 56:
	Page 57:
	Page 59:
	Page 60:
	Page 61:
	Page 62:
	Page 63:
	Page 64:
	Page 66:
	Page 67:
	Page 68:
	Page 69:
	Page 70:
	Page 71:
	Page 72:
	Page 74:
	Page 75:
	Page 76:

	Back 2:
	Page 3: Off
	Page 5:
	Page 7:
	Page 10:
	Page 16:
	Page 19:
	Page 21:
	Page 24:
	Page 36:
	Page 40:
	Page 54:
	Page 58:
	Page 65:
	Page 73:

	Forward 2:
	Page 3: Off
	Page 5:
	Page 7:
	Page 10:
	Page 16:
	Page 19:
	Page 21:
	Page 24:
	Page 36:
	Page 40:
	Page 54:
	Page 58:
	Page 65:
	Page 73:

	TOC 2:
	Page 3: Off
	Page 5:
	Page 7:
	Page 10:
	Page 16:
	Page 19:
	Page 21:
	Page 24:
	Page 36:
	Page 40:
	Page 54:
	Page 58:
	Page 65:
	Page 73:

	Back 3:
	Page 44: Off
	Page 47:

	Forward 3:
	Page 44: Off
	Page 47:

	TOC 3:
	Page 44: Off
	Page 47:

