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Two years ago at the 2008 Interna-
tional Workshop, I started my time 
as president with a message titled 

“Doing Serious Work Together While Hav-
ing Fun!” As I write my last “President’s 
Corner,” I have been thinking about what 
makes INCOSE valuable to me and what my 
hopes are for INCOSE and you, its members, in the future. For 
the past twenty years, INCOSE has grown steadily in member-
ship, influence, geographic presence, and domain scope. Our 
profession has similarly increased in importance and impact, 
until we stand on the threshold of a world so interconnected 
that only systems thinking and the application of the methods 
we know as good systems engineering can help us to forge 
durable solutions to world challenges.

A highlight of 2009 was the CNN Money Web site’s selec-
tion of the systems engineer as the number-one job in 
America, and, significantly, CNN asked INCOSE to recom-
mend people who could represent the diverse jobs in today’s 
systems-engineering marketplace. Many of you probably saw 
the profile about our own Anne O’Neil of the New York City 
MTA, describing the challenges and satisfaction of her job as a 
chief systems engineer. It is a milestone to have CNN come to 
INCOSE and to highlight a job outside the defense and aero-
space domains. Defense is an important application space for 
systems engineering, but our profession’s influence has spread 
across many more domains of practice in the past decade, and 
the best practices we share have been put to use in products 

and systems of tremendous variety.
At the 2008 IW, I emphasized that our members are the 

most important asset we have, and I want to reaffirm that 
judgment. INCOSE’s greatest strength is the generosity, skill, 
and dedication of its members. Our products are a direct result 
of that dedication and professionalism, and even as the chal-
lenges and products grow in complexity, our individual mem-
bers, often backed by our corporate members, are successfully 
forging ahead in multiple initiatives that will enable continued 
growth and success in applications of systems engineering. 
For those who are leaders of this organization, whether at 
the chapter, national, or international levels, we must always 
remember that we serve the members and the profession, and 
allow that sense of service to guide our decisions.

I see a bright future for systems engineering and the poten-
tial for an equally bright future for INCOSE. Perhaps the only 
troubling current that has rippled through the past twelve years 
as I have served on the board of directors is the tension between 
national and global concerns, particularly in the United States. 
INCOSE has a destiny that is global, and will draw on the 
immense strength and resources of a global existence, pro-
viding that we can establish a foundation that creates a level 
playing field for global collaboration. Yes, INCOSE began in the 
United States as NCOSE, and many of our senior members grew 
from those roots, just as the systems-engineering profession, 
while originally conceived in the telecommunications industry, 
grew to its greatest strength in defense-and-aerospace-systems 
development and operations. While we should remember those 
roots and be proud of them, the time has come to acknowledge 
that we will achieve our greatest destiny only as a truly global 
organization, pursuing our vision and mission as equal interna-
tional collaborators, and working to enable such collaboration 
on a worldwide scale. Accordingly, at the final Board of Direc-
tors meeting I presided over as president, the board unani-
mously passed a resolution to “to conduct the due diligence 
necessary to (re)establish a U.S. national organization.” While 
it may not seem intuitive that a U.S. national organization is a 
requirement for INCOSE to be truly global, I hope to convince 
you all that it is, for the following primary reasons:

INCOSE is currently established as a non-profit corporation •	

Inclusive Thinking for INCOSE’s Future
Pat Hale, patrick.hale@incose.org
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in the state of California, which sometimes leads us to behave in a fashion that 
belies our international mission and goals, simply to comply with California 
corporate law. All of the other nations in INCOSE have formed national chapters 
under independent charters in order to comply with their legal and cultural 
frameworks and to serve both legitimate national considerations and globally 
shared concerns.
Non-North American chapters can and do invest their assets and efforts into •	
products that serve national interests, as well as contributing to international 
products. It is not surprising that other nations have national priorities in addi-
tion to INCOSE’s global work; rather, it is surprising that the only nation that 
does not have a national organization and voice is the United States, INCOSE’s 
birthplace. Because our board is a global mix of representation (absolutely 
appropriate for the international governing body), we refrain from lobbying 
U.S. government agencies or establishing positions that are specific to the U.S. 
While this is a requirement for a global leadership, it deprives U.S. members of 
a potentially powerful voice in U.S. policies pertaining to systems engineering 
and associated matters.
Only by establishing a globally level organizational framework can we enable •	
global collaboration, and realize INCOSE’s full future potential, without nation-
al tensions at the international governance level.

As part of the motion to perform due diligence for “INCOSE-US,” three subcom-
mittees of the board were established to examine different aspects of the plan:

1. Legal, administrative, or bylaw changes to enable a split between U.S. and 
global INCOSE organizations.

2. Financial models, equitable asset distribution and division of services: What 
should the global organization provide, and what is better done on a national 
level?

3. Governance: How should the new global organization be governed to provide 
fair representation and organizational stability at minimum overhead?

These subcommittees have been working hard to develop an initial report and 
recommendations for further action, to be delivered at the 2010 International Work-
shop. I encourage you to make your voice heard during 2010 and to lend support to 
crafting the best organizational framework to carry your organization forward for 
the next twenty years. I thank you for the privilege of serving as your president for 
the past two years. It has been a lot of work, but it has also been, in great measure, 
a labor of love. 



December 2009 | Volume 12 Issue 45

Special Feature

Corporate Advisory Board — Member Companies

Air Force Center for Systems 
Engineering

Alliant Techsystems

Analytic Services-Applied Systems 
Thinking Institute

BAE SYSTEMS

Boeing Commercial Airplane Co.

Boeing Integrated Defense Systems

Boeing Integrated Defense Systems 
– East

Booz Allen Hamilton Inc.

C.S. Draper Laboratory, Inc.

Carnegie Mellon University Software 
Engineering Institute

Certification Training International

Defense Acquisition University

EADS Astrium

EADS Military Air Systems

EADS N.V.

Federal Aviation Administration (U.S.)

General Dynamics

Honeywell International

IBM Corporation

ITT

Japan Manned Space Systems 
Corporation

JAXA (Japan Aerospace Exploration 
Agency)

Jet Propulsion Laboratory

Johns Hopkins University

L-3 Communications Integrated Systems

Lockheed Martin Corporation

ManTech International Corporation

MAP systeme

Missouri University of Science and 
Technology

Mitsubishi Electric Corporation

National Aeronautics and Space 
Administration

National Geospatial – Intelligence Agency

National Reconnaissance Office

National Security Agency

Naval Surface Warfare Center  – Dahlgren 
Division

Northrop Grumman Corporation

Northrop Grumman Information 
Technology – TASC

Office of the Under Secretary of Defense 
(AT&L), Systems and Software 
Engineering

Project Performance International

Raytheon Corporation

Rockwell Collins, Inc.

Rolls Royce

Saab AB

SAIC

Sandia National Laboratories

Serco Defence, Science and 
Technology

Siemens – UGS PLM Software

SPAWAR Systems Center 
Charleston

SRA International

Stevens Institute of  Technology

Swedish Defence Materiel 
Administration

Systems Engineering  
Innovation Centre

Tectura Corporation

Thales

The Aerospace Corporation

The MITRE Corporation

UK MoD Integration Authority

United Technologies Corporation

University of Southern California

US Army ARDEC

US Army CERDEC

Vitech Corporation

INCOSE Past Presidents

Paul Robitaille, 2006/07

Heinz Stoewer, 2004/05

John Snoderly, 2002/03

John Clouet, 2001

Donna H. Rhodes, 2000

Ken Ptack, 1999

William W. Schoening, 1998

Eric C. Honour, 1997

V. A. (Ginny) Lentz, 1996

James Brill, 1995

George Friedman, 1994

Brian Mar, 1993

Jerome Lake, 1992

Promote INCOSE
To obtain materials to 
p r o m o t e  I N C O S E  i n 
the workplace and at 
events such as regional 
c o n f e r e n c e s ,  a n d 
symposia, contact the 
INCOSE Central Office:

info@incose.com 
+1 858 541-1725, or access 

the INCOSE Web site at  
www.incose.org.

7670 Opportunity Road 
Suite 220 

San Diego, CA 92111-2222

We supply INCOSE table 
signs, promotional items, and 

informational materials.

www.incose.org


Special Feature

December 2009 | Volume 12 Issue 46

 

P e n n  S t a t e  |  O n l i n e

 Gain a quality education in a convenient 
online format

 Apply your skills to any engineering discipline

 Build a professional network with classmates

 Become a leader in your organization

 Finish in as little as two years

Online Master’s Degree in 
Systems engineering
Advance Your Career

Penn State is committed to affirmative action, equal opportunity, and the diversity of its workforce.  U.Ed.OUT 10-0369/10-WC-148bkh/bjm

www.wo r l d c am p u s . p s u . e d u/ I N COS E

Apply now



December 2009 | Volume 12 Issue 47

Special Feature

INSIGHTINSIGHT
Special 
Feature

Introduction to this Special Edition on Model-based Systems 
Engineering Robert Cloutier, robert.cloutier@incose.org

Model-based systems engineering (MBSE) has been with us 
for many years now. In the fall of 1998, a special issue of 
INSIGHT (vol. 1, no. 3) proclaimed it as “a new paradigm,” 

and included these articles:
“The INCOSE Model Driven System Design Interest Group,” 1.	
by Howard Lykins and Bob Cohen
“Information Models as a Prerequisite to Software Tool 2.	
Interoperability,” by Byron Purves and Loyd Baker
“Aspects of Modeling,” by Ingmar Ogren3.	
“The Benefits of Model Based Engineering,” by David W. 4.	
Oliver
“DD21 Smart Product Model,” by Jerry Golub5.	

A little over a decade later, it seems appropriate 
to take a closer look at what we have learned, 
and where we may be heading with regard to 
MBSE. One sign of the rising interest in MBSE is 
that during this year’s International Symposium 
in Singapore, there were two MBSE tracks, and 
participants of the MBSE Initiative also met the 
day before the conference began. Further evidence 
can be found in this issue of INSIGHT, where there 
are thirteen articles on model-based systems 
engineering, ranging from the current and future 
trends, research in MBSE, and most important, 
examples and lessons learned — reflecting a 
consensus that MBSE is “ready for prime time” 
(under certain conditions).

It is clear reading these articles that there is no single view of 
what constitutes model-based systems engineering. Some may 
say it is synonymous with using the Systems Modeling Language 
(SysML). Further, there are the methodology wars — functional 
decomposition versus object-oriented decomposition. Others will 
say MBSE consists of behavioral analysis or some other tool of the 
month. For my part, I have been suggesting to my students that the 

specific tool, or language, or approach, is not the important thing; 
rather, systems engineers should model to understand the problem, 
and to communicate with others about the problem. If your 
modeling approach helps you accomplish that, it is a good thing.

There is no common thread that runs through the articles, 
except that it is important to model. Therefore, you can read the 
articles in any order you wish. I will briefly introduce the articles 
here, and you can turn to those you are most interested in first—but 
I highly recommend that you ultimately read them all. Let me 
lead off with Sandy Friedenthal and his presentation of lessons 
learned from early adoption of SysML. He goes on to discuss the 
future directions for SysML, including the potential for a SysML 

certification program. Ron Williamson follows 
that up with an article on the forthcoming Unified 
Modeling Language (UML) profile for defense 
projects, focusing specifically on complex systems 
and system of systems. This profile is called 
UPDM.1 Next, if you are unsure about the alphabet 
soup of modeling tools available for MBSE, Jeff 
Estefan introduces us to a systems-engineering 
modeling tool survey that was conducted by 
the Jet Propulsion Laboratory, and is available 
through INCOSE. There exists a U.S. Department 
of Defense certification and accreditation process, 
and Curtis Barefield addresses the use of MBSE as 
a supplement to that process.

Did I mention research? Jose Garcia presents 
some of his research by looking at the use of holons and operational 
evaluation modeling for context-sensitive systems for MBSE, 
and Russell Peak and his team present a fascinating project that 
is underway with Lockheed Martin and John Deere to integrate 
system design with simulation and analysis using SysML. It is a 

1. The Unified Modeling Language Profile for the United States Department of Defense 
Architecture Framework and the United Kingdom Ministry of Defense Architecture 
Framework.
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real-life example of how SysML can be used as a central repository for a multitude 
of data from engineering tools. Jack Ring offers us a “Model-based Systems Praxis 
for Intelligent Enterprises.”

And now, let’s discuss the practitioners. Robert Karban, Rudof Hauber, and 
Tim Weilkiens demonstrate for us the real-world application of SysML to the 
design of the European Southern Observatory telescope. First it was used to 
reverse engineer the design artifacts, and then it was used to forward engineer 
part of the European Extremely Large Telescope (E-ELT). Chris Delp and his team 

Table 1. MBSE authors

Author Affiliation

1 Robert Cloutier Stevens Institute of Technology

2 Sanford Friedenthal Lockheed Martin 

3 Ron Williamson Raytheon 

4 Jeff Estefan Jet Propulsion Laboratory

5 Curtis Barefield Booz Allen Hamilton 

6 Jose S. Garcia, Jr The Boeing Company

7 R. Karban European Southern Observatory

R. Hauber HOOD group

T. Weilkiens Oose GmbH

8 Jack Ring Innovation Management

9 C. Delp NASA/JPL 

L. Cooney NASA/JPL 

C. Dutenhoffer NASA/JPL 

R. Gostelow NASA/JPL 

M. Jackson NASA/JPL 

M. Wilkerson NASA/JPL 

T. Kahn NASA/Ames

S. Piggott Canadian Space Agency

10 Russell Peak Georgia Institute of Technology

Chris Paredis Georgia Institute of Technology

Leon McGinnis Georgia Institute of Technology

Sandford Friedenthal Lockheed Martin 

Roger Burkhart Deere & Company

11 Steven Jenkins Jet Propulsion Laboratory

12 Harald Eisenmann EADS Astrium GmbH

Hans-Peter de Koning European Space Agency

13 Anatoly Levenchuk TechInvestLab.ru

presents another “space-age” article for this issue, “The Challenge of Model-based 
Systems Engineering for Space Systems, Year 2,” and Harald Eisenmann discusses 
European space-system development. Next, Steve Jenkins addresses a modeling 
approach to document production.

Finally, we have an article from our newest INCOSE chapter from Russia. 
Anatoly Levenchuk reminds us that while SysML is gaining acceptance and 
momentum, we always need to be looking forward. He reminds us that SysML has 
its roots in the software community’s Unified Modeling Language (UML). Moreover, 
there are a number of new technologies coming out of that same software practice 
toward which systems engineers should not turn a blind eye.

And there you have it: MBSE articles from noted authors and members of 
INCOSE, researchers, practitioners, and visionaries. I would like to thank each and 
every one of the authors who contributed to making this issue a large success. It 
has been a pleasure working with each of you. Your enthusiasm was such that I 
never had a problem “running down the next submission.”

Table 1 lists the contributors’ names, and organizational affiliations. As you can 
see, the contributors come from a wide array of organizations in the United States 
and Europe that are serious about MBSE.

I hope you enjoy reading this special issue on model-based systems engineering. 

Contact Holly Witte, Foundation Managing Director, for more information.
holly.witte@incose.org

Have you remembered the Foundation in your will?
Many companies match gifts. Please ask your company to match your gift.

We accept all major credit cards.

Start off a banner year for the INCOSE 
Foundation with a gift to the future.

You make the difference — we provide the 
means through scholarships and grants.
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SysML: Lessons from Early Applications and Future Directions
Sanford Friedenthal, sanford.friedenthal@incose.org

The Object Management Group’s Systems Modeling Language 
(OMG SysML™) is “a general-purpose graphical modeling 
language for specifying, analyzing, designing, and verify-

ing complex systems that may include hardware, software, infor-
mation, personnel, procedures, and facilities. In particular, the 
language provides graphical representations with a semantic foun-
dation for modeling system requirements, behavior, structure, and 
parametric equations that can integrate with other engineering 
analysis models. SysML represents a subset of UML 2 1 with exten-
sions” to satisfy the needs for system modeling.2 Further informa-
tion on SysML can be found at http://www.omgsysml.org.

The OMG SysML specification was adopted in 2006 and version 
1.0 became an available specification in September 2007. Since 
then, the SysML specification has continued to evolve, with ver-
sion 1.1 published by the OMG in November 2008 and version 1.2 
submitted to the OMG in September 2009. Several tool vendors have 
implemented SysML in their tools, several writers have written 
books and articles, and academic departments have begun to offer 
courses that include SysML. Early adopters across the industrial 
world have begun to use SysML in a broad range of aerospace and 
commercial applications. The INCOSE Model-Based Systems Engi-
neering Initiative has yielded results from applying SysML in some 
of the MBSE Challenge teams (see “The Challenge of Model-based 
Systems Engineering for Space Systems, Year 2” in this issue). This 
experience and infrastructure are providing a foundation for more 
widespread adoption of the language as part of a model-based 
systems-engineering approach. This article highlights some of the 
observations and lessons from early applications of SysML and 
looks at future directions for the language to further enable the 
practice of MBSE.

Lessons Learned
The following are some lessons learned from early applications 

1. Unified Modeling Language, version 2.0.
2. Object Management Group, “What is OMG SysML?” OMG Systems Modeling 
Language: The Official OMG SysML Site, http://www.omgsysml.org/#What-Is_SysML 
(accessed 26 Oct. 2009).

of SysML in support of MBSE.
1. MBSE is a cultural change. A model-based approach to 

systems engineering involves a fundamental shift from traditional 
documentation-based approaches. In MBSE, the model becomes a 
primary artifact to represent the system specification and design. 
The system model is managed and controlled, and some of the 
documentation becomes a by-product that is populated by the 
modeling information. This change from a traditional document-
centric view of systems engineering can require a different way 
of thinking about how the systems-engineering effort is planned, 
executed, and controlled. An organization or project team should 
not make the transition to MBSE in an ad-hoc manner, but should 
employ concepts of organizational change in support of continuous 
improvement. These concepts include clearly identifying the issues 
to be addressed by MBSE, engaging stakeholders, developing and 
executing a plan for improvement or transition, and monitoring the 
results.

2. A well-defined MBSE method is essential. MBSE formal-
izes the practice of systems engineering through the use of models. 
As such, MBSE requires a high level of rigor to leverage its benefits. 
In developing a system model, one can quickly get overwhelmed 
with the amount of information that is generated about the system. 
An MBSE method must be clearly defined to support the model 
development. The method should also provide guidance on how to 
organize the system model to ensure it can be navigated, managed, 
and controlled. Several different MBSE methods are summarized 
in an article in this issue by Jeff Estefan (“Survey of Model-Based-
Systems-Engineering Methodologies”), which provides an excellent 
starting point for identifying candidate MBSE methods.

3. New practitioners need training in the language, meth-
ods, and tools of MBSE. MBSE with SysML requires a set of skills 
that take time to learn. The learning curve can take several months 
to reach a moderate level of proficiency in the application of SysML 
in support of MBSE. It should be noted that there are distinct 
concepts and proficiencies required to learn SysML, the MBSE 
method, and the modeling tools. As a result, it has been found use-
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ful to provide separate the training in the language, method, and tools to develop 
proficiency in each area. The training should also be adapted to different members 
of the project team. In particular, a small core modeling team may require more 
significant MBSE training, while the larger project team may only require sufficient 
training to understand the modeling artifacts. After the initial training, ongoing 
mentorship is essential to provide the support needed to help the team climb the 
learning curve.

4. Pilot projects can be used to validate the MBSE approach. Before deploy-
ing MBSE to a significant project, it is recommended that pilot projects be imple-
mented to validate the MBSE approach, and its applicability to the project. The pilot 
shows how MBSE can most effectively be applied to a targeted set of programs. The 
pilot can also serve to build the skill base for use on the program, and the pilot 
results, including the modeling artifacts, can 
serve as a starting point or template for the 
targeted programs. A pilot project should be 
well planned with clear objectives, deliver-
ables, milestones, and sufficient resources 
to achieve the objectives. In addition, team 
continuity with effective leadership and 
stakeholder participation are essential elements for a successful pilot project.

5. Well-defined modeling objectives and scope are critical to MBSE suc-
cess. An old axiom is that modeling is intended to address specific concerns or 
answer specific questions. This is particularly critical in applying MBSE. The appli-
cation of MBSE to a particular project should have a well-defined purpose, objec-
tives, and scope, and the scope should be consistent with the planned resources 
and schedule. There are many aspects of MBSE that can provide value to a project, 
such as improvements in the specification quality, integrity of system design, 
productivity through the evolution of the system design, reduced risk, and other 
potential benefits. However, different levels of model breadth, depth, and precision 
are required to support different purposes. Scoping the model to meet its objec-
tives within program constraints is essential to managing stakeholder expectations 
including those from program management, the customer, and other members of 
the development team.

Future Directions
SysML is in its early stages of adoption. Some of the areas that are currently 

being pursued are highlighted below.

1. Language evolution. The language continues to evolve in response to end-
user and tool-vendor feedback. The OMG SysML Revision Task Force for SysML 

version 1.3 was chartered in September 2009 and is cochaired by Roger Burkhart 
and Rick Steiner. The scope of revisions through the Revision Task Force is limited 
by OMG policy. Major revisions are handled through a new request for proposal.

A SysML Request for Information was issued at the June 2009 OMG meeting. The 
survey is used to elicit feedback on issues and recommendations relative to the use 
of SysML in support of MBSE. The survey results will be analyzed by Rob Cloutier 
and made available to the OMG and INCOSE following the period of data collec-
tion and analysis, which will conclude early 2010. This feedback will provide a key 
input to identify future enhancements to incorporate into a SysML roadmap.

2. SysML Certification. A OMG Certified Systems Modeling Professional 
(OCSMP) certification program has been jointly initiated by the Object Management 
Group and INCOSE. The certification objectives are to certify systems engineers 

and other practitioners on SysML with the 
purpose of (a) helping systems-engineering 
professionals to assess and demonstrate their 
knowledge and skills in SysML and its appli-
cation to MBSE, (b) helping organizations 
grow their capability in this critical skill area, 
and (c) promoting the use of SysML in support 

of MBSE. The certification program will consist of four competency levels aimed at 
model reviewers who need to interpret the diagrams, and model developers who 
need to create the models. The certification program is expected to be in place in 
2011.

3. Integration with Simulation and Analysis. There has been significant 
effort to establish approaches to integrate the system model in SysML with vari-
ous simulation and analysis models. Some of this work is addressed later in an 
article by Russell Peak. This is considered a critical area to more fully leverage 
an MBSE approach across a diverse set of modeling and simulation domains. One 
such example is the integration of SysML with Modelica models. Modelica is a 
sophisticated and standardized simulation modeling language that is maintained 
by the Open Modelica Association. A working group has been established as part 
of the OMG’s Systems Engineering Domain Special Interest Group to formalize the 
mapping between SysML and Modelica; it is chaired by Chris Paredis. This effort 
is expected to result in a customized version of SysML that can be automatically 
transformed to a Modelica model and executed by a Modelica modeling tool.

4. MBSE Tool Interoperability. The system model must integrate across a 
range of modeling domains, including hardware, software, analysis, and test 
models and tools. Model and data interchange standards are essential to achieve 
the model and tool interoperability. Evolution of model and data interchange stan-
dards continues to be a focus of the OMG’s standards activities. The OMG Model 

A model-based approach to systems engineering 
involves a fundamental shift from traditional 

documentation-based approaches.
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Interchange Working Group is coordinating vendor efforts to demonstrate and 
enhance their ability to exchange modeling information via the XML Metadata 
Interchange (XMI) standard. This working group established a set of test cases 
to incrementally verify the exchange capability of UML, SysML, UPDM, and 
other profiles. A second effort, led by David Price and Alice Feeney, is focused 
on the integration between SysML and ISO Application Protocol 233 (AP233). 
AP233 is a STEP-based3 data-exchange standard targeted to support the needs 
of the systems-engineering community by integrating systems-engineering 
data with other types of engineering analysis that are typically associated 
with hardware design. A validation tool developed by Peter Denno from the 
U.S. National Institute of Standards and Technology is being used to support 
interoperability testing.

5. SysML Integration with UPDM and Other Profiles. SysML is being 
integrated with other UML profiles. In particular, SysML can be leveraged when 
applying the UPDM, as described in Ron Williamson’s article in this issue. The 
UPDM can be used for architecting at the system-of-systems level, and then 
integrated with SysML for systems modeling. Other profiles that are being 
integrated with SysML include MARTE (Modeling and Analysis of Real-Time 
Embedded Systems).

Summary
Model-based systems engineering is part of INCOSE’s Systems Engineering 

Vision 2020, and will be fundamental to the future practice of systems 
engineering. SysML was jointly developed by INCOSE and the Object 
Management Group to provide an enabling capability for MBSE. There has 
been considerable early application of SysML across a range of industry and 
application domains, and much has been learned about the challenges of 
transitioning to a model-based approach. The need for a systematic approach 
to transition from a document-based approach to a model-based approach is 
essential, and includes the need for well-defined MBSE methods, training, 
and piloting of the approach. The MBSE initiative is helping to address some 
of these challenges by providing a body of knowledge that can be shared 
across industry and academia. In addition, several initiatives are underway 
to enhance the SysML language, certify systems modelers, enhance the 
integration with simulation, improve tool interoperability, and integrate with 
other domain-specific modeling languages such as UPDM and MARTE. 

3. STEP: Standard for the Exchange of Product Model Data, ISO 10303

INCOSE’s model-based systems-engineering effort is focused on improving 
model-based methods for systems engineering. One of the MBSE activities, Sys-
tem of Systems, addresses the modeling and systems-engineering capabilities 

necessary to develop enterprise-wide solutions in a more cost-effective, timely, and 
high-quality manner than would be possible with traditional systems engineering. 
The Defense Acquisition University’s Defense Acquisition Guidebook defines a sys-
tem of systems as “a set or arrangement of systems that results when independent 
and useful systems are integrated into a larger system that delivers unique capabil-
ities” (2004 version, chapter 4, quoted in ODUSD 2008: v). Developing the vocabu-
lary, methods, and tools in support of enterprise architectures is a critical element 
of both the MBSE system-of-systems top-down needs-development strategy and the 
bottom-up strategy, which leverages the best practices and tooling in the industry. 
The development of model-based standards that clearly define the metamodels 
associated with enterprise architectures and associated models is fundamental to 
the success of model-based development.

The partnership and cross membership between INCOSE and the Object Man-
agement Group (OMG) has produced a productive synergy of ideas and methods; 
this collaboration continues with the ongoing efforts to develop a unified profile 
for military architecture frameworks. An industry standards team, composed 
of INCOSE and OMG members, has been established to build on previous efforts 
within the OMG to develop a modeling standard that supports both the U.S. Depart-
ment of Defense Architecture Framework (DoDAF) and the U.K. Ministry of Defence 
Architecture Framework (MODAF). The modeling standard is called UPDM, the 
Unified Profile for DoDAF and MODAF.

UPDM defines an industry standard representation for enterprise architectures 
that are compliant with DoDAF 1.5 or MODAF 1.2. UPDM leverages the existing 
SysML standard for requirements, parametrics, allocation, and other critical 
features that enable UPDM to integrate with SysML models for system-level 
specification, design, and analysis. UPDM is an Object Management Group (OMG) 
initiative. UPDM is expected to lead to significant improvements in the consistency, 
quality, and tool interoperability of enterprise architectures that comply with 
these frameworks. In addition, it is expected to be fully compatible with both UML 
models for specification and design models for Level 0 compliance and SysML 
specification and design models for Level 1 compliance. Developing a specification 
that fully supports DoDAF/MODAF is essential for organizations developing NEC 

Model-based Systems Engineering for Systems 
of Systems Ron C. Williamson, ronald.williamson@incose.org
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(network-enabled capability) systems. The UPDM Team will also make use 
of NATO’s recently adopted architectural framework standard, NAF version 3. 
NAF is based on MODAF 1.1 but has been extended to support service-oriented 
architecture (SOA). SOA views have since been included in MODAF 1.2.

Although the UPDM team group is independent of the OMG, it submitted a 
new specification to the OMG using the OMG fast-track Request for Comments 
adoption process. The final UPDM specification was anticipated to become 
an available specification by September 2009. UPDM will then be updated 
through the OMG technology adoption process to address the requirements of 
DoDAF 2.0. The team is also considering the Security and Information Protec-
tion views of the Canadian DNDAF.

The UPDM team has already defined working groups to focus on specific 
aspects of the ongoing specification updates and plans to set up a forum 
to enable interested parties to keep up to date with the progress on the 
specification. The membership of the UPDM team comprises development 
tool vendors and defense-industry contractors along with representatives of 
the key government agency stakeholders — the U.S. Department of Defense 
and the U.K. Ministry of Defence.

In addition to the UPDM effort, the INCOSE MBSE SoS activity intends to 
leverage and influence the ongoing standards efforts to develop model-based 
approaches to systems engineering at the level of the enterprise or the system 
of systems. Based on industry feedback, the SoS activity will focus on key 
perspectives relevant to the MBSE SoS activity including (but not limited to)

Executable models,•	
Business structure and behavioral models,•	
Service-oriented models,•	
Security models, and•	
Information models.•	

Case Study: Gap Analysis using UPDM
To further illustrate the current mainstream approach to modeling sys-

tems of systems, we will summarize a case study of a subset of the key per-
spectives listed above. First, let’s review a brief summary of the key concepts 
included in UPDM as a system-of-systems modeling framework.

Viewpoints and views•	
Critical organizing constructs to enable the effective management of ◊	
potentially complex models
Extensible to accommodate new viewpoints and views◊	

Strategic capability, operational/business, services, systems, standards •	
viewpoints

Predefined set of viewpoints and views to accommodate DoDAF 1.5 and MODAF ◊	
1.2 specifications “out of the box”
User model visualization integrated via standard UML, SysML, and SoaML ◊	
visual modeling standards

Context, interfaces, constraints, and parametrics•	
Supports core systems-engineering principles directly applicable to system-of-◊	
systems-level analysis and engineering

Context via block or composite structure model elements and diagrams��
Interfaces using standard and flow ports on structural elements with ��
strongly typed interface specifications
Constraints applicable to structural, linkage, dynamics, and parametric ��
model elements
Parametrics capturing the boundary conditions and key performance ��
parameters allocated to structural and behavioral models elements
Technology standards��

Includes current and emerging standards that may be allocated to any model ◊	
element
Leverages allocation mechanisms built into SysML◊	

Next, the key set of requirements that drove the UPDM standards specification were 
captured as a domain metamodel structure (see metamodel structure in figure 1 below) in 
a set of model element packages. This metamodel defined the key terms, relationships, 
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Figure 1. UPDM system-of-systems metamodel structure
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and constraints that defined the underlying semantics of the architecture frameworks (i.e., 
DoDAF 1.5 and MODAF 1.2). These requirements were then translated into a profile specification 
(see profile example in figure 2).

Note in figure 1 that the emphasis in each package (where applicable) on key modeling con-
structs such as behavior, structure, data, flows, milestones, requirements, views, environment, 
measurements and ontology. Extensibility is accommodated through the use of external type 
definitions.

As depicted in figure 2, the structural and temporal aspects of an enterprise are critical to 

modeling the evolution of system of systems over time within the con-
text of a well-defined environment and a well-defined mission (either 
business or military oriented). The logical concept of a capability is 
fundamental to enterprise-level analysis, keeping the level of discourse 
away from any physical realization of the solution space.

Modeling Tools Support
During the several years of evolution of the UPDM standards effort 

within the Object Management Group process, all major tool vendors 
evaluated and/or participated in the effort. All key stakeholders 
participated in the process in addition to the tool vendors and 
included representatives major aerospace companies (as end users of 
the tool and MBSE for SoS subject-matter experts), the United States 
Department of Defense, British Ministry of Defence, the Canadian DND, 
and NATO customer representatives. Key vendors have committed 
to implementing the UPDM standard in their tools and include the 
following:

Artisan Software Tools, UPDM profile•	
EmbeddedPlus, UPDM plug-in•	
IBM, Rational Rhapsody, UPDM profile•	
NoMagic, MagicDraw, UPDM profile•	
Sparx Systems, enterprise architect UPDM profile•	
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Special Feature

MBSE Methodology Survey
Jeff Estefan, jeff.estefan@incose.org

One of the activities of INCOSE’s MBSE Initiative deals with 
Processes, Practices, and Methods. This activity is com-
prised of two components. The first of these is the subject of 

this article: under my leadership, this component aims to provide 
the international systems-engineering community with a survey, to 
be updated annually or on an as-needed basis, of some of the lead-
ing MBSE methodologies used in industry.1 The other component, 
under the leadership of Ray Jorgensen and Joe Bedocs, deals with 
configuration-management practices with the objective of identify-
ing and codifying approaches to manage and control the model 
baseline and address integrating models with multiple users. 
In the future, it is hoped that the scope of the overall activity be 
expanded to publish industrial best practices and MBSE principles.

Survey Background and Status
The MBSE methodology survey was originally initiated as an 

internal study at NASA’s Jet Propulsion Laboratory (JPL) in Pasa-
dena, California, as part of an initiative to advance the state of 
the practice in model-based engineering. JPL then identified the 
work product as a roadmap for the 2007 fiscal year, along with 
industry benchmarking in MBSE. The objective of the study was 
to go beyond a simple survey. The engineers at JPL felt that addi-
tional supporting material was important in helping to ground the 
concepts of MBSE. This included differentiating the meaning of 
processes, methods, and tools, characterizing the role of lifecycle 
models—specifically, those for project, acquisition, and systems 
engineering—and identifying and characterizing the role of models 
in support of MBSE processes. In addition, they felt that there 
needed to be some discussion of the role of the Unified Modeling 
Language (UML) and SysML, which are visual modeling-language 

1. An MBSE methodology can be characterized as the collection of related processes, 
methods, and tools used to support the discipline of systems engineering in a model-
based or model-driven context. We adopt the definition of INCOSE Fellow James N. 
Martin that differentiates process from method and tool (Martin 1997). Martin defines 
process as a logical sequence of tasks performed to achieve a particular objective. 
Processes essentially define what needs to be done without specifying the how. A 
method consists of techniques for performing a task, in other words, it defines the how 
of each task described by the process. A tool is an instrument that, when applied to a 
particular method, can enhance the efficiency of the task — provided it is applied prop-
erly and by somebody with adequate skills and training in the tool.

standards from the Object Management Group.
While the MBSE methodology survey report was published 

initially as an internal JPL engineering memorandum, it was 
scrubbed, cleared for external release, and published on 25 May 
2007 as Revision A (Estefan 2007). I then contributed this document 
to the INCOSE MBSE Initiative as part of its Processes, Practices, 
and Methods activity. It was also made available for public down-
load on the OMG SysML official Web site, available at http://www.

omgsysml.org.
The publication was intended to be a “living” document, to be 

updated annually or on an as needed basis. This first study surveyed 
five methodologies, each of which will be briefly summarized below. 
An important caveat is that this was a survey report only. It was not 
intended to be a formal assessment of these candidate MBSE meth-
odologies, because such an assessment is tightly associated with 
specific project and organizational needs, and thus, any assessment 
would be highly subjective. It is up to the community of users to 
assess which candidate MBSE methodology best suits their needs.

Analysis performed for the 2007 survey and reported during the 
MBSE Workshop held in conjunction with the 2008 INCOSE Interna-
tional Workshop in Albuquerque suggested that there was a robust 
set of MBSE methodologies ready for adoption by organizations and 
practitioners at the time of publication. Feedback from the INCOSE 
community suggested that a gap existed for considering additional 
methodologies, some of which were highly targeted at software or 
software-intensive systems. Given the large scope of model-based 
software-engineering methodologies, I determined that such a sur-
vey would be too broad and that the software community already 
had a robust set of candidate model-based methodologies to choose 
from. Consequently, I decided to focus exclusively on MBSE meth-
odologies for the INCOSE MBSE Initiative. In addition, INCOSE 
Fellow Jack Ring suggested that consideration should be given to 
incorporating the pioneering MBSE work of INCOSE Fellow Wayne 
Wymore on the “Wymorian” notation and associated methods. 
Further analysis was needed to determine if additional candidate 
MBSE methodologies had been overlooked.

As a result of the gap analysis performed following publication 
of Revision A of the MBSE methodology survey report, an updated 
version was published on May 23, 2008 as Revision B (Estefan 
2008a). As with the Revision A report, this publication was made 

http://www.omgsysml.org
http://www.omgsysml.org
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publicly available on the OMG SysML Web site. It was also submitted to INCOSE 
publication staff for consideration as an official INCOSE technical publication. This 
updated revision incorporated the suggestion from the 2007–2008 gap analysis 
to include an overview of Prof. Wymore’s pioneering MBSE work. The statement 
of scope was also updated to reflect the focus on systems-engineering processes 
rather than software-engineering processes. An additional methodology was 
added to result in a total of six methodologies surveyed. This new methodology 
documented in Revision B was Prof. Dov Dori’s object process methodology (OPM). 
Finally, a new section was added to describe the role of OMG model-driven archi-
tecture (MDA) and executable UML foundation. Of course, Revision B also included 
minor editorial updates from Revision A.

Results from this report were presented during the MBSE track at the 2008 
INCOSE International Symposium in Utrecht, the Netherlands, in June 2008 (see 
Griego 2008). During the course of the remainder of the 2008 year through early 
2009, work was focused on formatting the Revision B survey as an official INCOSE 
Technical Data publication (INCOSE-TD-2007-003-01) (Estefan 2008b), which is now 
available for public download on the INCOSE Technical Resource Center Web site 
at http://www.incose.org/ProductsPubs/techresourcecenter.aspx (under the “Modeling and 
Tools Technical Committee” heading).

During the 2009 INCOSE International Workshop in San Francisco in January 
2009, a gap analysis determined that an additional MBSE methodology should be 
reviewed and incorporated into another revision of the survey. The addition added 
Weilkiens’ SYSMOD methodology, which is described in his textbook Systems 
Engineering with SysML/UML (Weilkiens 2007: 271–284) and available at http://

sysmod.system-modeling.com/. Throughout this effort, managed under the auspices of the 
MBSE Initiative, I have worked to support the infusion of some of the methodologies 
studied in the survey into various efforts of MBSE challenge teams, particularly the 
space-systems challenge team led by Chris Delp (Delp et al. 2008, 2009).

Methodologies in Brief
The latest revision of the MBSE methodology survey at the time of submittal 

deadline for this INSIGHT article was Revision B, which surveyed six methodolo-
gies. It is possible that Revision C or some variation such as a Wiki-based update 
to the survey might be available by the time you are reading this article (see the 
section below on “Future Work”). Nevertheless, a very brief summary of the six 
methodologies published in the Revision B report is provided here. Space limita-
tions prevent a more detailed description. The interested reader should refer to the 
INCOSE Technical Data publication INCOSE-TD-2007-003-01 for more details as well 
as references for additional information (Estefan 2008b). A link to this publication 
is provided in the reference list.

IBM Telelogic Harmony-SE. This methodology is a service-request-driven 
approach, described by SysML structure diagrams and state/mode changes 
(activities), which are described as operational contracts. This approach somewhat 
mirrors the “vee” model. Task flow and work products include top-level process 
elements of requirements analysis, system functional analysis, and architectural 
design. Detailed task flows and work products are provided for each process 
element and modeled as SysML activity diagrams.

INCOSE Object-Oriented Systems Engineering Methodology (OOSEM). This 
methodology integrates a top-down (functional decomposition) approach with a 
model-based approach. It leverages object-oriented concepts and uses SysML (for-
merly UML) to support the specification, analysis, design, and verification of sys-
tems. It is intended to ease integration with object-oriented software development, 
hardware development, and testing. OOSEM includes the following activities: 
analyze stakeholder needs, define system requirements, define logical architecture, 
synthesize candidate allocated architectures, optimize and evaluate alternatives, 
and validate and verify system.

IBM Rational Unified Process for Systems Engineering (RUP SE) for Model-
Driven Systems Development (MDSD). This methodology extends the RUP style 
of concurrent design and iterative development to support new roles, artifacts, and 
disciplines for systems engineering. This approach includes an emphasis on busi-
ness modeling, business actors, and flow of events as well as systems-engineering 
model levels and model viewpoints. This approach introduces the concept of “local-
ity,” meaning a member of a system partition representing a generalized or abstract 
view of physical resources, which are linked by connections. This methodology also 
provides a schema for allocated vs. derived requirements by tying use-case flowdown 
and flow of events in a “white-box” view of a system to locality/subsystem (allocated 
requirements) and collaboration (derived requirements) and subsystem-level flow-
down activity. There is also support for designing additional components beyond 
RUP software focus (e.g., hardware systems)—this is known as “RUP+.”

Vitech MBSE Methodology. This methodology initially was created by INCOSE 
Fellow Jim Long and offered as a Vitech MBSE training series. Jim Long has 
also offered a streamlined version of the training at past INCOSE International 
Workshops and Symposia as well. The training module contains four primary 
concurrent systems-engineering activities, which are linked and maintained 
through a common system-design repository. Each activity is linked within the 
context of associated “domains,” namely, process (systems-engineering activities), 
source requirements, behavior, verification and validation, and architecture. 

http://sysmod.system-modeling.com/
http://sysmod.system-modeling.com/
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The methodology recommends a strong adherence to an agreed-upon “system-
definition language”— that is, a systems-engineering schema or ontology to 
manage the syntax and semantics of model artifacts. This approach uses the 
incremental process known as the “onion model,” which allows complete interim 
solutions at increasing levels of detail during the system-specification process; 
this produces a lower-risk design approach by checking for completeness and 
discovering constraints early in the design process. Detailed testing methods are 
described in support of system verification-and-validation activity.

JPL State Analysis (SA). Developed at NASA’s Jet Propulsion Laboratory, this 
methodology leverages model- and state-based control architecture. This approach 
defines state as a representation of the momentary condition of an evolving system; 
it defines models as describing how the state evolves, and state variables as abstrac-
tions representing “knowledge” of the state (in other words, the known state of the 
system is a value of its state variables at the time of interest). Together, state and 
models supply what is needed to operate the system, predict its future state, control 
it toward its desired state, and assess its performance. This approach defines an 
iterative process for state discovery and modeling, and allows models to evolve as 
appropriate across the project’s lifecycle. The state-analysis requirements process 
helps bridge the gap between the requirements on software specified by systems 
engineers. SA information is compiled in a Structured Query Language (SQL)-com-
pliant database referred to as the “state database.”

Dori Object Process Methodology (OPM). This methodology is a formal para-
digm for systems development, lifecycle support, and evolution. It combines 
simple object process diagrams with object process language (constrained natural 
language) and the basic building blocks of an object (something that exists or has 
potential of existence physically or mentally), a process (pattern of transformation 
that object undergoes), and the state (situation object can be in). It is a reflective 
methodology that refers to system lifecycle as system evolution. In OPM, the “sys-
tem developing” (SD1) process contains three main stages: (1) requirement specify-
ing, (2) analyzing and developing, and (3) implementing. SD1 also includes a “using 
and maintaining” state. Each process element can be “zoomed” multiple times. 
Visual models (object process diagrams) and associated object process languages 
are represented and captured in the OPCAT tool (available at http://www.opcat.com).

SYSMOD. As stated earlier, a gap analysis resulting from the MBSE Workshop at 
IW09 indicated that the Weilkiens SYSMOD methodology should also be evaluated as 
a possible candidate MBSE methodology to be included in a future survey report.

Future Work
Initially, the MBSE methodology survey was intended to be a living document. 

However, it is difficult to maintain such a deliverable over the course of several 
years. Consequently, an alternative approach to disseminating this type of 
information to the community of systems-engineering practitioners is being 
investigated at the time of this article’s submission. One potential solution might 
be a Wiki-based system that would be made publicly available via an INCOSE 
Web resource. This would allow authors or key focal individuals of specific MBSE 
methodologies, as well as emerging MBSE methodologies, to post content to 
the Wiki reflecting a synopsis of their particular methodology as well as links 
to additional resources describing the methodology. Until such an alternative 
becomes a reality, the participants of the INCOSE MBSE team will continue to 
publish annual updates to the MBSE methodology survey.
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Using Model-based Systems Engineering to Supplement the Certification-and-
Accreditation Process of the U.S. Department of Defense Curtis Barefield, curtis.barefield@incose.org

Model-based systems engineering can be used to improve 
or complement risk analysis and management in the 
certification-and-accreditation (C&A) process of the 

U.S. Department of Defense by using modeling to provide a clear 
picture of residual risk associated with a system or enterprise. 
MBSE is also useful to create a true living document to enforce 
configuration management and track design changes through the 
lifecycle of the system or enterprise. Both ideas are reasonable 
and achievable, and could serve as a method to incorporate 
MBSE more fully into the lifecycles of federal and private-sector 
systems and enterprises. The resulting models could logically 
be tied to the architecture views created using Department of 
Defense Architecture Framework (DoDAF) and Ministry of Defense 
Architecture Framework (MODAF), which provide the exact type of 
overview alluded to in the briefing slides for MBSE on the INCOSE 
Web site (https://connect.incose.org/tb/MnT/mbseworkshop/SAWG%20

Shared%20Documents/MBSE%20Overview.ppt).
Of course, MBSE could be used to create models supporting any 

architecture framework (thereby providing a deeper insight to the 
system or enterprise), but federal law has mandated risk manage-
ment and the identification of risk for federal systems. Anything 
that will improve risk assessments and lifecycle management 
could be introduced using existing legacy or new program of record 
systems in the C&A pipeline. Up-front costs would increase, but the 
savings could be realized during post-deployment operations.

Governance issues related to Federal Acquisition Regula-
tion (FAR), Defense Federal Acquisition Regulation (DFAR), DoD 
5000 (acquisition) and 8500 (IA) series that are not captured or 
addressed in the architecture framework views would be addressed 
in the MBSE modeling as constraints; as parametric, activity, or 
state diagrams; or as use cases with traceability directly to the 
associated mission assurance category (MAC) and Confidentiality 
IA controls. Test procedures and results would be visually traceable 
to models at the level of the system or component.

Due to enterprise and system visibility from the architecture 
to the component level, the improved risk-analysis process would 

reduce post-deployment costs because potential problems would 
be identified earlier in the lifecycle. Some additional considerations 
include the following:

1.	 In the Department of Defense, the Defense Information 
Assurance Certification and Accreditation Process (DIACAP) 
has eliminated most of the original System Security 
Authorization Agreement (SSAA) sections and attachments, 
effectively eliminating the living document that was designed 
to manage and access systems throughout their lifecycle. 
DIACAP has effectively replaced the SSAA with a database 
record and a few exhibits.

2.	 The National Information Assurance Certification and 
Accreditation Process (NIACAP) SSAA, although designed to 
be a living document, normally becomes “shelfware” until it 
is time for the annual (periodic) review and re-accreditation at 
the three-year point, as mandated by the Federal Information 
Security Management Act (FISMA).

3.	 Neither DIACAP artifacts nor NIACAP documents provide 
a means that supports easy risk analysis by C&A reviewers 
supporting the approval authority.

4.	 In a number of cases, the reviewers, certification authorities, 
and approval authorities are not able to glean a detailed 
understanding of the systems or enterprises due to the limited 
time allowed for risk analysis.

5.	 Without a detailed understanding of the reviewed system, a 
realistic assessment of residual risk is not likely. A system- 
or component-level model with traceability to the system 
(or enterprise) architecture would be extremely helpful in 
visualizing potential risks associated with the system or 
enterprise.

6.	 Test cases and results can be captured within the model, 
which then could be stored electronically with the DIACAP 
scorecard and other electronic artifacts in the applicable 
database.

7.	 Using modeling allows for increased opportunities to apply 
“what-if” scenarios by using XMI to import the baseline into 

MBSE is a methodology 

that can be used to 

supplement several 

ongoing processes and 

procedures in the federal 

and civil acquisition 

systems.
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SysML applications with a low cost per seat at any level within the command 
structure.

8.	 Existing investments in products like DOORS are protected since a number of 
the low-cost SysML applications can be configured to accept direct input from 
these existing applications.

9.	 Modeling effectively improves the ability of an integrated product team to 
collaborate on the overall effect of changes within their area of expertise on 
the whole program by providing a single corporate model of the entire system 
or enterprise.

10.	Documentation can be generated from the models using SysML applications 
so that the paper artifacts can be incorporated into acquisition- or program-
related documentation.

11.	To produce a living lifecycle model, MBSE models need to be used to trace 
specific components, processes, test cases with verifications, and use cases 
to the original requirements visualized in the architectural views. Changes 
in the system requirements, governance, or component will be clearly visible 
at whatever level you view the enterprise or system, and the ability to assess 
changes to costs, schedule, and risks become easier to ascertain.

12.	The successful use of MBSE for an actual DoD project in the DIACAP pipeline 
will help make the case for an increased use of systems-engineering models 
in support of certification and accreditation and other procedures associated 
with the federal acquisition process.

This is the true worth of model-based systems engineering when coupled with 
an applicable architectural framework. Cost associated with implementing MBSE 
would primarily be applied in the beginning of the enterprise or system lifecycle. 
Use of modeling in requirements analysis and assessment of alternatives would 
increase the accuracy of cost estimates by ensuring that all systems and compo-
nents selected for the program baseline are actually valid. Models at the system 
and component levels that are traceable to architecture will improve the accuracy 
in the decision process all the way through the enterprise’s lifecycle. Increased 
accuracy would result in significant cost savings during the enterprise or system’s 
operational life.

MBSE is a methodology that can be used to supplement several ongoing processes 
and procedures in the federal and civil acquisition systems. The use of the MBSE in 
the certification and accreditation process offers a means to implement modeling 
with minimal impact on operational costs and the potential for a reasonable return 
on investment, based on increased throughput with the improved risk analysis pro-
cess. For a more detailed discussion of the MBSE process associated with certification 
and accreditation, please contact me at the e-mail address above. 
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Executable and Integrative Whole-System Modeling via the Application of 
OpEMCSS and Holons for Model-based Systems Engineering
Jose S. Garcia, Jr., jose.garcia@incose.org

The advancements of science and technology in our society 
have provided us with two realities: (1) a utopian potential 
of improving our lives and economies, and (2) a growing 

complexity in integrating technology into our lives, often at a high 
cost. The field of engineering pervades our lives in almost every 
aspect of our society and economy. We are continuously dazzled 
by today’s “futuristic” weapon systems, biomedical wonders, 
and intelligent, almost humanlike, information systems. How-
ever, from an engineering standpoint, designing and integrating 
such systems poses a growing challenge to make them work “as 
advertised.” As evidenced on an almost daily basis in the news, 
large-scale and complex defense and space projects suffer from a 
continuous rash of cost overruns, schedule delays, and technologi-
cal bottlenecks. This is because the problems engineers face in 
designing and integrating modern technical wonders are growing 
in complexity. Recognized as early as the 1940s by Bell Labs (and 
during the 1950s and 60s by the U.S. Department of Defense and 
NASA, respectively), technological developers have turned to the 
interdisciplinary field of systems engineering to manage and inte-
grate complex engineering projects.

Systems engineering is an interdisciplinary, process-oriented 
approach to solving a wide variety of complex technical and 
societal problems. It is a “lever and fulcrum” that enables highly-
complex system problems and projects to be easily and efficiently 
architected, broken-down, designed, developed, diagrammed, 
calculated, cataloged, evaluated, integrated, optimized, measured, 
and managed. Systems engineering as a formal field and methodol-
ogy developed out of the disciplines of system science and opera-
tions research during the twentieth century. This type of “systems 
thinking” arose during the beginning of the century, initially 
among biologists, and was subsequently adopted by scientists 
and engineers to describe the interconnected nature of systems. 
As the pace of science and technology continues to march forward 
by leaps and bounds, the field of systems engineering continues 
to encounter an ever more complex and varied set of challenging, 

yet ambiguous, set of systems problems. The problems and projects 
encountered by systems engineers are more interdisciplinary in 
nature than formerly, and they behave as complex adaptive sys-
tems. A complex adaptive system consists of two or more agents 
that adjust their behavior to achieve an overall system goal. Agents 
can be as simple as a desktop computer or Web site, or as complex 
as a human operator, a factory robot, space satellite, astronaut, war 
fighter, software application, or an autonomous deep-space probe. 
In addition, systems are not merely composed of physical entities, 
technologies, and software, but are comprised of people, processes, 
and enterprises that are highly networked, intelligent, and inter-
connected. In a complex system problem, these entities, technolo-
gies, people, processes, and enterprises can be conceptualized as 
interacting agents.

The challenge therefore, is to make these complex systems work 
and operate effectively and safely. Moreover, as the level of com-
plexity rises, what used to be “systems” problems are now becom-
ing “system of systems” problems. Tackling these more complex 
problems requires a cost-effective, thorough, and disciplined 
approach to systems engineering. However, as complexity increas-
es, this “engineering of a system” needs to make use of intelli-
gent and intuitive model-based systems-engineering techniques. 
Scientists and engineers face an ever-greater array of complex 
requirements. Complexity must be managed. A paradigm shift is 
occurring within systems engineering, where the level of complex-
ity of system-of-systems projects can only accurately and precisely 
be modeled by a modeling construct that is executable (such as a 
software tool or algorithm). An engineering approach to a “whole-
system” understanding of a design or system needs to be taken into 
consideration from the onset. For example, it is not merely enough 
to design and deploy a satellite. Everything from its conception, 
launch, communication, safety, and disposal must be considered. 
Thus there is an identifiable need for an executable and integrative 
approach to systems engineering.

A system of systems is a system abstracted and constructed of 

The executable and 

integrative approach to 

model-based systems 

engineering … allows 

both an expansionist and 

reductionist approach.
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an aggregate of individual systems, which interoperate and interface with each 
other, and are characterized by emergent properties (see figure 1). The need to engi-
neer systems of systems has spawned the field of system-of-systems engineering, 
which can be defined as the engineering of large-scale systems.

What these statements say 
is that the aforementioned 
paradigm shift to the system-
of-systems understanding of 
system problems, and their 
engineering via system-of-
systems engineering, is an 
evolutionary value-adding 
process that presents a 
variety of challenges that 
include technology, human 
dynamics, and sustainability. 
In addition, a whole-system, 
or holistic, approach to 
engineering will facilitate 
complexity management. 
Engineering projects grow 
ever more complex with the increase of unique and challenging requirements. 
Using the construct of holons in the systems engineering process enables this 
holistic approach.

Holons are system agents that are autonomous and cooperate, and lend them-
selves well to understanding the interdependent and emergent properties of 
agent-based systems and their unique requirements. In this article I will argue 
that an executable and integrative approach to whole-system modeling can be 
accomplished by applying a methodology known as OpEMCSS (operational evalua-
tion modeling for context-sensitive systems) to all aspects of model-driven design. 
These aspects include both model-based systems engineering and simulation-
based systems engineering. Dr. John R. Clymer, my thesis advisor and professor of 
electrical engineering and systems engineering at Cal State Fullerton, developed 
OpEMCSS. Dr. Clymer is an INCOSE Fellow, and has been a member of INCOSE 
since its inception. Dr. Clymer developed the OpEM graphical language based on 
parallel processing language concepts and mathematical linguistics.

Operational evaluation modeling for context-sensitive systems is a modeling-
and-simulation tool that allows an explicit understanding of complex system 
interactions and complex-adaptive-system behavior among system components 
and subsystems. The systems-engineering professional community, as represented 

by INCOSE, has embraced model-based systems engineering. MBSE techniques 
have been identified as a discipline within the field of systems engineering. There 
are active working groups and conferences where the state of the art of complex 
modeling is advanced and where an identifiable need for an executable and inte-
grative approach to model-based systems engineering for whole-system modeling 
has emerged.

Description of Research
This research was intended to identify and provide an integrative and execut-

able approach to whole-system modeling via the application of OpEMCSS to both 
simulation-based and model-based systems engineering. The intent of this research 
was to provide a whole-system understanding of the systems-engineering process. 
This study, although focused on systems engineering, encompasses multidisci-
plinary applications. The research and conclusions provided herein will help set 
the foundation for an integrative modeling paradigm (see figure 2).

OpEMCSS has an extensive library of blocks that make possible the modeling 
of context-sensitive systems that exhibit 
emergent behavior. OpEMCSS thus 
allows the rapid modeling and analysis 
of complex processes. Emergent behav-
ior arises in multiagent systems. One 
modeling block used in OpEMCSS is 
the “Wait until Event” block. This block 
models resource contention (see figures 3 
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and 4) as exhibited in 
systems with multiple 
agents. Agents can 
be human operators, 
satellites, computers, 
or something else.

Significance of This 
Research

As the military-
industrial complex 
evolved during the 
Cold War, the field of 
systems engineering 
organized itself 

into a process and a body of knowledge for executing complex projects involving 
technology and the physical sciences. At the advent of the twenty-first century and 
at the apex of the information age, systems engineering has grown into a highly 
sophisticated, network-centric, complex engineering discipline. This requires a 
whole-system approach to systems thinking. Systems thinking requires taking an 
expansionist approach to system design and analysis, in addition to reductionism. 
The executable and integrative approach to model-based systems engineering for 
whole-system modeling via operational evaluation modeling for context-sensitive 
systems allows both an expansionist and reductionist approach.

The significance of 
this research is the wide 
array of application areas 
for such whole-system 
modeling techniques. 
OpEMCSS provides the 
ability to model just 
about any type of system. 
For example, the follow-
ing model in OpEMCSS 
(figure 5) is that of a sup-
ply chain.

Modeling the supply 
chain and simulating the 
interactions between the 
various agents allows complexity to be comprehended, managed, and optimized. 
A supply-chain and value-chain management process is a multiagent orchestration 
of manufacturers, suppliers, transportation companies, and communication 
networks, all working in concert to maintain a flow of products. Figure 6 shows 
a mathematical optimization fitness surface. This data set, as produced by the 
MBSE techniques modeled in OpEMCSS, allows a system, such as a supply chain or 
manufacturing operation, to be optimized.

A model is an abstraction or representation of reality. Model-based systems 
engineering is the practice and discipline within the field of systems engineering 
that models system interactions and interoperability in order to better engineer 
or develop an intended system design. Simulation is a computer-based or 
mathematical-based analysis of a complex system, which measures a system 
concept. Simulation-based systems engineering is the process and discipline of 
using simulation to evaluate candidate system designs within an operational 
scenario.

The ultimate goal of both model-based and simulation-based systems 
engineering is emulation. In terms of systems engineering, emulation is the real-
time operation of a system’s behavior (a simulation of the actual system functions 
and interfaces). Emulation is the ultimate objective of simulation, since simulation 
is an approximation, and emulation is an actual implementation. Emulation 
allows you to observe, measure, and anticipate system behavior. For this reason, 
OpEMCSS should be adopted into the systems-engineering process as the whole-
system modeling construct that provides executable and integrative modeling for a 
holonic systems-engineering process. 

Figure 4. “Wait until Event” block dialog box

Figure 5. OpEMCSS example model
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MBSE in Telescope Modeling
Robert Karban, rkarban@incose.org; Rudolf Hauber, rudolf.hauber@hood-group.com; 
and Tim Weilkiens, tim.weilkiens@incose.org

In the framework of INCOSE’s strategic initiative, the Systems 
Engineering Vision 2020, one of the main areas of focus is 
model-based systems engineering. In keeping with this empha-

sis, the European Southern Observatory (ESO; http://www.eso.org/) is 
collaborating with the German Chapter of INCOSE (http://www.gfse.

de/) in the form of an “MBSE Challenge” team. The team’s task is to 
demonstrate solutions to challenging problems using MBSE. The 
Active Phasing Experiment (APE; see Gonte et al. 2004), a Europe-
an Union Framework Program 6 project, was chosen as the subject 
of the SE^2 Challenge Team (http://mbse.gfse.de/). Many technical 
products in the telescope domain show an increasing integration 
of mechanics with electronics, information processing, and also 
optics, and can therefore be rightly considered as optomechatronic 
systems.

This article presents the results of model-based systems engi-
neering using the Systems Modeling Language (SysML; see Ogren 
2000), drawing on experiences within the MBSE Challenge proj-
ect and also the European Extremely Large Telescope (E-ELT) 
project. For the former project, SysML models were created by 

reverse engineering from existing 
documentation and from interviews 
with systems engineers, whereas 
for the latter project, the practices 
were applied to a new system. We 
will make use of Ingmar Ogren’s 
concept of a common project model 
(Ogren 2000) to establish a common 
understanding of the system.

Project Description
Our system case study is the 

Active Phasing Experiment tech-
nology demonstrator for the future 

European Extremely Large Telescope, which is a high-tech, inter-
disciplinary optomechatronic system in operation at the Paranal 

observatory (see ESO 2009). Telescopes of the next generation need 
to collect significantly more light than older models, therefore 
requiring bigger reflecting surfaces that consist of many individual 
mirror segments. Due to different disturbances (such as vibrations, 
wind, and gravity), the segments must be actively controlled to 
get a continuous mirror surface with a phasing error of only a few 
nanometers over the main mirror’s diameter of 42 m. The main 
challenge is to correctly detect the positioning errors of the seg-
ments via specific phasing sensors in order to create a continuous 
mirror surface.

APE was developed to evaluate those sensors, and was installed 
on one of the 8 m telescopes that constitutes part of the Very 
Large Telescope in Chile (VLT) for sky tests. APE can be seen as 
the black box in figure 1. For the installation it had to comply with 
various mechanical, electrical, optical, and software interfaces. 
APE consists of about two hundred sensors and actuators such as 
wheels, translation stages, lenses, detectors, mirrors, light sources, 
an interferometer, and twelve computing nodes for control. Since 
APE had to be deployed in the test lab and in an already existing 
telescope, for each context it was necessary to model variants of 
function, interfaces, and structure. All of these characteristics 
made APE well suited to evaluate the potential of SysML in tackling 
similar issues.

MBSE Challenge Goals
SysML is only a graphical language and defines a set of dia-

grammatics, modeling elements, a formal syntax, and semantics. 
Like any language (formal or informal), it can be used in many 
different ways, including many wrong ways. Most notably, it is pos-
sible by misusing the language to create incorrect models. The main 
goals of the SE^2 MBSE Challenge Team are to

create modeling guidelines and conventions for all system •	
aspects, hierarchy levels, and views;
provide examples in SysML, solving common modeling prob-•	
lems;
build a comprehensive model, which serves as the basis for •	
providing different views to different engineering aspects and 
subsequent activities; and to
demonstrate that SysML is an effective means to support •	
systems engineering.

Figure 1. Active Phasing Experiment at the Very Large Telescope

http://www.gfse.de/
http://www.gfse.de/
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The SE^2 team has provided their guidelines for modeling on the “frequently 
asked questions” page of their Web site (http://mbse.gfse.de/documents/faq.html). A 
SysML model, as described in the next section, illustrates the results of their com-
prehensive modeling. The SysML model is not merely a mental abstraction, but a 
collection of complex data structures that can be edited, augmented, queried, and 
reported on by means of a suitable tool, which is an indispensible pillar for MBSE.

Model Structure and Overview
Modeling is all about abstraction (reducing the complexity of a system), improv-

ing communication and understanding of the system, and providing reusable 
system elements. However, capturing a lot of different aspects like requirements, 
structure, interfaces, behavior, and verification in a model of a complex system like 
APE leads to a large model. Therefore, the first challenge is to find a clear, intui-
tive structure for the model, since a well-structured model is crucial for controlling 
complexity.

In the APE model we applied two techniques to establish a good and easily 
understandable structure: recursive structure patterns and views. In SysML, pack-
ages are the structuring mechanism to group model elements, which were used by 
the authors for both techniques. Packages are a mechanism to group model ele-
ments in higher-level units, similar to the way folders organize files in a computer’s 
file system.

APE Model Structure Pattern
The APE model uses a recursive structure pattern to model different system 

aspects on every level of decomposition of the APE. On each level we have pack-
ages for these aspects:

Objectives and requirements•	
Context•	
System structure•	
Behavior•	
Data•	
Performance•	
Verification•	
Auxiliary packages: comments, problems, issues•	

Overview Diagrams
To improve the understandability of the APE model, we provide content diagrams, 

which describe the system by showing all the different aspects captured by the 
model. The top-level overview diagram is a “project content” diagram (figure 2) and 
serves as an entry point and an anchor for navigation through the complex model.

The System Structure 
View (“APE_Structure” in 
figure 2) is used to decompose 
the system and provide the 
recursive modeling pattern 
within the subsystem 
package; for example, the 
“APE_Structure” sub-package 
“InternalMetrology” contains 
the same view packages, the 
“InternalMetrology” sub-
package “PhaseModulator” 
(figure 3) contains again 
the same view packages, 
and so on. For every system 
decomposition element (like 
the nested structure view for the “InternalMetrology” in figure 3), a package exists 
together with an overview diagram that shows the aspect packages of the respective 
element. The arrows between the packages show their dependencies. This recursive 
model structure provides an intuitive look-and-feel navigation capability within the 
APE model.

Aspects
Packages are used to separate 

specific aspects of the system at 
each decomposition level. Each 
package provides one or more 
aspects on APE for a specific 
perspective, such as context, 
structure, data, and so on. 
Each of these aspects should 
be documented so the model 
makes clear which attributes or 
characteristics are observed within 
the aspect.

Objectives and Requirements
The next sections describe the APE modeling approach for each of the view-

points mentioned above. APE, like any complex system, has a large number of 
functional, performance, physical, and interface requirements that have to be 

Figure 2. APE project-content diagram
	
  

Figure 3. Subsystem content diagram
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satisfied. This 
implies the 
need for formal 
requirements 
management 
during the proj-
ect. APE has 
about 50 high-
level system 
requirements. 
The control 
system has 
also about 50 
requirements, refined by 150 use cases. We used the SysML requirements diagrams 
to show the main objectives of APE (figure 4). The limitations of standard text-based 
requirements-management tools were overcome by visualizing key requirements and 
their impact on system design and verification in an intuitive way.

The following 
user defined types 
extend the SysML 
requirements 
modeling features 
to organize and 
trace objectives, 
business and system 
requirements of 
APE. Figure 5 shows 
the dependencies 
of the requirements 
and automatically 
created traceability 
matrices. In the figure, objectives are project-specific stereotypes of a class 
to capture the objectives for the projects (see figure 4); business requirements 
are project-specific stereotypes of a SysML requirement to capture the high-
level requirements for the projects; and for the system requirements, SysML 
requirements are used to capture the detailed requirements for the projects.

Context
The system’s context defines the system’s boundaries and is modeled using 

SysML internal block diagrams. A SysML internal block diagram (IBD) shows a 

block, its parts, and its interfaces. For the system context our main focus is on 
system interfaces.

SysML uses ports to model the interfaces of a block. SysML provides a standard 
port for service-like interfaces and flow ports for physical interfaces. However, 
there are different possibilities to use these ports for capturing system interfaces 
(see figure 6):

Standard ports to model abstract interfaces as representation of an interface •	
control document (ICD) as shown for port “scp”
Flow ports for a combination of mechanical and flow interface at block level •	
(model physical and logical properties at the border of a block, hiding its inter-
nals), as shown for port “15-N-A”
Model mechanical and flow interface directly at the specific part level, as •	
shown for “coolantReturn” and “coolantSupply,” crossing the border of the 
outer part
Model mechanical and flow interface at block and part level, as shown for port •	
“15-N-C”

Figure 5. Traceability among different types of requirements 	
  

Figure 6. Internal block diagram of electrical context 	
  

Figure 4. APE objectives diagram

req [Package] APE_Project_Objectives [ Objectives1 ]
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To ensure consistency between the interface control document and the model, 
the latter serves as the basis for the former. Figure 6 shows the context of the tele-
scope from an electrical viewpoint (ports on control system side are not modeled).

System Structure
The system structure may be the most self-evident aspect to model. We have 

used SysML block definition diagrams (BDDs) to model the product tree and inter-
nal block diagrams to model the structure and interfaces of APE and its subsystem. 
The APE hierarchical breakdown is based on the product tree. It has several levels, 
going from the highest level into more and more details, using decomposition of its 
elements.

On the other hand, a complex system has much more than just one internal 
structure. There are multiple views showing electrical, optical, and mechanical 
elements that are interconnected, and therefore multiple structures exist. The same 

components can be connected in different views in different ways. We have used 
IBDs to show the electrical, optical, and mechanical layout of APE and its compo-
nents at different levels. Figure 7 shows the optical layout in an abstract manner. 
The connectors are stereotyped as optical, but they are elided for readability.

Figure 8. Activity diagram for APE wave-front control

Figure 7. IBD of the APE optical layout
	
  

	
  



Special Feature

December 2009 | Volume 12 Issue 428

Behavior
A complex system is much more than just the collection of its elements and their 

structural architecture, because its behavior derives from the collaboration of its 
parts. Therefore it is essential to capture the behavior of the system to be able to 
understand it. We have used activities to model the behavior of APE and its sub-
systems. SysML activity diagrams can be used to show the actions taken by the 
system and its data and control flow. Figure 8 shows the wave-front control of APE. 
It shows at the same time the physical effects of the system (like distortion of the 
wave front), as well as sensing, actuating actions, and control flows.

Data
Another aspect is the 

information or data handled 
by the system. SysML 
provides block definition 
diagrams for the definition of 
data, and it provides internal 
block diagrams, activities, 
and sequence diagrams for 
data usage and flow. APE 
uses SysML “dataTypes” 
to define the data of APE 
and its subsystems. Figure 
9 shows the composition 
structure of a measurement and its relation to movements of the segmented mirror 
(“AsmMovement”). Those data types are used to define ports in IBDs and objects in 
activity diagrams.

Verification
For every large system, verification is an essential part of the system accep-

tance in order to prove that the system meets its requirements. SysML supports the 
modeling of test cases with a specific model element, “testCase.” The “testCase” 
element can be used at different levels for component integration, software inte-
gration, and system integration. Furthermore, APE has two different test contexts: 
verification in the lab and in the sky.

Model Library and Systems-Engineering Profile
Besides the modeling of the different aspects, the APE modeling project pro-

vides a model library and an SE^2 profile. Data types and model elements that are 
frequently used are modeled in a model library to increase reuse. Abstract types are 

used as place holder 
for specific build-
ing blocks. They are 
classified in differ-
ent catalogue pack-
ages (figure 10).

Catalogues can 
be easily extended 
by using inheri-
tance. Furthermore, 
the preliminary 
design of a system 
can initially work 
with an abstract 
type (when the 
detailed require-
ments are yet 
unknown) and 
decide later which specific type to use for the implementation. A generic connector 
gets a different context-specific pin assignment by inheritance. For each specific 
assignment a separate specialization is needed. The SE^2 profile provides the 
project-specific extensions to SysML: stereotypes like “objective,” constraints in 
element usage, enumerations, and so on.

Modeling Challenges
SysML is a new language. This creates two inherent challenges: Is SysML suf-

ficiently mature for real projects, and is it accepted by a wide range of systems 
engineers? Especially the fact that SysML is based on UML sheds a special light on 
these challenges. Could a modeling language that was initially defined for software 
development be used to model systems, and will systems engineers accept a lan-
guage with origins in the software discipline? An overall result of our project is that 
this question can be answered yes.

The APE project is a very good challenge for SysML. It is complex and interdisci-
plinary without a special focus on software; it is a real system and not the simpli-
fied coffee machine so often used as demonstration project. Although we found 
that SysML is practicable to model complex systems, we have made a list of the 
language’s shortcomings. The most significant ones are these:

Variant modeling•	
Connection of nested blocks•	
Grouping of interfaces with nested ports•	

Figure 10. APE abstract types 	
  

Figure 9. Block definition diagram of APE wave-front data
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Logical vs. physical decomposition•	
Functional multilayer abstraction•	
Reuse of blocks, allocation, and instances•	
Structural multilayer allocation•	
Defining quality of service•	
Transition to UML for software•	
Configuration and quality control•	
Navigability•	

There are four aspects related to these:
Notation: It is a real challenge for a modeling language to provide an interdis-
ciplinary notation for complex systems. It must be easy to understand and be 
capable of modeling details unambiguously.
Model: Behind the notation is the real model, i.e., the data structure and 
semantics of the information.
Tool: The implementation of the SysML specification is a challenge for tool 
vendors.
Methodology: SysML is a language without any methodology. You need a 
methodology or at least some best practices for good modeling.
In the following sections, we discuss one issue related to each of these aspects.

Notation: Connection of nested 
blocks

Figure 11 shows the connec-
tion of control-system elements 
with telescope elements: for 
example, the sensor cabinet 
(“sensCabinet”) is connected 
with the “coolantReturn” and “coolantSupply.” The solid line is a nested connector. 
It crosses the boundaries of the encapsulated system blocks.

If the modeler would like to hide the internal structure of the telescope in figure 
11, the nested connector would also be hidden. Typically we still want to see that 
there is some kind of relation-
ship between the telescope and 
APE. SysML doesn’t provide 
a presentation option to show 
the link in this case.

As a workaround we pro
pose a standard port with 
stereotype junction that divides 

the nested connector at each relevant boundary crossing in separate connectors. 
Figure 12 shows that the junction port resolves the issue (see also figure 6). We pro-
pose that SysML support the concept of junction ports, which would enable tools 
to offer convenience functions for nested connector modeling (we have issued this 
proposal to the SysML Revision Task Force).

Model
SysML supports two kinds of ports, that is, interaction points between a sys-

tem block and its environment. The standard port provides or requests services, 
whereas the flow port specifies the flow of items inside or outside the system 
block. SysML has no explicit support of more complex ports that combine single, 
reusable ports. We propose nested ports for SysML. They allow a decomposing 
structure, the potential for reusability and individual delegation of item flows that 
go through this port (see figure 6). Nested ports conform to the abstract syntax 
of SysML. Therefore some tool vendors already provide this important modeling 
feature. SysML doesn’t say anything about the semantics of nested ports. Because 
we issued this proposal to the SysML Revision Task Force, a forthcoming SysML 
version will include a special kind of this concept called nested flow ports.

Tool
SysML has some modeling areas where creating and editing model information in 

a diagram is cumbersome. For example for requirements, which are often entered in 
bulk, it is easier to use a table than a diagram to enter or modify the data. The same is 
true for relationship modeling like the allocation of behavioral elements to structural 
system elements. It is easier to assign the relationships in a matrix than in a diagram 
with lots of arrows. SysML already defines table and matrix formats. Most tools 
provide them as limited read-only views on the model. What we need are table and 
matrix views with the ability to create and modify model elements.

Methodology
SysML is a pure language and doesn’t prescribe any methodology. For example, 

SysML allows one to model the “allocate” relationship between nearly any model 
elements. But where is this feature useful in a specific project? How can the 
relationship be determined from the model? What are the consequences of having 
an “allocate” relationship between two elements? You don’t find answers to these 
questions in the SysML specification. While there are some books that describe 
methodologies for modeling systems with SysML (Friedenthal 2008; Weilkiens 
2008), our MBSE Challenge Team has found some best practices and modeling 
guidelines to complement them. Last but not least, each project needs its own 
specific set of methods.

Figure 11. Nested connectors

ibd [System Context] ObservatoryContext [ TelescopeContext_Electrical_MBSEInsightPaper]

«system»
ape : APE

«external»
ut3 : UnitTelescope

out : Coolant

in : Coolant

«block»
15-N-B : SCP Part B

«block»
coolantSupply : SCPSelfSealingFluidMale

«block»
coolantReturn : SCPSelfsealingFluidFemale

«block»
apecs : ControlSystem

«block»
«electronics»

sens : sensCabinet

Figure 12. Junction ports for nested connector

ibd [System Context] ObservatoryContext [ TelescopeContext_Electrical_MBSEInsightPaper]

«system»
ape : APE

«external»
ut3 : UnitTelescope

«junction»
out : Coolant

«block»
apecs : ControlSystem

«block»
«electronics»

sens : sensCabinet
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Configuration and Quality Control
As soon as a common project model is created and more than one person uses it, 

configuration control becomes a fundamental requirement. In particular, consis-
tent linking among model elements must be ensured. Individual changes must be 
traceable as well as creating visual differences to follow in detail what has changed 
where. Due to the extensive linking, side effects (introduced by changes) can go 
unnoticed and corrupt the model. This can only be mitigated by establishing rigor-
ous configuration-management practices and using tools that allow rollbacks.

Experiences from a New Project — E-ELT Telescope Control System
The European Extremely Large Telescope is a telescope with a primary mirror 

of 42 m in diameter, composed of 984 hexagonal segments, and four other mirrors 
with diameters ranging from 2.5 m to 6 m. Figure 13 shows the E-ELT in comparison 
with the Very Large Telescope and the Roman Coliseum, which might be an indica-
tor for its complexity.

standards to be used for the field electronics, software, and hardware.
The common project model, where all TCS-relevant components of the 

observatory are logically represented, enables the development team to
share a common, consistent •	
view of the system, like the 
context in figure 14;
structure requirements, in •	
combination with a require-
ments management tool;
describe the complex •	
behavior of the system;
define the architecture and •	
detailed design;
standardize meta-archi-•	
tecture across the various 
subsystems;
allocate function to •	
structure and allow full 
traceability; and
analyze different design •	
variants.

TCS architecture is highly data-oriented, making it well suited for representa-
tion with SysML constructs like activities and pins, blocks and ports, and state 
machines. The design of the TCS covers different views as control, electrical, and 
even mechanical because components have to be mechanically mounted.

Diagrams are extracted from the model to create paper-based documentation, 
as required by the project. The reporting and plug-in facilities of the modeling 
tool allow the engineer to automatically create the recursive structure as defined 
by the guidelines, and to make cost estimates using a predefined parts catalogue 
and estimates of the required communication infrastructure to accommodate the 
necessary throughput.

The successful application of MBSE to a project of this scale was only made 
possible by the existence of the guidelines produced by the SE^2 Challenge Team. 
We consider those guidelines, together with their accompanying examples, 
a precondition to allow one to focus on the content, rather than on hands-on 
technicalities.

Conclusions
The SE^2 Challenge team used an existing, complex system to create a 

The telescope consists roughly of 10,000 tons of steel and glass in a structure 
the size of a big football stadium; it needs 20,000 actuators, some of which have to 
be controlled to location accuracies within a nanometer and to angular accuracies 
within 0.02 degrees. It requires high-performance computation up to 700 Gflop/s, 
and data transfers rates of up to 17 Gbyte/s. The control system has to deal with 
about 60,000 I/O points, 15 subsystems (one particular subsystem requires the 
coordination of 15,000 actuators alone), and interacting, distributed control loops 
with sampling rates ranging from 0.01 Hz to several kHz.

The telescope control system (TCS) includes all the hardware, software, and 
communication infrastructure required to control the telescope and the dome. 
Many subsystems will be contracted and have to be properly integrated. Therefore, 
the TCS defines for the subsystems the interfaces and requirements as well as 

Figure 13. Size comparison of the European Extremely Large Telescope (left), the Very Large Telescope 
(center) and the Roman Coliseum (right). (Image created by ESO; reprinted by permission.)

	
  

	
  	
  

Figure 14. TCS context diagram 	
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comprehensive SysML model and solve common daily modeling problems. The 
engineering team of the E-ELT TCS is able to successfully apply the established 
guidelines, model structures, and modeling procedures to a new large-scale system 
in the optical telescope domain. The results demonstrate that SysML is an effective 
tool to document the complexity of requirements, interfaces, behavior, and 
structure, and is instrumental to enhance the traceability between requirements, 
design, and verification and validation.

A formal language and an adequately strict tool enforce structured thinking 
and a detailed description of the problem at hand. This increases the consistency 
and reveals undefined or unclear parts of the problem. Some limits of SysML were 
reached, because it does not offer out-of-the-box concepts for optical or electri-
cal engineering. However, this can be overcome by extending the language using 
domain-specific profiles.

The most important value in a systems-engineering project is to have a common 
understanding among all stakeholders; therefore, fancy SysML constructs should 
be avoided when starting up. Even if SysML is a very good tool for communication 
and improving understanding, not all aspects of systems engineering can be fully 
covered by modeling with SysML, and systems engineers will still need the expres-
siveness and level of detail of traditional engineering activities like numerical 

analysis, simulation and prototyping to handle non-functional aspects like safety, 
security, reliability, usability, and logistics. 
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22 - 26 March, 2010

17 - 21 May, 2010

24 - 28 May, 2010

9 - 13 August, 2010

Course Fee*

USD 3,990

AUD 3,500

AUD 3,845

AUD 3,845

Requirements problems are at the top of the list of why projects go wrong. The 
3-day Requirements Analysis module takes participants step-by-step in workshop 
format through a practical requirements analysis, to achieve an objectively 
adequate standard of requirements. In Specification Writing (2-days), you will learn 
how to structure a requirements specification, and how to best express require-
ments and other text in English. Real-world examples generate group discussion 
to assist in understanding.

Who Should Attend?

• Acquirer Personnel
• Supplier Personnel
• Developer Personnel

and anyone  else who, in any 
capacity, deals with requirements

SRS (if any)

Other Info

Ref.Ref.

3

SRS-refined

VRS

OCD

VM
Analytical work products

SRS:   system or software requirements speci�cation
VRS:   veri�cation requirements speci�cation
OCD:  operational concept description
VM:    value (or system/software) e�ectiveness model

Code
P007-259
P007-260
P007-261
P007-262
P007-263
P007-264
P007-265
P007-266

Location
Amsterdam, The Netherlands
Las Vegas, USA
Melbourne, Australia
Las Vegas, USA
Amsterdam, The Netherlands
Cape Town, South Africa
Adelaide, Australia
Melbourne, Australia

Dates
18 - 22 January, 2010
22 - 26 February, 2010
19 - 23 April, 2010
30 Aug - 3 Sep, 2010
6 - 10 September, 2010
27 Sep - 1 Oct, 2010
11 - 15 October, 2010
22 - 26 November, 2010

Course Fee*
EUR 2,075
USD 2,890
AUD 2,960
AUD 2,960
EUR 2,075
AUD 2,700
AUD 2,960
AUD 2,960
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Model-based Systems Praxis for 
Intelligent Enterprises Jack Ring, jack.ring@incose.org

Results
Several results have been produced to date:
Recommended edits to the INCOSE SE Vision 2020 report.•	
Presented a paper at the Conference on Systems Engineering Research •	
2007.
At IS07, which was themed “Intelligent Enterprises,” we presented tenets •	
and concepts regarding both the essence of intelligent enterprises as 
systems and of the model-based praxis of systems, notably, identifying, 
designing/architecting, engineering/constructing, adopting/adapting/
assaying, and learning.
Also at IS07, participated in a plenary panel that addressed the question, •	
“Are New Systems-Engineering Principles Required to Treat Enterprises as 
Systems?
Also at IS07, we conducted a panel discussion in quest of a strategy for •	
evolving a whole-systems-modeling capability. This capability was envi-
sioned as 100,000 practitioners by 2015 performing at 10 times better 
productivity and innovation than the 2007 norm.
Findings from this expedition were presented at the IEEE Systems •	
Conference, January 2009, with a recommendation that the expedition be 
repeated according to the Interactive Management method with profession-
al facilitation involving ten to fifteen exemplars of the praxis of systems.
Conducted a tutorial in the model-based systems engineering of intelligent •	
enterprises at the International Conference on (Inter-) Enterprise Systems 
Theory and Theory in Action, 2007.
Presented a progress briefing at IW08.•	
Presented eight papers at the Conference on Systems Engineering Research •	
2008 (six by John Clymer’s graduate students).
Worked with Ralph Hodgson to introduce development of formal ontologies •	
into MBSE deliberations. Started SysMO Forum at sysmoforum@googlegroups.

com.
Presented a progress report at IS08 regarding both the capabilities mod-•	
eling approach (Clymer) and the knowledge-management approach 
(Lillehagen).
Presented a progress briefing at IW09 (thanks to Jose Garcia, Jr.).•	
Produced three straightforward test cases that are representative of man-•	
agement choices in an intelligent enterprise. These can help determine 
whether any proposed modeling language or tool is adequate.
Produced a companion paper, “Executable and Integrative Whole-System •	
Modeling via the Application of OpEMCSS and Holons for Model-based 
Systems Engineering,” by Jose Garcia, Jr., in this issue of INSIGHT.

Motivations
t the 2007 International Workshop Sandy Friedenthal asked the Fellows 
Committee to participate in the Model-based Systems Engineering 
Grand Challenge. I volunteered to demonstrate MBSE of intelligent 

enterprises. Fellow John Clymer, professor of engineering at California State 
University, Fullerton, immediately joined the project, as did one of his grad 
students, Jose Garcia, Jr., a Boeing employee. Frank Lillehagen of Commitment 
AS, Norway, agreed to share ideas and findings from his work with clients on 
the knowledge-management aspect of an intelligent enterprise.

Expeditions
Our work is informed by the research and operating experiences of sev-

eral participants who joined this project along the way, and by notables such 
as INCOSE Fellow A. Wayne Wymore (Model-based Systems Engineering, 
Boca Raton, FL: CRC Press, 1993), INCOSE Pioneer, John N. Warfield (Under-
standing Complexity: Thought and Behavior, AJAR, 2002), Thomas Gilbert’s 
advice (Human Competence: Engineering Worthy Performance, Amherst, MA: 
HRD Press, 1996), and the 94 contributors to the INCOSE Intelligent Enter-
prises Working Group report, “About Intelligent Enterprises: A Collection of 
Knowledge Claims” (March 2007, INCOSE-TD-2007-001-01).1

We decided to work from the specific to the general, starting with actual 
cases and evolving to general principles. Although SysML and AP233 were 
prominent in the MBSE initiative, we preferred to explore and understand 
the challenges inherent in modeling intelligent enterprises before bothering 
with the ways and means of doing so. We established three objectives: (1) to 
clarify the factors to be addressed in producing descriptive and prescriptive 
models of an intelligent enterprise, (2) to experiment with methods and tools 
for producing such models, and (3) to determine the effectiveness of candi-
date methods and tools by observing how well they have served those who 
engage in the real-world staffing and operation of intelligent enterprises.

We have explored intelligent enterprises in various business, education, 
and military domains. Our more intriguing focus is on the kind of intelligent 
enterprise that accomplishes systems engineering, probably the most 
complicated and ambiguous kind of enterprise.

1. Available at http://www.incose.org/practice/techactivities/wg/intelent/docs/
IEWGKnowledgeClaimsCollectionReport2007-0315.pdf.

A
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All of these results reveal that there is much more to be done because the current 
standards, exhibits, guides, and handbooks for systems engineering do not explicitly 
provide for the model-based systems engineering of intelligent enterprises, particu-
larly those enterprises that are intended to accomplish systems engineering.

Intelligent System/Enterprise Tenets
The following are a number of key current tenets regarding intelligent enter-

prises as systems:
An enterprise facilitates commerce between a marketplace and supplierplace.•	
An enterprise consists of two or more people taking action with limited resourc-•	
es toward mutual purpose.
Intelligent means that the purpose is mutual not only to the people taking •	
action but also to the stakeholders and to the principles of systems and society, 
all while thriving throughout unpredictable change.
An enterprise must add sufficient value to marketplace–supplierplace com-•	
merce to sustain market standing, productivity, innovation, and liquidity.
An enterprise is not just an information-technology system or an enterprise-•	
architecture framework. An enterprise breaths, perspires, and celebrates. 
Action consists of orchestrating “frontal lobes” and suppressing errors.
An enterprise is bounded only by the set of requests to which it responds, vol-•	
untarily or not.
An enterprise is intelligent when it can determine the gap between its situation •	
and its goal and formulate action that reduces the gap. “Intelligent” is a mode 
of behavior, not a measure of performance.
An enterprise can be thought of as a system having context (stakeholders and •	
requests), content (operators and operands), structure (relationships among 
the operators and operands and among the relationships), and behavior (the 
stimulus-response characteristic exhibited by the system).
Enterprises differ in key dimensions of extent, variety, and ambiguity.•	
Intelligent enterprises are implicit systems in which, in the limit, every action •	
changes: (a) the gradient of a relationship (adjusts), (b) the pattern of relation-
ships among existing content (adapts), and (c) even the content of the system 
(co-aligns).

MBSE Praxis
The praxis of intelligent enterprises should be informed by these key current 

tenets:
MBSE contributes to a project in three ways: (1) establishing a common lan-•	
guage throughout the project, e.g., producing an ontology; (2) modeling the 
intended system, and (3) converging creativity to closure.

Modeling an intelligent enterprise or system entails building a descriptive •	
model of the problematic situation (such as Boardman’s Systemigrams or sys-
tems dynamics modeling) and a prescriptive model of the intervention system 
(such as SysML, OpEMCSS, or WattSystems).
Both models must represent: (a) the truth, the whole truth, and nothing but the •	
truth; and (b) the minimal implicate order (necessary and sufficient information 
for those who will develop and test the system). Minimal implicate order typi-
cally includes explication of input/output, performance, cost, technology, test, 
and tradeoff. Technology considerations include thermodynamics, informatics, 
biomatics, teleonomics, human social dynamics, economics, and ecologics.
The order of design decision and priorities for tradeoff are (a) design for enthu-•	
siasm, (b) design for learning, (c) design for culture, as in axiology, including a 
quality ethic, integrity, and an articulation of a standard of care regarding all 
stakeholders.
Because any model of an intended system is a theory, the model must (a) reflect •	
uncertainties (no deterministic models), (b) provide an estimate of uncertainty 
in its output, and (c) be accompanied by the modeler’s recommendations on 
ways of determining the limits of applicability of the model.
MBSE of an intelligent enterprise must be accomplished at the rate of change of •	
the problematic situation, the resource limitations, and the knowledge growth 
or refinement achieved. An enterprise is in continual flux. No activity, process, 
or task is ever repeated exactly. An enterprise model that represents less than 
the requisite implicate order or is not maintained at the requisite pace will be 
inadequate, or worse, misleading. The enterprise that learns fastest wins, but 
only if invention fosters innovation.
A system that is capable of adjusting, adapting and co-aligning must contain a •	
model of itself such that the model can be used to examine alternative change 
scenarios before commitment. This indicates a highly cellular system with a 
robust means of orchestrating cell participation based on the request, response, 
and reward scenarios to be honored.
The appropriate language and modeling tool must accommodate implicit •	
(context-sensitive), and continually learning (knowledge-adapted) constructs 
that accurately reflect the characteristics and properties of the underlying 
technologies.

Invitation
Anyone interested in participating in current plans or in conducting a diverse 

expedition is encouraged to contact the author. We are especially interested in 
anyone willing and able to tackle the three test cases using SysML. 
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The benefit of formal 

modeling is that we 

can finally stop being 

ambiguous and say 

exactly what we mean.

— Robert Rasmussen, PhD, 

Chief Engineer, Systems 

and Software Division, Jet 

Propulsion Laboratory

The INCOSE Space Systems Working Group (SSWG) Challenge 
Team was formed to address the challenge of applying mod-
el-based systems engineering to a real-world space system. In 

our first year of work the team explored the use of MBSE for space 
systems (Delp et al. 2008) using the FireSat example from Space 
Mission Analysis and Design, edited by Wiley J. Larson and James 
R. Wertz (1999). In the second year we are building on the exist-
ing FireSat model to explore how reusable and descriptive model 
libraries can describe and manage information for trade studies as 
well as expanding the examples of modeling space systems.

Challenge Team Objective and Approach
An objective of the INCOSE MBSE Challenge is to demonstrate 

the applicability of MBSE to a realistic, sharable problem space. 
The SSWG has chosen a fictitious space mission. Over the last 
two years, the team has developed a model of FireSat using the 
Systems Modeling Language by treating Larson and Wertz’s Space 
Mission Analysis and Design (SMAD) as a traditional document-
based design, and mapping textual artifacts to visual model-based 
constructs. Development of the SysML model follows INCOSE’s 
object-oriented systems-engineering method (OOSEM), outlined 
by Friedenthal, Moore, and Steiner (2008), and the JPL-developed 
State Analysis methodology (see http://mds.jpl.nasa.gov). The team 
has also developed a library of reusable space-system model 
constructs within the FireSat model itself. The members of the 
SSWG challenge team represent NASA’s Jet Propulsion Laboratory, 
Goddard Spaceflight Center and Glenn Research Center, the Japanese 
Aerospace Exploration Agency, the European Space Agency, the 
Canadian Space Agency, the Boeing Company, the Lockheed Martin 
Corporation, and student teams at the Massachusetts Institute of 
Technology and the Georgia Institute of Technology.

FireSat is a conceptual mission used by Larson and Wertz to 
provide a unified context for the practical examples in their text-
book. The FireSat mission calls for a space-based system to detect, 
analyze, and monitor forest fires, with data ultimately provided 

to the U.S. Forest Service. Larson and Wertz then use the FireSat 
context to document examples of mission analysis and design, from 
mission characterization and requirements definition to specific 
space and ground subsystems. The advantage of using the FireSat 
example for the Space System Working Group’s MBSE Challenge 
is that it is a non-proprietary example, and it offers complex and 
challenging problems. Though SMAD does not contain a complete 
documented system design, the text provides sufficient descrip-
tions and artifacts to create model-based analogs corresponding to 
artifacts widespread in the space and aerospace industry.

The goal of this effort is not to demonstrate another way to simu-
late or numerically analyze a complex problem, but rather how a 
descriptive model can serve to unite design and analysis artifacts in 
a manner that is not possible with modern document-based office-
automation software. This integrated model overcomes issues with 
scalability, consistency, and completeness; it also removes the mun-
dane bureaucratic chore of churning out document updates, leaving 
the systems engineer with more time to engineer the system.

Design Representation: Integrated Models vs. Documents
Space-industry practitioners consider SMAD a foundation for 

standard practices. It contains the essence of how systems engineer-
ing is applied to space systems in current practice. Most of the FireSat 
examples are analytical design trades using models of the mission, 
system, and subsystems for the FireSat spacecraft. Although the 
scale and detail of information represented by the FireSat example 
are much smaller, FireSat is appropriate to represent the systems-
engineering documents and artifacts used in flight-project architec-
tures and designs for the purposes of this exercise.

The examples the SSWG team used from SMAD reflect infor-
mation found in the corresponding documents typically used in 
industry to describe space systems. Although the examples do not 
represent complete documents, the information they contain is a 
reasonable representation. The SSWG team described the FireSat 
mission using SysML and stored it in a database. This procedure 
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results in graphical representations replacing traditional documents. These representa-
tions still contain the same textual narrative from the document. Capturing the descrip-
tion in this way conveys the information that would have been referenced or repeated 
in the document through a single reusable location. Additionally, the description is 
now formal enough that it can be integrated with computer simulations, computer-
aided design, and other quantitative design tools. The model captures design and trade 
exercises, which are automatically propagated to the systems specification, including 
requirements and other elements.

Models treat system and contextual elements and components as first-class citizens 
of the design. Each component of the system, the system itself, and each system that the 
system interacts with is explicitly defined in the model and contains all the information 
relevant to its description. As such the components can easily be counted and analyzed 
for complexity.

Although many documents are produced from templates, modeling facilitates a broader 
architecture for reusability. The Space Systems Library is a collection of descriptive model 
assemblies that encompass analyses, parts, and functions commonly used in the design of 
space systems. Space missions reuse concepts, methods, requirements, and hardware from 
prior missions in order to save time and money. A model library can capture this effectively, 
negating the need to duplicate and tailor previous mission artifacts. Using the analyses 
in the FireSat example, the Challenge Team constructed a library of reusable parametric 
models that represented physical laws such as those related to orbital mechanics, heat 
transfer, and structural analysis. These concepts attempt to capture parts of design that 
are flexible enough for reuse. This allows for rapid prototyping and design, since these 
concepts need only be parameterized for the specific mission that is applying the library.

Mission Design and Specification
The FireSat example outlines a fairly simple mission to provide a system of satellites 

for detecting, identifying, and monitoring forest fires. Expanding on the previous use-

System Documents FireSAT Example

Concept of operations Mission objective, system requirements, orbit selection

Requirements (SRDs, FRDs etc.) System requirements

Interfaces (ICDs, etc.) Data-flow diagram, system requirements

Functional designs Power functional decomposition

Architecture description Mission objective

Analysis-specific engineering reports (trades, reliability, etc.) Solar array selection, orbit selection

End-to-end information systems specification Data-flow diagram

Table 1. Systems engineering documents and Firesat examples

Note: Common systems-engineering documents are matched with parts of the Firesat example to 
establish the comparisons that will be made using models. Abbreviations: SRD, System Requirements 
Document; FRD, Functional Requirements Document; ICD, Interface Control Document

case analysis and requirements (see Delp et al. 2008), the model now incorpo-
rates the requirements as measures of effectiveness (MOEs) and measures of 
performance (MOPs).

The SysML model captures context specifications such as the operational 
environment, the science target, and the enterprise that will carry out the 
mission objectives. As shown in figure 1, the mission’s flight systems and 

	
  
Figure 1. Mission internal block diagram

ground systems are depicted in a collective context. Ports describe the entire 
end-to-end set of interfaces: from fire and instrument to data downlink to 
forest-service notification. Since the model is formally described, it can also be 
automatically checked to ensure that the connections between these elements 
are correct and consistent. SysML notation makes this simple — no exotic soft-
ware is needed to parse natural language.

This SysML internal block diagram depicts a high-level interface schematic 
for the whole FireSat domain. The earth and its various properties relevant to 
forest fire detection are related to the FireSat Mission and its components and 
enterprises. This mission-level view captures our desired FireSat system as a 
black box exposing only interfaces in the context of the operational mission. 
Every physical body, system, and enterprise that FireSat will interact with is 
captured in the model. Context sets the stage for behavior and metrics. A sig-
nificant MOE for the mission is responsiveness: how quickly an existing fire is 
detected, identified, and reported to the forest service. Modeling these parame-
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ters as parametrics in SysML 
(instead of “shall” or “must” 
statements) now facilitates 
the flexibility to analyze the 
mission to determine if the 
given requirements can be 
accomplished. Conversely, 
we can use parametric 
models to define more-
demanding requirements for 
frequency of coverage and 
less-demanding require-
ments for responsiveness 
(latency) based upon the 
assumptions and constraints used for writing conventional requirements. The model 
allows us to perform these trades at any level of the system, from the product level to 
the subsystem level, to the level of individual pieces of hardware. At any of these lev-
els the MOEs will report the effects of our trades on requirements. These expressions 
can now be tied to the orbit design.

Figure 2 shows the end-to-end response time depicted as a sum of all the mean 
times between the detection of a fire on the ground and the time the forest service 
receives the alert. This gives a clear quantitative understanding of how the FireSat 
constellation of satellites should perform with the other elements of the system.

Mission Orbit and Trajectory Design
Observation strategy affects the responsiveness MOE through the ground cover-

age MOP. The ability to detect fires quickly depends on ground-coverage rate, which 
in turn depends on number of satellites, their altitudes and orbits, and the payload 
used to collect data. Physics models of orbits are the foundation upon which differ-
ent physical architectures can be compared against the MOEs. These MOEs encom-
pass power, mass, and thermal concerns, such as the health and safety of the 
spacecraft, and the performance of the payload. To provide this foundation, exam-
ple orbit and trajectory designs are currently being incorporated into the FireSat 
model, including satellite orbit parameters and equations of motion. Earth geom-
etry as viewed from the spacecraft is also modeled for mission analysis. Coordinate 
systems are considered in order to appropriately describe the frame of reference in 
which analysis is performed. Model elements are associated with a reference frame, 
and transformations between reference frames (i.e., rotations and translations) are 
related using constraint block relationships. In figure 3, orbit analysis is described 
in an earth-centered inertial reference frame, while earth geometry viewed from 

	
  Figure 2. Responsiveness Measure Of Effectiveness. This SysML 
parametric diagram depicts how the MOE of maximum response 
time can be used to constrain the figure that sums the times from 
the different parts of the system’s behavior. Such a requirement is 
key to various trades in FireSat.

space is in a spacecraft-
centered “RPY” (roll, pitch, 
yaw) frame. The properties 
of the coordinate systems 
are related to the appropri-
ate model elements, as 
depicted in figure 3.

Since the entire mis-
sion must achieve a certain 
responsiveness, this 
translates to a requirement 
on FireSat depicted here 
as daily coverage quan-
tity. The orbit design will 
directly affect how respon-
sive FireSat is based on the 
rate of ground coverage.

These models are part 
of the Space Systems 
Library now and are 
usable for any mission. 
Future versions of the FireSat model will benefit from this foundation as a reusable 
method for characterizing the design space and trading different physical archi-
tectures. From this exercise it is easy to envision a complete model of solar-system 
physics, astrodynamics, and even kinematics.

The FireSat system-of-interest block gives a complete black-box specification for 
functional goals and measures of performance, as well as persistent information 
stores, states, and interfaces. From this level, trades and other analyses that tie to 
the measures of effectiveness will allow changes in a physical design to reflect in 
the performance measures.

Logical and Physical System Architectures
To specify a spacecraft design that will accomplish the operational architecture 

modeling, developing the logical (similar to functional decomposition) and physi-
cal architectures is the next step. These functional architectures can be traded for 
how much and what types of capability the system requires. Similarly the physical 
alternative architectures can be traded against how they meet a particular functional 
scope. SMAD’s example of the FireSat power system provides traditional functional- 
and physical-design information. The purpose of the power analysis in the SMAD 
book is to determine the required size of the FireSat solar array and required battery 

	
  Figure 3. Orbit model. This SysML parametric diagram uses model-
library definitions of earth, combined with kinematic reference frames 
and Kepler’s laws to depict a very basic orbit-geometry framework for 
a single spacecraft. This model can be used to separately capture any 
number of specific orbit configurations for trade study or design. Such 
data can be used to feed any number of execution tools for simulation 
analysis and trade. The earth sets the stage for the frame of refer-
ence that depicts the abstraction of the spacecraft and the earth (as 
the origin). For reference frames to make sense, the object the frame 
abstracts must be owned by the object—in this case the earth.
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capacity in order to meet the 
power-system requirements. 
The book gives multiple 
types of power distribution 
schemes, solar cell types, 
and battery types. For the 
purpose of FireSat, we chose 
one combination, as shown 
in figure 4. This illustrates 
the complexity of the system 
being modeled and the trades 
that will be needed in order 
to choose a particular system.

The power system for 
FireSat can be viewed with 
an eye to many concerns. 
This parametric view shows 
how parts of the power 
system are constrained and 
what parameters are under 
constraint. The parametric 
model of the power system 
is probably one of the most powerful examples of MBSE for space systems. Quan-
titative constraints captured from the SMAD book in the Space Systems Library 
illustrate how fundamental concepts common to space systems can be modeled 
and reused as part of a causal analysis. The example involves solving for eclipse 
and daylight time given power and area requirements and solving for area and 
power requirements given a particular orbit’s daylight and eclipse time. These dia-
grams can be used to define many alternative combinations for the power system 
as well as the chosen baseline. It also shows how properties of the chosen orbit and 
mission-level information affect the power system.

2007–2009 Conclusions and Future Plans
In each example explored by the team, model-based systems engineering 

showed several advantages from documents. These advantages include clarity 
and communication. In the cases of figures (mission IBD and parametrics) we can 
clearly see in a single view all of the information that would ordinarily be a collec-
tion of disjointed documents. Instead, the model provides the information of con-
cern as first-class citizens: this information is explicit with clear boundaries and 
semantics, and does not need to be assumed or referenced from another document. 

The information as shown in the model is the literal artifact. No churning will be 
required to update either the diagrams or the documents generated from the model. 
If the mission information changes, it will be propagated automatically.

The analytical relationships between responsiveness, coverage, and power 
production are explicitly related by parametrics. It may be intuitive that these are 
related based on orbit geometry and dynamics, but in the model, these equations 
and parameters are clearly documented in a way that can be just as easily used for 
calculation. Any changes to, for example, the orbit or number of spacecraft will 
propagate to our desired metrics.

Figure 4 shows a complete specification for the FireSat system. In one compact 
view, everything necessary to understand the system is presented. The document 
generated from this block would be multiple pages long and cover numerous pages 
in the book. In non-MBSE approaches, there would be a slew of documents contain-
ing the same information. Capturing the system in such complete detail without 
having to dive into the mire of all that text is revolutionary.

The library and use of orbit design and power analysis offers the advantage of 
reuse in a way that even the book itself cannot accomplish. This is a subtle but impor-
tant point. These models contain not only the analysis but also the description of 
the analysis, since SysML is a descriptive modeling language. These foundations do 
not change, and assumptions captured and tested can now be used across a variety 
of missions without needing to start from scratch. For FireSat this would mean no 
ambiguity about the nature of the orbit design. The MBSE approach captures every 
aspect of the project, from flight software to launch vehicle to mission operations, 
and provides an unambiguous definition of how the spacecraft is meant to be flown. 
Finally, since all of the text narrative can be captured inside the model elements, the 
documents themselves can be generated from the model. The MBSE approach really 
involves comparing documents to the combination of documents and models.

The next year of effort for the FireSat project will include an attempt to incor-
porate a complimentary 3-D modeling tool called Satellite Tool Kit. This will allow 
us to explore systems-level modeling across tools and a comparison of 3-D anima-
tions vs. 2-D blueprints of space systems. Another area of interest to the team is 
the exploration of incorporating schedules and resources into the model. This will 
allow a systems model to better predict combined effects on cost schedule and risk 
in addition to product and performance topics. 
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Figure 4. Power-system analysis. This SysML parametric diagram 
depicts a portion of the Firesat solar array trade as modeled. The 
constraint block that has been cut off contains all of the equations 
from the trade, along with the relationships and how it is connected 
to the power-distribution unit; the battery; and parameters from the 
spacecraft and the mission that affect power.
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Modern life depends on the correct and efficient operation 
of complex technical systems. The OMG Systems Modeling 
Language (OMG SysML™) is one response to the challenge 

of effectively integrating a broad range of disciplines across a spec-
trum of system lifecycle activities—from product conceptualization 
through design, manufacturing, distribution, operation, support, 
and finally to end-of-life processing. SysML provides the ability to 
create formal models that express system requirements, structure, 
behavior, and parametrics, and that interoperate with other types 
of descriptive and analysis models to support a broad range of 
systems modeling. This article describes work that demonstrates 
this ability in the context of two mechatronics-related testbeds: (1) 
designing hydraulic excavator systems and associated manufactur-
ing processes, and (2) developing and operating mobile robotics 
systems. INCOSE’s Modeling and Simulation Interoperability (MSI) 
Team as part of the Model-based Systems Engineering Challenge 
did the work. This article summarizes the results from the over-
130-page Phase 1 report (covering August 2007 to July 2008),1 and 
highlights progress from Phase 2 (August 2008 to July 2009).

In the Phase 1 work for the product domain of hydraulic excava-
tor systems, both mechanical and hydraulic systems are designed 
and simulated, and SysML models are used to integrate design and 
analysis models both within each design discipline and across 
disciplines. In the manufacturing domain, the disciplines that are 
integrated using SysML models include capacity planning, factory 
layout, process engineering, and production planning. The design 
and manufacturing domains are integrated using a SysML model of 
the engineering bill of materials and a common model of measures 
of effectiveness.

The primary achievements of the MSI team in the Phase 1 
excavator case study are these: (1) capturing information about the 

1. R. S. Peak, C. J. J. Paredis, L. F. McGinnis, S. A. Friedenthal, R. M. Burkhart, et al., 
“Integrating System Design with Simulation and Analysis Using SysML: An Excavator 
Testbed” (Phase 1 Final Report [version 1.2] of INCOSE Modeling and Simulation 
Interoperability Team, 2009), available at http://www.pslm.gatech.edu/projects/incose-
mbse-msi/. (Check this Web address for additional items, including the Phase 2 report, 
expected in the winter 2010 time frame).

structure and behavior of the product and processes in a form that 
is readily reused for trade studies and design evolution; (2) auto-
mating key analysis steps by enabling tight integration between 
design authoring tools (e.g., CAD and SysML) and analysis tools 
(e.g., finite element analysis and discrete event simulation); (3) 
improving communication across disciplines; and (4) enhancing 
requirements traceability.

The results of these focused case studies have potential for broad-
er impact: (1) the demonstration of MBSE and SysML may encour-
age a broader community of systems engineers to further explore 
SysML; (2) the software prototypes of interfaces between SysML and 
disciplinary design and analysis tools are potentially reusable in 
other domains (and some 2  have already been commercialized for 
that purpose ); and (3) the SysML model examples serve as potential 
templates and reference models for other projects.

The Phase 1 work also identified three important areas for fur-
ther work: (1) strategies for knowledge capture, including domain 
metamodels, profiles, and model libraries; (2) graph transforma-
tions as a powerful generic approach to model interoperability; 
and (3) a generalized philosophy and strategy for model integration 
called MIM — the Model Interoperability Method. Phase 2 continued 
to explore these areas and other extensions including a testbed for 
mobile robotics.

Background
Contemporary systems engineering is evolving to a model-based 

approach to address the complexity of large-scale heterogeneous 
systems. However, the model-based approach introduces its own 
challenges related to model interoperability and model manage-
ment. A model-based systems-engineering approach must sup-
port collaboration and interoperability at several levels: across 
global organizations, between disciplines involved in the systems 
development effort, among design teams within a given discipline, 

2. See for example http://www.intercax.com/sysml/, which has been aided by the 
Georgia Tech VentureLab incubator program.

http://www.pslm.gatech.edu/projects/incose-mbse-msi/
http://www.pslm.gatech.edu/projects/incose-mbse-msi/
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between design and analysis efforts, and between development and manufactur-
ing. As development and manufacturing become more intensely model-driven, 
tools and methods for systems engineering must be capable of managing and inte-
grating this collection of models.

Project Context
This project leverages OMG SysML as a systems modeling language to address 

both model interoperability and model management. SysML provides a formal 
graphical language that has enough expressivity to be applied across diverse 
disciplines during system development. Thus, SysML holds the promise of directly 
enabling the necessary integrations through comprehensive system models, and 
also directly enabling integration and interoperability across a broad spectrum of 
models.

The work summarized here explores this promise. Our Challenge Team’s project 
applies a model-based approach, using SysML modeling tools and other design 
and analysis modeling tools to the design of an excavator as one demonstration 
platform. The structure of the resulting SysML model is based on that outlined 
by the Object-Oriented Systems Engineering Method (OOSEM).3 In the system-
development process, two primary product-design disciplines are engaged—fluid 
power systems design for manipulating the excavator arm, and structural design 
for the bucket and boom. In addition the integration of design with manufactur-
ing is explored, which translates the engineering bill of materials (EBOM) into a 
manufacturing bill of materials (MBOM) with make/buy decisions, fabrication, and 
assembly operations.

This project was initiated with the overall objective to define the methodology, 
tools, requirements, and practical applications that demonstrate how to bridge a 
SysML system specification and design model with multiple engineering analysis 
and dynamic simulation models. Supporting objectives led to the definition of four 
specific tasks:

Define a methodology for integrating a system model with multiple engineering •	
analysis models and dynamic simulation models.
Define requirements for the SysML specification, for SysML tools, and for •	
analysis tools that are needed to support such a methodology.
Demonstrate this methodology with several representative design and •	
simulation models.
Develop a roadmap for follow-on work.•	

3. For more information, see the Web site of INCOSE’s Object-Oriented Systems Engineering Method (OOSEM) 
Working Group on INCOSE Connect at https://connect.incose.org/. As an example application of OOSEM, see 
the residential security-system case study (chapter 16) in Friedenthal, Moore, and Steiner’s A Practical Guide 
to SysML: The Systems Modeling Language (Burlington, MA: Elsevier/Morgan Kaufmann, 2008).

These tasks were exe-
cuted during Phase 1 of a 
twelve-month collaborative 
effort between Lockheed 
Martin Corporation and the 
Georgia Institute of Technol-
ogy, with additional related 
work supported by Deere & 
Company and other efforts. 
The results of this combined 
effort are being used to help 
advance the practice of 
systems engineering within 
society as a whole and to 
support educational objec-
tives at Georgia Tech and 
beyond. Phase 2, which has 
recently been completed, extended these techniques and the excavator testbed, 
and also added a mobile robotics testbed.

Figure 1 illustrates the excavator testbed and the strategy adopted to achieve the 
project objectives. Three distinct categories of commercial-off-the-shelf (COTS) tools 
are employed: SysML tools, traditional descriptive tools (product CAD, factory CAD, 
and Excel), and traditional analysis tools (Excel, FEA, math solvers, and simula-
tion solvers). In addition, the project team developed the necessary interfaces to 
integrate the SysML modeling tools and other tools using a combination of COTS 
interfaces (e.g., VIATRA and ParaMagic) as well as custom interfaces developed in 
C#, Java, and Visual Basic.

Phase 1 Results
Figure 2 illustrates the resulting models and model interfaces from a perspec-

tive of model interoperability patterns. On the left are the COTS descriptive tools 
(in the box labeled a0. Descriptive Resources), and on the right are the COTS solver 
tools (labeled e0). The models in the middle boxes (labeled b0, c0, and d0) all are 
implemented as SysML models (figure 3). The box labeled b0 is the federated sys-
tems model, which is primarily a descriptive model that collects together various 
a0-type models and augments them where needed. In this testbed the b0 model 
combines both the system of interest (the excavator product) and its manufacturing 
system. Through the course of the project, reusable analysis and simulation build-
ing blocks that are context-independent (generic) were identified and collected into 
libraries, illustrated in the box labeled d0.

Figure 1. Excavator testbed (Phase 1): tool categories view
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Each context-specific simulation model in figure 2 (models in the box labeled 
c0) applies selected generic d0 building blocks to the b0 system for a specific 
purpose — typically to calculate values to verify one or more requirements or 
performance objectives. Each c0 model is executed utilizing one or more e0 solvers, 
which are typically general-purpose COTS solvers, but may also be specialized 
company-proprietary codes. The c0 model pattern is the focal point for capturing 
knowledge about domain-specific analysis intent including idealization decisions. 
Depending on the nature of the b0 system aspect being analyzed, these c0 models 
range from fixed-topology analysis templates (which analysts create directly) to 
variable-topology analysis templates (which automatically generate a model with 
simulation topology that is specific to a particular design instance). In our excavator 
testbed the models for boom linkage are examples of the former, and the dig cycle 
hydraulics model is an example of the latter.

Each arrow in figure 2 represents a specific interface that required development, 
implementation, and testing by the project team. SysML modeling and interface 
development represented the major part of the R&D effort for the project. To 
demonstrate the model integration illustrated in figure 2, a series of scenarios was 
created for the excavator example. Figure 3 contains several thumbnail highlights 
from these scenarios (see the Phase 1 report for the actual figures and further 

explanation). The initial scenario represents a design requirement (a target 
rate for moving dirt), and a marketing requirement (a target rate for selling 
excavators). The hydraulic and structural teams exercised a design process to 
achieve a satisfactory product design, and the manufacturing team translated 
the design into a manufacturing plan, capacity plan, and operational plan. 
The design process was then confronted with changed requirements. A higher 
required rate for moving dirt was found to necessitate a redesign of both the 
hydraulic and the structural subsystems; this revised product design then 
required a redesign of the manufacturing process. Finally, a higher target sales 
rate required a further redesign of the manufacturing process to support the 
corresponding increased manufacturing rate. Based on these results in the 
context of the excavator domain, we have demonstrated how to bridge a SysML 
system specification and design model with multiple engineering analysis and 
dynamic simulation models—i.e., the overall Phase 1 project objective has been 
met and exceeded.

Significance
The significance of these results is not in any single design decision or sup-

porting engineering analysis — all of these could be done individually without 

 
 

Figure 3. Excavator testbed (Phase 1): sample SysML diagrams and native solver models

Figure 2. Excavator testbed (Phase 1): MIM model interoperability patterns view
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the SysML modeling and interface development, albeit not as effectively. Rather, 
the significance is in the formal capture of modeling and design knowledge in a 
manner that enhances the integration of design and analysis as well as the reuse 
of knowledge and information. Integration fully or partially automates time-
consuming manual processes and thus enables faster design analyses with less 
effort by the designer, which can result in faster design cycles and increased design 
analysis and trade-space exploration. The impact of knowledge capture and reuse 
is to enhance the capability of designers in terms of both design speed and design 
quality. The impact of improved model management is better visibility and com-
munication across the entire design-manufacturing cycle, leading to fewer errors, 
earlier problem identification, and faster problem resolution.

This knowledge capture, integration, and reuse occurs at two levels. First, 
at the domain level, knowledge capture takes the form of libraries of concepts, 
modeling elements, and interfaces that are directly reusable in the design of other 
excavator products or other excavator manufacturing processes (and often in 
other domains beyond excavators). The use of these libraries does not necessarily 
require expertise in SysML; the captured knowledge can be accessed by potential 
users in “wizard” forms or in tools with which they already are familiar. Second, 
the captured knowledge takes the form of explicit system models that integrate the 
design across multiple product-design disciplines and between product design and 
manufacturing. The demonstration scenarios show that this knowledge has been 
captured in a manner that enables very rapid and inexpensive redesign of both the 
product and the associated manufacturing processes.

Phase 2 Highlights
Phase 2 (recently completed) has several facets including (1) extending the 

excavator testbed, (2) enhancing fundamental techniques, and (3) adding a 
new mobile robotics testbed. The graph transformation work has explored the 
capabilities of the MOFLON tool and its advantages over VIATRA, which was 
used in Phase 1. The EBOM-to-MBOM translation work has also applied MOFLON 
and tested its usefulness in that context. More simulation tools have been added 
into the factory simulation and parametrics testbed aspects, including AnyLogic 
and Matlab/Simulink. A new way of visualizing and interacting with SysML 
parametrics has been introduced: a flattened graph that gives a characteristic 
“panoramic” DNA-like view of the model. The new mobile robotics testbed 
demonstrates how SysML activity models can support system operations at both 
the planning and execution levels (including live updates and execution on 
physical units). Look for these and other additions in a public version of the Phase 2 
report expected in 2010.

Future Work
Based on these experiences, a number of important next steps have been identified.

Generalization of model interoperability method. General-purpose solutions with 
enhanced robustness are needed in a number of areas:

In the Phase 1 demonstration, the conversion from the EBOM to an MBOM •	
was formalized in SysML, but the conversion itself was performed manually. 
Whether or not the conversion can be fully automated is an open question, but 
it is clear that a suite of tools could be created to assist in the conversion and to 
make it a more repeatable process.
Graph transformation technology has proven to be an excellent means for •	
implementing some of the key interfaces between different models, and it holds 
great promise for making a more efficient process for developing these inter-
faces. Additional work is needed to better understand this technology (e.g., 
regarding breadth and scalability) and to develop better tools for using it in this 
context.
When a number of different teams work concurrently on a federated model •	
(b0), there will naturally be inconsistencies between the federated model and 
its source submodels as various aspects change over time. Thus, methods are 
needed to manage these inconsistencies — to recognize and identify them, 
to provide temporary “work-arounds,” and to ensure resolution (e.g., semi-
automated synchronization capabilities).
Reusability represents a very important opportunity both for generic and for •	
domain-specific modeling and integration. Fundamental questions — such as 
how to identify opportunities for reusability and how to organize libraries to 
best facilitate reusability — represent important areas for further work.

Workflow. As federated system models become more elaborate, and more design 
teams are involved, methods and tools for workflow management and control 
become critical, not only to automate the linkages between computerized tools and 
files, but also to deal effectively with version and access control, inconsistencies, 
and so on. Incorporating workflow models into federated system models may pro-
vide an entry point for more effective workflow management, and this represents 
an opportunity for novel research and development.

Deployment. The move toward MBSE and SysML is in its relatively early stages 
(analogous to the early days when moving from physical drafting first to 2-D CAD 
and then to 3-D CAD). Achieving broad deployment (and realizing the associated 
benefits) will require two kinds of efforts. First, education and training are needed 
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to create the necessary pool of 
human resources. Leveraging the 
experiences of projects like this 
is one way to enhance education 
and training (e.g., by developing 
effective teaching materials based 
on these examples). Second, it is 
important to continue productizing 
the results of projects like this (e.g., 
as is being done by InterCAX2), 
including SysML-based interfaces 
to specific tools (e.g., the interfaces 
to NX and ModelCenter depicted in 
figure 2).

Summary
This project demonstrates the 

ability to integrate SysML with a 
broad range of conventional models 
for design and analysis. These 
results indicate that this combined 
technology does indeed hold great 
promise to enable model-based 
systems engineering (MBSE) for 
large-scale, multidisciplinary, 
complex system-design projects. 
This must be augmented by new 
methods for organizing and 
managing models, by enhanced 
interoperability methods, and by a 
broad range of new tool interfaces. 
The work summarized here and the 
opportunities identified for further 
work represent an important step 
towards achieving true MBSE by 
utilizing a SysML-based approach 
for model interoperability. 

Peak et al. continued A Modeling Approach to Document 
Production
Steven Jenkins, steven.jenkins@incose.org

Model-based systems engineering is often contrasted 
with document-based systems engineering, but the 
use of models does not eliminate the need for docu-

mentation or negate its utility. There is and will continue to be 
a systems-engineering role for narrative prose that explains 
the analyses, trades, and judgments that validate a system 
design. Contract law, moreover, attaches special significance 
to writings; contract statements of work will include natural 
language for the foreseeable future. Rather than view them as 
opposing styles, JPL has undertaken to integrate model and 
document orientations. The research described in this article 
was carried out at the Jet Propulsion Laboratory of the Califor-
nia Institute of Technology, under a contract with the National 
Aeronautics and Space Administration.

Documents as Modeled Entities
The first step in integrating system modeling and docu-

ment production is to develop a model structure for docu-
ments. If we have such a structure, then the creation of a 
document can be seen as a transformation that converts a 
system model into a document model. Fortunately, major 
industries that produce voluminous technical documentation 
(e.g., information technology, aerospace, automotive, law) 
have invested for more than thirty years in the development of 
formal standards for document structure. The widely-adopted 
Extensible Markup Language (XML) (Worldwide Web Consor-
tium 2006), for example, arose from an earlier Standard Gen-
eralized Markup Language (SGML) (ISO 1986) and yet earlier 
Generalized Markup Language (GML), originally developed at 
IBM for legal publishing.

Of course, there can be no “standard document” that 
suffices for all purposes. Instead, modern markup languages 
provide a set of elements and composition rules by which 
a particular class of documents can be defined. XML, for 
example, provides the ability to develop arbitrary element 

schema, by which we may declare that there is an element 
called article, that an article may contain sections, sections 
may contain paragraphs, and so on. The XML standard then 
allows us to mark up an actual document with these elements, 
and to validate that the marked-up document complies with 
the rules in the schema. If we had mistakenly included, for 
example, a section within a paragraph, an XML validation 
utility can tell us the document is not a valid instance accord-
ing to our schema. XML transformation tools can then convert 
the XML into HTML, PDF, or a variety of other formats using 
rule-based transformations.

One essential feature of the “markup” approach to docu-
mentation is that nearly all aspects of the visual appearance 
of the document are specified in external style sheets. This 
frees authors from the burden of complying with institutional 
style requirements, and allows the same content to be reused 
in specialized formats (e.g., for the visually impaired). Let’s 
look at a specific XML standard for documents.

The DocBook Standard
The Organization for the Advancement of Structured 

Information Standards (OASIS) is a not-for-profit consortium 
that “drives the development, convergence and adoption 
of open standards for the global information society.” One 
such standard is DocBook (OASIS 2006), a system for writing 
structured documents using SGML or XML. DocBook includes 
two key components: a set of document type definitions or 
XML schema that define the structure of a legal DocBook 
instance, and a set of Extensible Stylesheet Language (XSL) 
Transformations (Worldwide Web Consortium 1999) to process 
DocBook instances, including conversion to HTML and PDF. 
Both components are extensible: the user may create a custom 
document type definition based on DocBook, and extend (or 
create) style sheets to convert to some unique presentation 
format. Because DocBook is based entirely on widely used 
XML and related open standards, capable free software 
tools are available for the entire processing chain, as well as 
commercial offerings for specialized requirements. DocBook 
is a mature standard; version 5.0 was released in 2008. 
DocBook has been used most prominently in the information-
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technology industry. A number of computer vendors and large software projects 
include DocBook documentation.

There are alternatives to DocBook. One is the Darwin Information Typing 
Architecture (DITA) (OASIS 2009). We have not experimented with DITA, but its 
emphasis on separation of content from context and its support for content reuse 
may be applicable to the general problem of machine-integrated documentation. 
In summary, mature standards and supporting software exist for constructing, 
analyzing, validating, and rendering large, complex documents of the types 
typically produced in a systems engineering process. The following sections 
address the use of one such standard (DocBook) and its associated software for 
generating engineering documents from system models.

Incorporating Document Models into System Models
Suppose we have a system model containing a tree of components, each of which 

represents an item in the product breakdown structure. A System Description Docu-
ment may describe some subset of these components, so we need to extend the 
ontology (or class structure) of our system model to include the concept of document 
and the association documents between a component and its associated documents. 
We then define the concept of document element and the association aggregates that 
relates one document element to another. Any given document instance will typi-
cally form a strict tree of document elements, but a more general association allows a 

single subtree to be aggregated within more than one document (see figure 1).
Using these concepts we can construct a tree structure representing the nested 

content structure of a System Description Document and associate it with a specific 
system component. In the simplest possible case, we would populate each docu-
ment element with document fragments containing literal DocBook content, and 
then develop a software engine that traverses the tree of document elements and 
integrates this content into an actual DocBook instance by, for example, nesting 
lower-level sections within higher-level sections (which is how DocBook indicates 
subsectioning). While this approach can indeed construct a document, it is no 
improvement over direct editing with a word processor.

A substantial feature increase can be gained by adding semantics to document 
elements, so that the traversing software engine can execute instructions that 
generate DocBook content as it executes. In particular, giving the engine the ability 
to execute model queries directly means that the document content itself can be 
generated directly from model content.

Consider a simple example. Using our product-breakdown-structure model from 
above, suppose that each component includes three properties: an identifier, a 
name, and a description. Name and identifier are simple strings, and description 
is a string consisting of one or more DocBook paragraph elements describing the 
component. And of course, each component also contains an array of references 
to its child components. We can then define a recursive “component description” 
function (in pseudo-code) as follows:

function component_description(comp) {
section_start(comp.identifier, comp.name)
paragraphs(comp.description)
for child in comp.children {

component_description(child)
}
section_end

}

This function creates a tree of DocBook sections whose structure matches some 
branch of the product breakdown structure, each section describing a component. 
This document fragment might be included under a top-level section titled 
“Physical Architecture.”

If we give our software engine the ability to invoke this and other functions, 
we have a very general capability to generate documents whose complexity and 
content are determined entirely by the complexity and content of our system mod-
els. To be complete, we define three properties for a document element: entry code 
to be executed by the engine on encountering this document element, marked-up 
DocBook text to be inserted literally, and exit code to be executed after processing 
all children of the document element.

Document ModelingINCOSE INSIGHT[Profile] bdd [   ]

values
entryCode : String
exitCode : String
text : String

<<block>>
DocumentElement

values
title : String
publicationID : String

<<block>>
Document
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name : String
description : String
identifier : String

<<block>>
Componentdocuments

0..10..*
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Figure 1. Document model concepts
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One obvious benefit to this approach is that a properly constructed document 
model cannot be inconsistent with the system model. If the system model changes, 
the generated document will change accordingly. There is no separate update step 
for documentation. (Of course, the narrative text in the system model should be 
updated if necessary, but that’s simply sound practice.)

With a little thought, we can come up with generators for document fragments 
commonly appropriate for other model elements and their relationships: interfaces, 
functions, requirements, risks, processes, work elements, and others. We can then 
conceive of a document architecture with multiple related document types, each 
defined by a unique composition of reusable elements. In addition to simplifying 
the generation of document products, the approach also enhances readability by 
employing common conventions for common purposes.

Analysis Model Elements
Adding a description property to individual model elements eases the 

construction of documents that explain what a design is. In order to better describe 
why a design is what it is, we introduce the concept of analysis. An analysis is simply 
a narrative that explains some aspect of a design, and has explicit relationships to 
the model elements involved in that aspect. The physical decomposition of a system 
into subsystems, for example, could be described in an analysis and linked directly 
to the system and its subsystems. A System Design Document generator might 
then query the model database for any analysis (or perhaps a specialized physical 
decomposition analysis subclass) related to that system, and insert the resulting 
narrative into the document at the appropriate point. Any arbitrary set of analysis 
types (e.g., trade study, risk assessment) can be distinguished through subclassing.

Designing Document Families
The wide availability of personal computers and desktop publishing has, regret-

tably, made it easier to simply “start typing,” often at the expense of a thoughtful 
analysis of the concepts to be expressed and the best ways to express them. Hall-
marks of professional publishing, such as the disciplined use of metadata, design 
for readability, cross-referencing, and proper mathematical typesetting, are too 
easily neglected in this manner of working.

The document-model approach offers a division of labor that exploits the 
strengths of two distinct types of contributors. The systems engineer or design 
engineer is freed to concentrate on the correctness, consistency, and clarity of the 
system model, the only requirement being to follow standard markup conventions 
in any narrative content in the system model. A context-sensitive editor (e.g., a 
what-you-see-is-what-you-get applet that understands the DocBook content model) 

can enforce these conventions in a natural, non-intrusive way. Correspondingly, 
the document designer can create well-thought-out document structures and 
express them in rigorous forms that permit software applications to create 
compliant instances with essentially no human effort. In addition, he or she can 
create or apply institutional stylesheets that reduce struggling with visual style.

Other Benefits
Because the document generator creates content that corresponds directly 

to model elements, it can easily insert index references to those elements. One 
document we generated in our prototyping contains over 7,700 separate index 
references, which considerably increases the value of the document as a design 
specification. It is also straightforward to generate tables showing associations 
of interest: requirement to component, requirement to requirement, component 
to function, etc. The document mentioned above, for example, contains more 
than 150 pages of software-generated tables representing 47 different pairwise 
data associations. Generation of glossaries is similarly straightforward: DocBook 
specifies a simple mechanism for tagging glossary terms. Processing software 
can look up definitions in one of several repositories, and construct a glossary 
containing definitions for those terms (and only those terms) actually used in a 
document. Similar considerations apply for lists of applicable documents and 
bibliographies.

Implementation Details
There are three main parts to our implementation: the model database back 

end that handles queries against the system and document models, the DocBook 
generation engine, and the DocBook processing tool chain that produces HTML, 
PDF, and other presentations. Our prototype applications use one of several Web 
Ontology Language (OWL) repositories as a backend (Worldwide Web Consortium 
2004). We are investigating SysML tools as back end repositories — one alternative is 
to build on a specific tool’s API, another is bulk export and conversion to an existing 
OWL repository. The DocBook generation engine is written in Ruby, primarily due 
to the author’s preference. Scripting languages in general provide convenient tools 
for constructing domain-specific languages, but there is no reason to prefer any 
particular implementation language. The processing tool chain for producing HTML 
is based on the xsltproc free software XSL Transformations utility and DocBook 
HTML style sheets. The PDF tool chain uses a locally written DocBook-to-LaTeX 
translator (Lamport 1994) and free software from the TeXLive distribution. We will 
likely replace our translator with dblatex, a free xsltproc-based software utility, and 
customized XSL and LaTeX style sheets.
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Prototype Results
In the context of larger efforts on model-

based systems engineering, we have built a 
system model consisting of approximately 
8,000 OWL statements and defined 
document models for two different classes 
of requirements documents and a project-
implementation plan. The resulting eight 
documents total over 640 pages in PDF form, 
and are generated end-to-end in PDF and 
HTML form in less than eight minutes on 
commodity desktop hardware. Processing 
scales directly to multiprocessor systems. Our 
efforts in the future will focus on adaptations 
to SysML (Object Management Group 2008) 
modeling tools and to developing document 
families for JPL projects.
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Systems-engineering methods, practices, and tools 
have been successfully used in European space 
programs over the last decades. The common refer-

ence for the systems-engineering process is the Euro-
pean Cooperation for Space Standardization’s E-10 series 
of standards (see, for example, ECSS 2009b). Although 
many kinds of models are used to support the develop-
ment and operation of space systems, the process still 
very much relies on documents to capture all project 
information, in particular for the major reviews. In line 
with INCOSE’s Systems Engineering Vision 2020, there 
is a vision that wider and more integrated application 
of model-based systems engineering will enhance the 
effectiveness and efficiency of space-system develop-
ment. In particular MBSE is expected to facilitate and 
improve early validation and verification, to enhance 
data consistency, to help develop increasingly demand-
ing and complex systems, and to enable the successful 
development of systems of systems.

A number of activities have been initiated in the last 
ten years to help real-
ize the vision. In some 
areas there has been good 
progress, so that mature 
operational solutions are 
now in place, while in 
other areas there is still a 
long way to go. The most 
significant advances have 
taken place in two areas: 
(1) early mission definition 
and conceptual design in 
concurrent engineering 
processes, and (2) system 
verification for spacecraft 
control and data handling, 

where functional simulation models are used for system-
level integration and verification.

Today, most individual domain-specific engineering 
disciplines — such as power, propulsion, mechanical, 
thermal, optical, aerothermodynamics, space environ-
ment and effects, radio frequency communication and 
sensing, guidance and navigation, attitude and orbit 
control, avionics, software, data handling, operations, as 
well as project management, logistics, and cost estima-
tion — all have their own well-established modeling 
methods and tools for design, analysis, or simulation. 
However the tools are often not well connected, exchang-
ing or sharing data is cumbersome, and there is a lot of 
data duplication with the risk of inconsistencies. In order 
to achieve the next level of improvements, engineers 
need an integrated model-based approach at the system 
level that ensures overall consistency, timely provision, 
and proper consolidation of all data in the system’s 
lifecycle. This kind of coordination is a typical systems-
engineering task.

Figure 1. Typical space-system lifecycle from ECSS-M-ST-10C, depicted as a SysML activity diagram

act [Activity] ECSS Typical Life Cycle[ ECSS Typical Life Cycle]

: Identify
Needs And

Analyze
Mission

«review»
Mission

Definition
Review

«review»
Preliminary

Requirements
Review «review»

System Requirements
Review

«review»
Preliminary Design

Review

«review»
Critical Design

Review

«review»
Qualification

Review

«review»
Acceptance

Review

«review»
Operational Readiness

Review

«review»
Commissioning Result

Review

«review»
Launch Readiness

Review

«review»
Flight Readiness

Review

«review»
Mission Close-out

Review

«review»
End-of-Life

Review

:Elaborate
Requirements
and Concepts

and Determine
Feasibility

Start

Phase B
Preliminary
Definition

Phase D
Qualification and

Production

Phase C
Detailed

Definition

End

Phase F
Disposal

Phase E
Utilization

Phase A
Feasibility

Phase 0
Mission Analysis/

Needs Identification

:Finalize
Requirements

Select Preferred
Concept, Initiate

Preliminary Design
and Verification

Approach

:Manufacture,
Assemble,

Integrate and
Verify Final
Product(s)

: Verify
Integrated

System
Operation

:Manufacture,
Assemble,

Integrate and
Qualify

Representative
Product(s)

:Establish
Preliminary Design,
Development and
Verification Plans

ans Elaborate
Schedule, Cost and

Organizational
Breakdown

:Establish
Detailed
Design

:Operate
System

:Dispose
System

:Commission
System

:Prepare for
Launch

:Prepare for
Flight

http://www.docbook.org/specs/docbook-4.5-spec.html
http://www.docbook.org/specs/docbook-4.5-spec.html
http://xml.coverpages.org/dita.html
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/owl-features
http://www.w3.org/TR/2006/REC-xml11-20060816
http://www.omg.org/spec/SysML/1.1
http://www.omg.org/spec/SysML/1.1


Special Feature

December 2009 | Volume 12 Issue 448

Understanding Systems Engineering for European Space Programmers
Most of the definitions of systems engineering stress multi- or interdisciplin-

ary aspects and full lifecycle considerations. Figure 1 shows the typical European 
space-system lifecycle (defined in ECSS 2009a), which is quite similar to the NASA 
or ISO 15288 lifecycles. In addition, ECSS (2008) defines a recursive customer–
supplier model that can be used at any level in the supply chain. One organiza-
tion can be both supplier to the next-higher level and customer for the next-lower 
level. One of the critical systems-engineering tasks along the lifecycle (in Phases 
A and B) is the derivation of requirements for the next-lower system-element level 
from requirements for the next-higher-level system element. This requires a very 
robust and reliable system-level design, in particular stable function and product 
trees. The ECSS documents define function tree as the hierarchical decomposition 
of the system performances into functions and subfunctions, which, when all are 
fulfilled, complete the overall system mission. ECSS defines product tree as the 
hierarchical structure that depicts the product-oriented breakdown of the project 
into successive levels of detail, down to the configuration items that are necessary 
to deliver the required functions.

These decompositions are used to trace the system-level requirements to its 
intended realization, as well as the intended realization to the derived require-
ments on the next-lower level. The system-level design must also reflect the con-
straints identified in the different domain specific analysis activities as well as 
constraints imposed by integration and verification.

In the different lifecycle phases the following trends can be observed. In Phases 
0 and A, the process is driven by all kinds of system budgets — such as overall mass, 
volume, and power consumption — and performance measures. The European Space 
Agency has made a particular effort to standardize the key parameters and a basic 
data model for system decomposition. This model with parameters is implemented in 
the tools in the Concurrent Design Facility at ESA/ESTEC (http://www.esa.int/CDF); this 
model is increasingly being adopted by similar facilities of other organizations across 
Europe to ease exchange and collaboration (see ECSS forthcoming 3).

In Phase B the system design is elaborated by using different domain-specific 
engineering tools. The most mature tool support exists for electrical and mechani-
cal aspects of the system design. In these domains, powerful analysis tools support 
system-level design, and data-exchange interfaces between design and analysis tools 
exist. For functional and operational aspects, no dedicated tools are currently avail-
able. Requirements-management tools and classical product-data-management (PDM) 
tools (for project-configuration control) are well established and frequently used.

To better support systems-engineering tasks, several things are needed. First, 
there is a need for improved modeling of functional aspects, e.g., overall func-
tion identification and decomposition, decomposition into operational modes for 

different system levels, and reference-timeline definition. There is a lack of support 
for functional system simulation. Such simulation is needed for improved design 
consolidation and validation, and operational design definition. It would also pave 
the road toward functional system simulation in Phases C and D.

Second, comprehensive system modeling will always require multiple tools. There 
will never be a single tool capable of addressing all needs. Therefore interconnection 
and integration of the tools is very important. Open interfaces for data exchange and 
for application-programming are essential. However, experience shows that many 
COTS tools have significant restrictions with respect to tool integration.

Third, even where powerful analysis tools exist — e.g., for thermal, mechani-
cal, attitude, and orbit control — the effort to create the models and share common 
data between them is quite large and often involves a lot of manual work. Here also 
improved interfaces are needed.

Phase B is concluded with the preliminary design review (PDR), which releases 
the specifications for the next-lower-tier subcontractors. During the subcontractor 
work in Phase C, the activities on the system level can be summarized as follows. 
First, the preliminary design baseline is the subject of a refinement during the sub-
contractor work. Refinement in particular of the interfaces (not only mechanical, 
electrical, or information but also operational) is performed. This requires continu-
ous analysis of and adaptation to new details and change requests. An integrated, 
comprehensive system model representation would ease the maintenance of the 
design baseline.

Second, a characteristic of European space programs is that the suppliers are 
selected during the program based on the specifications released with the PDR. In 
the course of the design refinement, it is crucial to set up efficient interfaces to the 
subcontractors, in order to allow data exchange beyond documents. Although in 
some cases exchange through spreadsheets already turns out to be a real improve-
ment over simple documents, it would significantly ease the process to have lean, 
efficient, and commonly agreed-upon data-exchange interfaces.

Third, in parallel to the consolidation of the design baseline, the system inte-
gration and verification facility is prepared. Here a specific challenge is to set up, 
verify, and validate the facility without yet having a system element serving as a 
mock-up. A simulator can provide a virtual system that is functionally representa-
tive and can be used as the mock-up. The preparation of the functional system 
simulator can effectively start with the PDR, when the overall system design is 
consolidated. The requirements for the functional system simulators can then be 
derived, taking into account the verification approach. A comprehensive system 
model would ease the development and configuration of such simulators.

In Phase D, the space-system elements developed by the subcontractors are 
integrated and verified. A key element here is a model-based representation of the 
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Figure 2 shows how 
these kinds of models 
are related to each 
other.

Product instance 
models are the clas-
sic hardware-oriented 
models. They comprise 
first of all the flight 
model for a one-off or 
FM1, FM2, etc. and the 
traditional predeces-
sor, the qualification 
model. The qualifica-
tion model is used to 
verify the design before the actual manufacturing of the flight model. If the risk is 
assessed as acceptable, there is today a trend to combine these models into one proto-
flight model. While above models always include functional elements of the system, 
there may be additional models such as a structural thermal model, which is used 
to test structural and thermal aspects. There is also an increasing trend to rely on an 
electrical functional model that combines elements of the qualification model and 
the proto-flight model with a virtual element, the functional system simulator.

Static or structure models capture the evolving specification and definition of 
the system along the lifecycle. Basically these models are data sets (instance data) 
in the databases of the supporting tools. With MBSE these models form major arti-
facts, which need to be exchanged and shared between the project’s participants. 
They capture information that is common to all disciplines involved in a project. 
These models include the following information:

System requirements as specified by the customer and possibly refined by the •	
supplier.
Next-lower-level (derived) requirements as specified to lower-tier suppliers, •	
based on the design process.
Functional decomposition of the system of interest, representing a model of •	
the problem space. The focus is on what the system shall achieve, not on how. 
The function tree is the core element. Often the interfaces between the differ-
ent functions are elaborated as well. This representation is also used to capture 
detailed engineering properties as identified in different analyses.
Physical architecture and decomposition on how the system of interest will be •	
built and modularized. The focus is on how the design problem will be solved 
and how complexity is managed. The core information is the product tree that 

functional aspects of the system in a functional system simulator. Many different 
configurations of the functional system simulation are required, for example:

Software-in-the-loop (SITL, SWIL, or SIL) and hardware-in-the-loop (HITL, •	
HWIL, or HIL) for progressive integration and verification of the software down 
to the target hardware and environment
Open-loop and closed-loop configurations for the attitude- and orbit-control loop•	
Complete software simulation and integration of real equipments in the •	
simulation loop
Hard-real-time configurations for HITL and significantly faster than real-time •	
configurations for SITL.

The work comprises integration testing, verification of software elements, and 
also validation of onboard control procedures and ground-station operation-control 
procedures. Although this practice is now state-of-the-art and applied in all proj-
ects, the development of this kind of simulator and its integration in the test bench 
or electrical ground-support equipment requires a significant engineering effort, 
partly because the reuse of design simulation is seldom attempted and a link of this 
simulator to the design baseline is not implemented.

In late Phase D, during mission-operations preparation, and in Phase E, the 
mission-operations team uses the functional system simulator — or an evolved 
version of it — to develop and validate control procedures or to investigate and 
resolve anomalies.

Classification of Models in Use
In ECSS (2004), a model is defined as a “physical or abstract representation of 

relevant aspects of an item or process that is put forward as a basis for calculations, 
predictions or further assessment.” Historically the term model is also used to iden-
tify particular instances of the product to be delivered, such as the qualification 
model or the flight model. In the space industry, models of both kinds have always 
played an essential role in the validation-and-verification approach. An important 
part of the verification-and-validation plan is the so-called model philosophy, 
which describes what models will be used when and for what purpose in the life 
cycle. Evolving computer technology increasingly enables the creation and use of 
virtual models for many purposes. In discussing MBSE it is essential not to restrict 
models only to simulation models. The following enumeration provides a taxonomy 
of the different kinds of models in use:
•	Product instance models	 •	 Data (meta)models
•	Static or structure models	 •	Modeling infrastructure models
•	Dynamic or behavior models	 •	 Process models

Figure 2. Interrelations between different kinds of model
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is also used to set up the organizational breakdown of the supply chain. This 
needs to be complemented with definition of all interfaces between the different 
elements and the 3-D spatial configuration. Eventually this decomposition will 
contain the complete product structure. Associated to its elements are all the 
actual properties of the envisaged solution.
Operational decomposition into the modes that are required to command and •	
monitor the system of interest. The operational modes may be attached to any 
system element. Operational modes may also be hierarchically nested over the 
different system hierarchies.
Operational definitions capture how the system will be used, e.g., the sequenc-•	
es in which particular elements are switched on and off. This is closely related 
to the operational decomposition.
Assembly, integration, and verification definitions capture the information •	
that is required for the bottom-up assembly, integration, and verification of the 
system. This information is closely aligned with, and must be consistent with, 
the functional and physical decompositions. It is a basic input for the project 
logistics and planning, in particular of all tests.

Dynamic or behavior models are virtual models that represent expected or 
actual behavior of the system of interest, or aspects of that system. They are execut-
able through use of an appropriate computer tool. They are always idealizations of 
reality, with different degrees of fidelity, and usually allow for analysis of behavior 
over time. These models can be classified into the subcategories of domain-specific 
analysis models and functional system simulators.

Domain-specific analysis models are independent models that are used by the 
individual engineering disciplines, in support of the overall systems-engineering 
process. Typically the models focus on the aspects that are important for a par-
ticular discipline. Other aspects are neglected or only captured rudimentarily. 
For example, for attitude and orbit control, a model is formed around the control 
loop with all its contributors like controller, sensors, actuators or disturbances, 
while the 3-D physical geometry is only represented schematically or completely 
abstracted into the relevant centers of gravity and moments of inertia. In some 
domains the conversion between a design (definition) model and an analysis model 
is automated or semi-automated with manual assistance, while in other domains 
it is still fully manual. This implies a significant effort for the model’s creation and 
maintenance. Often the structure of the analysis models is decomposed along the 
system functions of the corresponding subsystem. The product structure is often 
not captured. Only selected properties of the system design are assigned to the 
functions. The analysis models are used for two purposes: (1) during the design 
phases they are used to understand the problem, identify constraints, and assist in 

finding design solutions, and (2) during the later phases they are used to verify the 
system that is realized (verification by analysis). Models for design and for verifica-
tion are not necessarily the same, but the latter may evolve from the former.

Functional system simulators can be considered as a virtual representation of 
a system that can be used or operated like the “real” system. Telecommands are 
received and processed, corresponding telemetry is provided. Typically the flight 
software or at least elements of it are in the loop. The functional system simula-
tor follows the system design on (at least) the top decomposition level: therefore 
top-level elements (equipments) typically have a direct virtual representation. The 
equipment models closely reflect their behavior according to the corresponding 
specifications. This applies in particular to operational and electrical interfaces, 
which are represented on the protocol level. Besides the virtual representation 
of the system architecture, the physical behavior of the system as a whole is also 
represented. Typically, at least the following physical behavior is represented: rigid 
body dynamics, power, and thermal. Therefore the functional system simulator is 
by definition a multidisciplinary representation. The configurations of a functional 
system simulator typically comprise the following:

Functional validation of the attitude- and orbit-control algorithm•	
System-level software integration and verification•	
Hybrid configuration (electrical functional model) with hardware and software •	
in the loop
Operations simulator for the ground segment•	

Data models and meta models capture the structure of data in computer 
applications. As mentioned above, the static or structure models are stored as 
data sets inside the databases of the supporting computer tools. As most tools 
have proprietary native data structures and at best restricted data import/export 
interfaces, their integration is very costly. However, for effective integration of 
the tools one needs a precise definition of what data is used or required along the 
lifecycle. This information can be used to map native tool data structures and 
develop data-exchange solutions. Having powerful (ideally standardized) data 
models in place is crucial for selecting or integrating tools effectively. As these data 
models define the structure of other model data, they are often called metamodels. 
Typically data models are defined in dedicated languages, such as UML class 
diagrams (with the Object Constraint Language), ISO 10303 EXPRESS, Object Role 
Modeling (ORM), or XML schema.

Modeling infrastructure models is needed for the deployment of effective model-
based systems engineering, which requires the integration of the supporting tools 
in a modeling infrastructure. This infrastructure can be regarded as a kind of “super-
tool,” which needs to be configured according to the needs of a specific project. The 
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infrastructure itself needs to be designed, implemented, operated, and maintained, 
and should therefore itself be the subject of a systems-engineering approach that 
extends across different projects and their development teams. Such an approach 
would maximize the effectiveness of investments — both in infrastructure and train-
ing — and promote reuse and knowledge sharing across different projects.

Process models can be used to capture and improve engineering processes and 
workflows. Proceeding with the integration of tools also enables more comprehen-
sive integration of the engineering processes. We expect that through the use of 
emerging tools for business-process modeling and execution, MBSE-based process-
es can be improved as well.

The Way Ahead in Model-based System Engineering for European Space Programs
Based on the successful application of systems-engineering processes for 

many European space programs, ESA and the major European space-system 
integrators started ambitious research-and-development activities to enhance 
systems engineering with a set of supportive models and enable MBSE. Although 
the attempt was to support the complete systems-engineering process from early 
analysis through final verification, the focus has been on modeling and simulation. 
Demands for providing more powerful, flexible, and modular functional system 
simulators mainly caused this. ESA developed (for example) the System Simulation 
and Verification Facility, Generic Project Testbed, and EuroSim, while Astrium 
developed the Model-based Design and Verification Environment.

Meanwhile these simulators, their infrastructures (for development and run-
time) and the simulator engineering processes are consolidated. However, the lack 
of reliable system models becames more and more obvious. Modeling and simulation 
often just meant modeling for simulation, as the only purpose of the modeling was 
the development of the simulator. In general, static models that represent system 
structure and are shared between disciplines have not yet been achieved. This kind 
of integration remains a major issue. In some areas like mechanical engineering and 
production (often called PLM), there have been significant advances which integrate 
the mechanical subset of disciplines, but in other areas like functional systems 
engineering, the available solutions cannot be considered adequate, and important 
parts of the process are only supported with typical office tools (like word processors 
and spreadsheets). The way forward is to continue with, on the one hand, a top-down 
systems-engineering approach with conceptual, semantic, data models to help real-
ize a true MBSE infrastructure, and on the other hand, a bottom-up software-and-
simulator-engineering approach starting from the actually realized infrastructure.

A number of initiatives are under way today to evolve and promote the use of 
MBSE methods and tools in early project phases and during verification activities. 
MBSE is the focus of a multidisciplinary research-and-development initiative called 

Virtual Spacecraft Design under ESA contract in the frame of its Technology Research 
Program and General Support Technology Program. It is part of a three-year plan 
(2008–2010), which is expected to yield tangible results in the near future.

Within Virtual Spacecraft Design a conceptual data metamodel for the whole 
space-system lifecycle is further elaborated. An initial version has been established 
and is being finalized for publication (see ECSS forthcoming 2). This data metamod-
el has been validated with a number of industrial scenarios, and is also already 
partially used in actual space projects. An overall comprehensive validation is 
currently under preparation. It also includes the quantities, units, dimensions, and 
values model defined in SysML v1.2. Another task is the implementation of a space-
system data repository called the Space System Reference Database that provides 
integrated data-management services. The repository complies with the conceptual 
data metamodel. It contains a systems-engineering data hub that also acts as a 
central store for data that is common to all engineering disciplines, and for results 
consolidated at system level. Its functionality comprises persistent data storage and 
retrieval, version-and-configuration control (including branching and merging of 
design options), data consistency and completeness checking, support for automat-
ed model transformation, and report generation. Furthermore, a comprehensive set 
of tools called the Space System Design Editors was developed as well as the Space 
System Visualisation Tool. Figure 3 shows an architectural overview of the Virtual 
Spacecraft Engineering Environment of the Virtual Spacecraft Design project. The 
software-engineering approach for the project itself is highly model-driven.

Figure 3. Overview of the European Virtual Spacecraft Engineering Environment (currently being 
developed as part of the Virtual Spacecraft Design project)
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SysML vs. SysML Tools vs. MBSE
While SysML is sometimes considered as equivalent to MBSE, our view is 

that SysML is one of many means that can be used for MBSE for space systems. 
SysML is adequate to represent the overall high-level design of the system to be 
developed. These high-level models are appropriate in the early lifecycle phases 
(0 and A), to elaborate requirements, develop concepts, assess feasibility, and 
perform trade studies. However, once the project reaches Phase B (preliminary 
design), the models require so much detail that they are best handled by engineers 
using their discipline-specific modeling tools. We propose that engineers maintain 
a high-level model in SysML that reflects the common systems-engineering data 
during the whole lifecycle, such as system budgets, critical design parameters, and 
the main decomposition trees together with the interface definitions. We do not 
consider it useful to implement in SysML the complete space-system design to the 
lowest level of detail, since the sheer amount of data would render it unusable to 
the systems engineer. Specific-discipline engineers would typically be unfamiliar 
with SysML and be more efficient with their discipline-specific representations. The 
ongoing INCOSE MBSE Challenge for Space Systems is seeking to apply SysML to 
the representative textbook example called FireSat (Larson and Wertz 1999). The 
results will provide useful hints on the best practice for using SysML for space-
systems engineering.

Today we see the primary application of SysML in early space-system 
specification and trade-offs, by using its standardized graphical notation for 
high-level system design, directly fed from the space-system data repository. 
Research into the feasibility and effectiveness of this approach is currently in 
progress, among others in the Virtual Spacecraft Design project mentioned 
above. SysML can fill the gap between the established requirements-management 
tools and the discipline-specific tools for modeling and simulation. Such usage 
appears attractive, in particular the SysML graphical notation, known as the 
“concrete syntax.” However, the current implementation of SysML in existing 
tools raises doubts with respect to the feasibility for application in Phase B, C, 
and D. The underlying metamodel of SysML (its abstract syntax) is very rich but 
complicated and carries a lot of weight from its UML and Meta Object Facility (MOF) 
heritage. Mapping other data repositories to and from SysML data repositories 
is not straightforward. In this respect it is interesting to note and investigate the 
possibility for a kind of “light-SysML” approach based on the much simpler Ecore 
metamodel established in the open-source Eclipse project.

Most current SysML tools are adaptations of existing UML computer-aided 
software-engineering tools, which have advantages in terms of the quality of the 
user interface and the maturity of graphics manipulation, but also disadvantages 
because the software-engineering background and software concepts keep shining 

through. For engineers that do not have experience with UML, the learning curve can 
be quite steep, and a number of constructs may not be intuitive. This is a potential 
barrier to the uptake of SysML by systems engineers. Another important limitation 
concerns data exchange. A systems-engineering tool needs to connect with many 
other different tools. For this, efficient and high-quality data exchange is necessary. 
Currently the reliability of data interchange based on SysML or XMI is very limited, 
and the exchange of diagram layouts is not yet supported at all. Also, incremental 
changes to data are very hard to achieve through XMI. These issues are well known 
and being worked on by the UML/SysML community, but it will take quite some time 
before robust industrial solutions are available. This is a critical success factor.

SysML tools (like all UML-based tools) have the built-in capability — called 
profiling — to customize and extend the standard language and notation with user-
defined additional concepts. On one hand it is very powerful and flexible to have 
this kind of low-cost customization capability, but on the other hand, if profiling 
is used too easily or heavily, it can lead to many cumbersome usability aspects, 
in particular for data exchange and use by different organizations. Nevertheless, 
SysML seems to be the best candidate for capturing and maintaining a system syn-
thesis representation that can be maintained throughout the system’s lifecycle and 
provides a standardized graphical notation as well as a mature editing interface. 
The recently updated UPDM specification, which promotes SysML in many of its 
diagrams for system-of-systems development, reinforces SysML’s position.

Enabling Technologies
One of the key elements for pursuing MBSE is the availability of a conceptual 

data metamodel that captures the semantics of all data relevant to systems engi-
neering in a certain application domain, in our case space-systems engineering. 
The model needs to be defined in a formal, computer-readable way, for two reasons. 
First, the model is sufficiently large that without formalism and data-modeling 
tools it is almost impossible to make it consistent and correct, and to evolve it in a 
controlled way over time. Second, it should be possible to use the model in a model-
driven-architecture (MDA) framework (see http://www.omg.org/mda).

In our experience the MDA approach is very efficient and robust for the devel-
opment of adaptations to MBSE tools, such as user interfaces and data-exchange 
adapters. Very large parts of the required software can be generated automatically, 
and automated consistency checking of implementations also becomes possible. We 
would identify the following use cases for the formal conceptual data metamodel:

Support to the overall definition of an MBSE methodology for a specific •	
application domain
Design-editor development and customization, e.g., profile definition for a •	
SysML tool
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Generation of data-exchange interfaces and adapters•	
Generation of database schemas in different implementation languages•	
Reference model to enable central or distributed data repositories for systems •	
engineering that can act as a “data hub” for the tools of all participating 
disciplines

For space-systems engineering an ECSS technical memorandum with a concep
tual data metamodel (specified in UML class diagrams) has been developed (see 
ECSS forthcoming 2). This model is currently being used and validated in ESA 
research-and-development projects.

Besides the conceptual data model, a formalized and generalized representation 
of value properties is also essential to succeed with MBSE. A value property — which 
is a SysML term — is a property with a simple value, like a design parameter or a 
physical quantity like length, mass, power, force, volume, speed, or electric current. 
Today in many tools and databases, such properties are still represented as “string” 
types or even hidden in larger text fields, and often just as values without any 
measurement units or physical dimension, which severely impedes correct usage 
and can be a source of serious errors. An agreed-upon and standardized value-
property model will greatly improve this situation. On the basis of earlier work 
on STEP data-exchange standards, ESA has contributed to the development of 
a very powerful and comprehensive Quantities, Units, Dimensions, and Values 
(QUDV) data model in SysML version 1.2, annex C (see http://www.omgsysml.org). 
QUDV is based on, and is fully compatible with, the emerging ISO/IEC 80000 
standard on quantities and units. The same model is adopted in an ECSS document 
(forthcoming 2).

With the emerging technologies for advanced graphical user interface and 
editors (such as using the open-source Eclipse modeling framework), alternatives 
to classic proprietary COTS system-modeling tools become feasible for some 
applications. Instead of using the conceptual data metamodel to customize or adapt 
a COTS tool for integration into a model-based systems-engineering infrastructure, 
a dedicated tool for domain-specific application can be generated for the most 
part and then manually completed at acceptable cost. Early prototypes have 
yielded very promising results, and this work will be continued. In the validation 
activities in support of the new ECSS document (forthcoming 2) Eclipse editors 
have been automatically generated—implementing the SysML graphical notation. 
Another example is from functional simulator development where classic tools 
from SysML and UML have been replaced with editors based on Eclipse Modeling 
Framework / Graphical Modeling Framework, derived from a conceptual data 
metamodel for simulator engineering.

Conclusions
A fully operational MBSE process with a corresponding tool set has not yet 

been realized in space projects today. A number of elements have, however, been 
implemented successfully, like an integrated design model (IDM) for concurrent 
engineering in the early lifecycle phases, end-to-end performance simulation for 
earth-observation instruments, and operations simulation for mission preparation. 
ESA has started a dedicated set of research-and-development initiatives to further 
develop MBSE for space missions. All these initiatives will remain ineffective, 
though, if they are not accompanied by representative pilot applications, where 
benefits can be measured in the context of a real project and made visible to 
space-project managers. For this purpose, ESA and the European space-system 
integrators will need to sponsor shadow application of MBSE elements in ongoing 
projects. Technology demonstration projects should also be used to demonstrate 
advanced MBSE development methods and tools in addition to the more traditional 
focus on innovating the space-system products directly.

Adoption of MBSE methods and tools requires initial investments in time and 
money by project teams before actual benefits can be obtained. This is why MBSE 
will only be adopted if reasonably substantiated quantitative evidence of such 
benefits can be provided. This is a very difficult endeavor, but examples from 
outside the space sector where such methods have been adopted can be a great 
help. It is also important to realize that smart technical ideas and approaches 
are not enough, but need to be supported by mature tools and documented in 
standards, handbooks, and tutorials, and finally adopted in internal company 
procedures. Dissemination in seminars, training courses, and technical 
publications is also essential. Last but not least, systems engineers and project 
managers need to embrace the ideas and incorporate them into their daily practice. 
As always, incremental evolution rather than revolution seems the way to go. 

References

ECSS (European Cooperation for Space Standardization). 2008. ECSS-S-ST-00C: ECSS system; 
Description, implementation and general requirements. This and the following ECSS documents are 
available at http://www.ecss.nl.

 . 2004. ECSS-P-001B: Glossary of terms.

 . 2009a. ECSS-M-ST-10C Rev. 1: Space project management; Project planning and implementation.

 . 2009b. ECSS-E-ST-10C: Space engineering; System engineering general requirements.

 . Forthcoming 1. ECSS-E-TM-10-21A: Space engineering; System modelling and simulation.

 . Forthcoming 2. ECSS-E-TM-10-23A: Space engineering; Engineering database. (Note: This 
establishes a conceptual data metamodel for space-system lifecycle-data repositories.)

 . Forthcoming 3. ECSS-E-TM-10-25A: Space engineering; Engineering design model data 
exchange. (Note: Scope is the exchange of conceptual design data between concurrent design 
facilities.)

Larson, W. J., and J. R. Wertz. 1999. Space mission analysis and design. 3rd ed. El Segundo, CA: 
Microcosm.



December 2009 | Volume 12 Issue 454

Special Feature

SysML is the Point of Departure for 
MBSE, Not the Destination
Anatoly Levenchuk, anatoly.levenchuk@incose.org

Engineers today use the word model in such a vague way that 
it means almost the same thing as description. When we 
write model-based systems engineering, it could also be read 

as description-based systems engineering. But isn’t any engineering 
description-based, with text, drawings, and formula descriptions? 
Why did we coin a new term to describe ordinary practice, and 
stress that this is the future of systems engineering?

I guess the new term would appear to reflect new types of 
models. However, MBSE is not about any descriptions usually 
associated with “models.” MBSE is not about simulations and 
emulations. MBSE is not about using Modelica, a non-proprietary, 
object-oriented, equation-based language to conveniently model 
complex physical systems containing mechanical, electrical, elec-
tronic, hydraulic, thermal, control, electric power or process-ori-
ented subcomponents, nor finite element analysis models. Neither 
is MBSE about using complex multi-physics models in simulations 
of cyberphysics systems, where we simultaneously compute several 
different nature models (Sztipanovits 2008). Nor is MBSE about 
Reference Process Models that we can see in ISO 15288 and other 
systems-engineering standards.

Model-based systems engineering is about generative models. 
I am using the term generative here in the same sense as Noam 
Chomsky’s “generative grammar”; this should not be confused 
with generative models from statistics. According to Chomsky, 
“when we speak of a grammar as generating a sentence with a 
certain structural description, we mean simply that the grammar 
assigns this structural description to the sentence” (Chomsky 
1965: 9). Models in MBSE generate system descriptions in the same 
sense that generative grammar generates sentences. Generative 
production systems (Fox 2009) use the same notion of generative 
grammars — to shape grammars used in a generative design 
domain. I suppose that such an approach is valid not only to shape 
languages of mechanical engineering but to all languages that 
systems engineers experience in interdisciplinary projects.

In essence, model-based systems engineering, as described by 

the Object Management Group, is about the use of metamodel lay-
ers (description-of-descriptions layers, language layers) to describe 
systems. Every layer of the model stack (model M0, metamodel M1, 
meta-meta-model M2, etc.) can be detailed and/or transformed to 
“generate” another description that addresses interest of one or 
more stakeholders, and eventually these comprehensive descrip-
tions will be sufficient to the realization, integration, verification 
and validation of a system. A key characteristic of model-based 
systems engineering is the support of multiple viewpoints, that 
is, multiple methods of modeling to provide multiple views, or in 
other words, multiple groups of description that address differ-
ent interests of appropriate stakeholders. Fifteen years ago it was 
not common to accent this multiple-view approach. Modeling was 
usually mono-modeling that provided one type of view every time, 
and providing links between relations and objects in different 
views was a big problem to engineers. The OMG’s Unified Model-
ing Language was a breakthrough that brought the paradigm of 
multiple viewpoints or views to mainstream software engineering. 
UML describes five types of diagram to enable the user to capture 
different aspects of software systems. Moreover, UML is expandable 
in a formal manner, and after a ten-year lag, systems engineering 
now has a means to provide these multiple viewpoints (ISO 42010) 
description in the form of SysML.

UML, along with the OMG’s (2006) Meta Object Facility (which 
provides interoperability for all UML-based models), is a core lan-
guage of the OMG (2003) model-driven architecture (MDA). The MDA 
community is rethinking their scope and approach from a software-
centric to a system-centric view (Cloutier 2006; Dickerson 2007). Key 
features of MDA include multiple layers of abstraction (metamodel-
ing) and multiple viewpoints with definite correspondence rules, 
provided by its metamodels. The main disadvantage of MDA is that it 
is bounded by UML. Why is UML a disadvantage? Because in a multi-
disciplinary project we cannot expect that all specialists speak UML 
or SysML, even if we extend it with domain-specific stereotypes.

Along those lines, the software-engineering community has 
started down another branch of the modeling movement related 
to the domain-specific-language (DSL) approach to modeling. 
Domain-specific languages provide a viewpoint for expert’s view 
to particular domain. The domain-specific-languages approach 
combines domain-specific metamodels and notation. This is 

Systems engineers are 

just now using SysML 

to create consistent 

models instead of 

domain-specific 

languages — much like 

programmers a few years 

ago used Java only, not 

Java + DSLs.
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different from the MDA approach, which prescribes MOF/UML-based metamodels 
and notations. Thus programmers should provide separate integrated development 
environments for each domain-specific language. Then experts can use such a 
suite of specialized, integrated development environments to model their systems. 
A corollary is that all contemporary CAD suites can be regarded as integrated 
development environment suites for “programming” of engineering domain 
models in domain-specific languages such as piping-and-instrumentation-diagram 
languages for modeling of hydraulic systems or 3-D graphical “language” for the 
modeling of spatial shapes. If we want to capture a facility model of a process plant 
we have a difficult choice between MDA/SysML modeling of hydraulic systems or 
modeling it with piping-and-instrumentation-diagram notations. Domain-specific 
languages for contemporary CADs win hands down by capturing the specific 
concepts and notation used in specific domains. Yet we need to combine all these 
incompatible domain-specific languages into one coherent facility model.

There exist two options to be consistent among the zoo of different domain 
specific languages: (1) ontology-based mapping of different DSL metamodels and, 
therefore, linking domain-specific models in a common data-centric model reposi-
tory; or (2) using a language workbench.

The ontology-based mapping that is now used by all major CAD vendors uses 
different upper ontologies and domain taxonomies—for example, ISO 15926 (ISO 
2004a) for process industries, ISO 18629 (ISO 2004b) for a process-specification 
language, or ISO/PAS 16739 (ISO 2005) for building information modeling in con-
struction industries. This is a viable option to cope with legacy systems that support 
“good old” domain-specific languages for engineering modeling. It is a relatively 
fresh movement (started from 1994 work on Shell’s downstream data model: see 
West 2009), originating from the data-modeling branch of software development. 
Now adopters of this approach are moving toward using the readily available 
semantic Web tools (AIFB 2009) to perform data modeling and data integration, 
starting with experiments in logical reasoning for “executing” of ontology-based 
models. Today most ontologists (or data modelers) are former programmers, soft-
ware analysts, and database architects; in other words, this field is de facto now 
part of software engineering, not systems engineering.

Language workbenches are newly emerging integrated development environ-
ments that are especially devoted to multiple domain-specific languages (Fowler 
2005). Developing a language-independent interpreter/compiler and language-
independent graphical editor is a challenging and complex task. But the pros-
pects are attractive: every expert can get her own customized DSL, and all of 
these domain-specific languages that addresses multiple stakeholders’ interests 
will work in concert with one another. Moreover, these distinct descriptions that 
provide separations of concerns can be used for different purposes and in different 

ways: they can be validated for consistency, transformed to output language suited 
for manufacturing tools, or transformed to executable simulation models.

This approach may prove superior to that of model-driven architecture with 
UML or SysML), because it provides freedom of language choices and still retains 
a coherent model. Engineering-domain experts will get integrated development 
environments (editors, interpreters, repositories) for languages that they are accus-
tomed to using (both the metamodel part of these languages and notational part), 
not stereotypes of UML with predefined UML semantics in predefined UML syntax. 
Language workbenches permit programmers to easily produce domain-specific 
integrated development environments while still providing a common repository 
for different domain-specific models that are produced by different experts in the 
different languages. You may think about language workbenches as “CAD for CAD” 
that preserve the freedom of an arbitrary domain language (metamodel + notation) 
choice. A language workbench is unlike UML models, which permit a choice from 
UML-defined metamodels only and from UML stereotype notation only. Program-
mers will add languages to the common language environment (viewpoints), and 
domain experts will develop model (views) with these languages. Everyone will be 
doing what they do best.

Today, language workbenches are limited to the software community. Language 
workbenches first appeared in the form of integrated development environments 
for compiling multiple domain specific languages to Java or C#, not to “compile” 
multiple engineering-domain-specific languages to a facility model in contemporary 
CAD suites. So far, systems engineers have ignored the domain-specific language 
and language-workbench approaches. Systems engineers are just now using SysML 
to create consistent models instead of domain-specific languages — much like 
programmers a few years ago used Java only, not Java + DSLs.

Systems engineers may continue to lag behind the software community in 
adopting these new modeling approaches from software engineering. However, I 
believe they should overcome their resistance to change, and begin to experiment 
with these new technologies. This would result in SysML being merely the point of 
departure for model-based systems engineering, not the destination point.
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Fellows’ INSIGHT

Fellows’ 
Insight

Key Issues of Systems Engineering
Presented by the INCOSE Fellows 
Introduction by William Mackey, william.mackey@incose.org

When I became chair of the INCOSE Fellows in 2007, 
I quickly realized that I was meeting with some of 
the finest minds in the metadiscipline of systems 

engineering. I began to ask myself and others how we could make 
our time together in business meetings more stimulating and 
how we might create the opportunity for all of those experienced 
systems engineers to share their ideas with regard to the discipline. 
I asked for a volunteer to collect information regarding the most 
important issues related to the metadiscipline. For a year, Bill 
Schoening collected a small database of what we called “The Key 
Issues of Systems Engineering.” The Fellows identified 35 major 
issues related to systems engineering with a large number of sub-
issues numbering almost 100 issues in all.

The Process
I decided that an experiment was in order, so in 2008 I asked 

for a vote on which of the issues we as a body should address first. 
I also asked who might address those issues. The list narrowed to 
eleven, with Fellows’ names attached to each of the eleven issues.

For the 2009 International Workshop in San Francisco, I cre-
ated ten teams of three Fellows each and requested those Fellows 
to prepare their views on these defined issues. The discussions at 
IW09 required a full day and were so in-depth that we were only 
able to complete the discussion of five of those issues. Everyone 
was extremely pleased with our experiment, and began to ask how 
we might share our intellectual day with the rest of the INCOSE 
membership. My view of the day was that it had been the best 
sharing of ideas that I had ever experienced in INCOSE including 
symposia, workshops, chapter meetings, and hundreds of work-
ing group sessions that I had attended since becoming an INCOSE 
member in 1992.

I had assigned a lead speaker for each issue, so I requested the 
leaders to draft a white paper for each of the key issues we had 
discussed. Each leader created a draft and got a level of consensus 
with each of his or her team members. Once the team had agreed 

on the content of the white paper, the team sent the white paper 
to every Fellow for review. Gaining consensus from such a large 
body is not at all easy, but with a few rules we now have five white 
papers we will present to you in INSIGHT. This issue of INSIGHT 
contains the first white paper, and the remaining key issues will be 
discussed in future issues. I wish to indicate the following provisos 
related to these white papers:

The summaries are the consensus of the Fellows’ teams, and •	
not necessarily the Fellows as a whole. The teams solicited 
comments from the Fellows as a whole and incorporated them 
where they thought they were valid and pertinent.
The summaries are not prescriptive; they are simply opinions •	
and starting points for future discussions. They are not position 
statements, but rather discussion papers to provide insight to 
stimulate further discussion.
The summaries do not represent the position of INCOSE nor do •	
they necessarily agree with published INCOSE documents, such 
as the Systems Engineering Handbook. They represent ideas that 
may or may not be incorporated in INCOSE documents in the 
future.
The summaries do not represent direct or indirect criticism of •	
any person or group. Many ideas exist within INCOSE, and only 
the future will determine the consensus of INCOSE as a whole.

The Key Issues of Systems Engineering
The five issues that were discussed at the Fellows’ IW09 meeting 

and the teams that presented and documented these issues are as 
follows:

Issue 1. What are the general principles applicable to systems? 
Speakers: D. Hitchins (lead), B. Boehm, S. Sheard

Issue 2. What is the “systems approach” and why is it fundamental 
to systems, systems thinking, systems methodology, systems design, 
and systems engineering? 
Speakers: S. Jackson (lead), D. Hitchins (online), H. Eisner (online)

Issue 3. How can you “prove” that your systems design will solve the 
customer’s problem before you build and prove that design? 
Speakers: J. Ring (lead), H. Eisner (online), M. Maier



December 2009 | Volume 12 Issue 459

Fellows’ INSIGHT

Issue 4. What is the return on investment (ROI) for using systems engineering? 
Speakers: B. Boehm (lead), S. Sheard, M. Maier

Issue 5. What distinguishes complex adaptive systems from other kinds of systems? 
Speakers: A. Sage (lead), J. Ring, S. Sheard

1. Early in 2009, a small team of INCOSE Fellows—Barry Boehm, Sarah Sheard, and I—explored this ques-
tion; this article resulted from our reflections.

What Are the General Principles Applicable to 
Systems? Derek Hitchins, profhitchins@incose.org 1

Uncertainty reigns over the question of what might reasonably be consid-
ered as a general systems principle, reflecting the confusion between 
systems-as-a-discipline, systems thinking, systems engineering, project 

management, engineering, engineering management, operations analysis, defense 
procurement, etc. Each of these may lay claim to being the source of general 
systems principles. Identifying the principles of systems and of systems engineer-
ing, then, depends upon what you think systems and systems engineering are. For 
instance, is systems engineering about systems, engineering, management, or is 
systems engineering something else: a unique metadiscipline, perhaps, as viewed 
by the doyen of systems engineering, Arthur D. Hall III (1989: 3–52)?

Reflecting this identity conflict, candidate principles might include the following:
Give the customers what they want.•	  This is the so-called “service principle,” so 
specifically neither systems, nor systems engineering: more, perhaps, commerce?
Faster, better, cheaper.•	  This is less a systems-engineering principle, perhaps; 
more a commercial lean-manufacturing mantra.
Brook ’s law:•	  “Adding people to a late project makes it even later.” This is project 
management rather than systems engineering.
Bellman’s principle of optimality.•	  Concerned with dynamic programming, so pos-
sibly with the “best” systems-engineering process?
Popper’s principle of falsifiability.•	  If systems engineering is scientific problem-
solving, then solutions should be testable, i.e., open to being proved false.
Systems engineering looks upwards and outwards.•	  This is more about systems-as-
a-discipline and systems-engineering philosophy than a general systems prin-
ciple.
Kaizen, the philosophy of continual improvement.•	  Kaizen is generally viewed as a 
philosophy, or school of thought, rather than a principle, but this is a possibility.
Optimize the whole, not the parts.•	  A principle for systems design or architecting, 
so this would be a possible general systems-engineering principle.

Form follows function•	 . Louis Sullivan (1947: 208) famously formulated this well-
known principle: “It is the pervading law of all things organic, and inorganic, of 
all things physical and metaphysical, of all things human and all things superhu-
man, of all true manifestations of the head, of the heart, of the soul, that the life 
is recognizable in its expression, that form ever follows function. This is the law.” 
No confusion there, then! At the time, Sullivan was concerned with the design of 
skyscrapers—but is it a general systems principle?

In addition to these, I have previously collected several “principles of creativity 
in systems engineering” (Hitchins 1992: 246 – 248), associated with the conception 
and design phases of systems engineering:

• Highest level of abstraction
• Disciplined anarchy
• Breadth before depth
• One level at a time

• Decomposition before integration
• Functional before physical
• Tight functional binding
• Loose functional coupling 

• Functional migrates to physical

Some of these so-called principles (practices?) guide abstract problem solving, 
others guide top-down design elaboration, while still others guide the development 
of systems architecture and some guide procedure. According to this approach, 
the concepts of “functional before physical” and “functional migrates to physical” 
reflect Sullivan’s “form follows function.” But, are they “general systems princi-
ples,” or are they confined to only a part of orthodox systems engineering?

What is a principle in this context? According to the Oxford American Dictionary, 
a principle is “a general scientific theory or law that has numerous special appli-
cations across a wide field.” If we take this definition, then we are seeking some 
underlying or extensive, or systemic, characteristic that relates to all systems, to all 
systems engineering — or, ideally to both. These characteristics might be the way 
systems form, sustain, operate, adapt, evolve, fade, and die. Such principles are 
likely to be founded in systems science, the science of wholes and of complexity, 
which incorporates the physical, natural, and life sciences. General systems prin-
ciples are hard to find in the literature, however, without some prefix: for example, 
one finds “operational systems principles,” “control systems principles,” or “dis-
tributed systems principles.” Examination of supporting literature shows these 
terms to refer less to systems in general, and more to operations, control, distribu-
tion, and so on. On the other hand, it appears reasonable to suppose that general 
systems principles will also have relevance to systems engineering.

General Systems Principles
Propositions that are self-evidently true are axioms, and the following appear 

axiomatic:
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First principle of systems. The properties, capabilities, and behavior of a system 
derive from its parts, from interactions between those parts, and from interac-
tions with other systems.
Corollary to the first principle. Altering the properties, capabilities, or behavior 
of any of the parts, or any of their interactions, affects other parts, the whole 
system, and interacting systems.

The first principle, which seems to derive from general systems theory (for 
which see Bertalanffy 1968), may be axiomatic, but is it helpful? Research into the 
formation and behavior of systems considers not a single system, but networks of 
interacting systems. General systems principles emerging from such work should, 
in principle, prove more useful.

In one approach, known as “systems-lifecycle theory” (Hitchins 2003: 107–121), 
the following general systems principles are expounded to form an integrated set, 
which together form a systems-lifecycle map (see figure 1). See Hitchins (2003) for 
further explanation of how these systems principles apply to the creation, manipu-
lation, demise, and design of systems; I have also explained them in a brief video 
available at http://www.hitchins.net/SystemsPrinciples.mov. Note that the seven systems 
principles apply collectively to any open system or network of such systems.

The principle of system reactions1.	  (after Le Chatelier’s principle). If a set of 
interacting systems is in equilibrium and either a new system is introduced to 
the set, or one of the systems or interconnections undergoes some change, then, 
insofar as they are able, the other systems will rearrange themselves to oppose 
the change and, in so doing, move to a new point of equilibrium.
The2.	  principle of cohesion. A system’s form is maintained by a balance, static or 
dynamic, between cohesive and dispersive forces.
The principle of adaptation.3.	  For continued systems cohesion, the mean rate of sys-
tem adaptation must equal or exceed the mean rate of change of the environment.
The principle of connected variety.4.	  The stability of interacting systems increases 
with variety, and with the degree of cohesion of that variety within the 
environment.
The principle of limited variety.5.	  Variety in interacting systems is limited by the 
available degrees of freedom and minimum degree of differentiation.
The principle of preferred patterns.6.	  The stability of interacting systems increases 
both with the variety of systems and with their cohesion.
The7.	  principle of cyclic progression. Interconnected systems driven by an external 
energy source will tend to a cyclic progression in which variety of systems (and 
variety within systems) is generated, dominance emerges to suppress the variety, 
the dominant mode decays or collapse, and survivors emerge to regenerate variety.

The principle of cyclic progression and the lifecycle map of figure 1 address the 
phenomenon of “entropic cycling,” in which order and disorder among complex 
networks of systems are observed to cycle repeatedly over time. Economic, ecologi-
cal, and climate systems display this characteristic, as do teams, businesses, and 
industries, leading me to propose a new law of complexity (Hitchins 2008): “The 
entropy of open, interacting systems cycles continually at rates and levels deter-
mined by available energy.”

How does the map work? The lives of systems move around the map in a clock-
wise direction. Starting at one o’clock, energy promotes environmental change 
and variety generation; environmental change promotes adaptation, which also 
promotes variety generation. Varieties may act and interact with others to form 
complementary sets and connected variety, promoting a tendency to stability (five 
o’clock). This in turn leads to preferred patterns, and to systems cohesion, the latter 
being threatened by dispersive influences, in which generated variety, which has 
not been taken up as connected variety, may behave destructively — as with patho-
gens and viruses in organisms and computers, and sociopaths in society.
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Figure 1. Systems-lifecycle map
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Preferred patterns give way to dominance, in which one aspect of the network of 
systems dominates — commands the bulk of resources, energy, and so on — so weak-
ening the others, leading to suppressed variety; this in turn presages decay and 
collapse, if system cohesion is inadequate or when environmental change arises, 
finding the systems with insufficient variety to respond to changing circumstances.

Note the positive feedback loop: decay and collapse, variety generation, dis-
persive influences, system cohesion, decay and collapse. This positive feedback 
loop suggests that collapse, when it occurs, may be sudden and catastrophic. We 
see such situations in the domino collapse of the former Soviet Union, for instance. 
Collapse is not inevitable, however: restoring variety may, instead, redirect the 
path of the weakened system back around the connected variety loop again. Such 
a system is seen to undergo periodic perturbations or upheavals. IBM underwent 
such an upheaval in the not-too-distant past when it was slow to recognize market 
environmental change, and the consequent limitations of its computer mainframe 
range. Some organizations find it beneficial to undergo periodic upheaval (reorga-
nization), to avoid becoming moribund; others absorb new variety by taking over 
companies. Could this be systems engineering of a kind?

The systems-lifecycle map is not limited to explaining past situations in sys-
tems terms: it also offers potential for a different kind of systems engineering. For 
instance, by preventing dominance and by maintaining and refreshing variety in 
systems, they may exist indefinitely — without end. Alternatively, encouraging dom-
inance and/or restricting variety leads to moribund systems, poised to collapse. 
This pattern has been observed in some political systems, and, as (inadvertently?) 
practiced by some accountants in industry during periods of recession. This “dif-
ferent take” on systems engineering, with its emphasis on variety, dominance, and 
entropic cycling, offers a new perspective on viruses, and how to deal with them. It 
may even shed some light on the evolution of organization, of industry, society, and 
even of life from the primordial soup!

Systems-Engineering Principles
The following are fundamental, guiding principles that have been the foun-

dation of systems engineering, apparently since its inception. In many respects, 
systems-engineering principles A through D define and characterize systems 
engineering. It might actually be reasonable to consider them as the four “pillars of 
systems engineering.”

SE Principle A: The Systems Approach
The systems approach (Jenkins 1969) will be addressed fully elsewhere in this 

series of articles. Essentially, the systems approach addresses the system of interest 

(SOI) in context, as an open1 system that (1) interacts with and adapts to other 
systems in its operational environment, (2) contains open, interacting subsystems, 
and (3) forms part of some wider or greater whole. The systems approach, then, 
considers an SOI to be open and dynamic, and to be comprised of open, dynamic, 
interacting subsystems. It also understands the SOI to exist in an environment; to 
interact with, and adapt to, other systems in that environment; and to form part of 
a larger, wider, or containing system.

SE Principle B: Synthesis
Synthesis brings parts together to act and interact as a unified whole. Parts 

or subsystems of a system cooperate, coordinate, contribute, and behave 
synergistically, enabled by their interconnections and interactions. Such 
patterns or orchestrations of interaction are preserved during design elaboration, 
development, construction, and integration; otherwise, integration will not 
reconstitute the original, designed whole. “The ‘essence’ of systems engineering 
is in choosing (conceiving, designing, selecting) the right parts, bringing them 
together to interact in the right way, and in orchestrating those interactions to 
create requisite properties of the whole, such that it performs with optimum2 
effectiveness in its operational environment, so solving the problem that prompted 
its creation” (Hitchins 2008: 120).

SE Principle C: Holism
As the contributors to Wikipedia explain it, “the properties of a given system 

(biological, chemical, social, sociotechnical, economic, mental, linguistic, etc.) 
cannot be determined or explained by its component parts alone. Instead, the sys-
tem as a whole determines in an important way how the parts behave.”3 The saying 
attributed to Aristotle puts it more succinctly: “The whole is greater than the sum 
of its parts; the part is more than a fraction of the whole.” Kast and Rosenzweig 
(1981: 46) define holistic as “emphasizing the functional relation between parts 
and whole; pertaining to totality, or to the whole. The holistic view is basic to the 
systems approach.”

Holism pervades our systems thinking and systems-engineering activity: we 
consider each and every part of a system always as connected, active, in context, 
not in isolation. Further, we avoid addressing only part of a problem, to avoid 
exacerbating the whole problem. So, consistent with the first principle of systems, 
systems engineering addresses the whole problem, and creates the whole solution. 
Similarly, systems design and systems engineering seek to optimize the whole 

1. An open system is one that exchanges energy, substance, and information with its environment.
2. Optimum in this context means simply “best” or “greatest.” “Best effectiveness” may be cost-constrained, 
and expressed colloquially as “most bangs per buck,” or “the best value for the money.”
3. Wikipedia, s.v. “holism,” http://en.wikipedia.org/wiki/Holism (accessed 20 Oct. 2009).
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system, not the parts: it can be shown that optimizing the parts independently of 
each other may actually de-optimize the whole.

SE Principle D: Organismic Analogy (Organicism)
The organismic analogy (Bertalanffy 1962) compares society and social systems, 

to the human body, with organic subsystems containing organs. This analogy does 
not claim that society actually is an organism, but that in some ways it behaves as 
one. One can think of society as having these organic subsystems:

• legal, judicial
• power, energy, water, sanitation
• waste disposal 

• education
• economic
• penal

Like organisms, such societal systems also display lifecycles (see figure 1). Sys-
tems engineering creates organized, purposeful sociotechnical systems, suggest-
ing that systems engineering might generally employ the organic metaphor, rather 
than the mechanistic metaphor of classic technology engineering. The organic 
metaphor is consistent with open systems that interact with, and adapt to, other 
systems in their environment.

William Emerson Ritter coined the term organicism in 1919 to denote the concept 
that (as Wikipedia puts it) “reality is best understood as an organic whole.” 4 
Organicism is close to holism. Organicism stresses the organization, rather than the 
composition, of organisms or organizations. Practicing systems engineers may find 
themselves concerned primarily with the conception, configuration, architecture, 
arrangement, interfacing, behavior, and integration of parts or subsystems into 
a functioning whole, performing effectively in its operational environment,5 and 
only indirectly with the “internals” (such as technology or structure) of the parts or 
subsystems. Hence the systems-engineering mantra, “form, fit and function.”

These four guiding principles of systems engineering (the systems approach, 
holism, synthesis, and organicism) inform and address all forms and “styles” of 
systems engineering. Indeed, if these guiding principles are not observed, it may 
be unreasonable, perhaps, to categorize such activities and processes as systems 
engineering. If, on the other hand, they are observed, then systems engineering 
will be based on system science.

SE Principle E: Adaptive Optimizing
Complex systems adapt to maintain their performance optimally effective in 

changeable, problematic situations. For purposeful, manmade sociotechnical sys-

4. Wikipedia, s.v. “organicism,” http://en.wikipedia.org/wiki/Organicism (accessed 20 Oct. 2009).
5. This is “looking upwards and outwards,” consistent with the philosophies of systems-as-a-discipline, 
systems thinking, and systems engineering.

tems, one way to keep abreast of continual change is continual redesign (Hitchins 
2008: 436 – 437). Continual redesign addresses the problem space, detecting and 
addressing changes in situation, operational environment, other interacting 
systems, and other factors; it continually conceives, designs, and implements or 
reconfigures the whole solution system to perform with optimal effectiveness in the 
contemporary operational environment.6

Optimal effectiveness analyses may employ, as the objective function, cost-
effectiveness (effectiveness divided by cost), casualty-exchange ratios, cost-
exchange ratios, or some combination of these and others. Optimal effectiveness 
may also be examined over a range of operational scenarios, to avoid undue 
specificity, and, in appropriate situations, may be achieved by changes in training, 
organization, procedures, strategy, and tactics.

Defense and aerospace organizations presently may redesign the whole after 
the operational and support systems have been “put to work,” creating a so-called 
“midlife update,” designed to re-optimize the effectiveness of the whole system, in 
line with the contemporary, evolving problematic situation — and to take advantage 
of new technology that has become available in the intervening period. Continual 
redesign takes periodic upgrade a stage further, to become continual or even con-
tinuous, starting before the first delivery of an operational system. The objective is 
to maintain operational performance in an optimally effective state from the point 
of delivery and throughout changing situation and circumstance. Continual rede-
sign requires that corresponding operational and support systems are designed for, 
and amenable to, continual change. Continual redesign is compatible with kaizen, 
the Japanese philosophy of continual (or continuous) improvement.

Continual redesign can be built into “fielded” systems: operational systems may 
reconfigure themselves to maintain optimal effectiveness. This capability already 
exists in some remote space systems, where physical human access is not feasible. 
Similarly, every time the operating system updates on my iMac, it goes into a pro-
tracted process of “re-optimizing”: I hope it knows what it is doing …

SE Principle F: Progressive Entropy Reduction
The process of systems engineering moves from problematic abstraction, 

disorder, and dysfunction, progressively towards order and function, resulting in 
a tangible, purposeful solution. As systems engineering moves from the problem 
space towards the fielded solution, the knowledge of the whole, the parts, and their 
interrelationships moves from the vague, abstract, incoherent, disordered, and 
incomplete towards the comprehensive, structured, organized, specific, complete, 

6. Continual performance and capability improvement of systems in operation is sometimes called opera-
tional systems engineering, and may be undertaken by customer or user organizations with or without 
support from industry, as they seek to “get the best” out of their systems in demanding situations.
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and tangible. In terms of knowledge or information, this process involves progres-
sively reducing entropy, going from a condition of high entropy (that is, disorder) at 
the outset to low entropy (order) at the finish.

Satisficing versus Optimizing
Systems engineering may be viewed as a problem-solving paradigm. Decision 

theorists identify three archetypal ways to address a problem (Ackoff 1981):

Solve•	  the problem — find a correct (or optimum) answer, as in an equation.

Resolve•	  the problem — find an answer that is “good enough,” to “satisfice.” 7

Dissolve•	  the problem — change the situation such that the problem no longer 
arises (often the “smart” choice of politicians).

The long-standing debate between satisficing and optimizing is of great sig-
nificance to systems engineering.8 Advocates of satisficing (Simon 1997: 295–298) 
believe that it has an advantage over optimizing. The theory of bounded rationality 
(Simon 1997: 291–294) postulates that decision-makers lack the ability and resourc-
es to arrive at optimal solutions, so instead they apply rationality only after having 
greatly simplified the choices available. Consequently the decision-maker is seen as 
a satisficer, one seeking a satisfactory solution rather than the optimal one.

Simon’s theory of bounded rationality is not without its detractors: “This theory 
does not categorically assert that it is better to satisfice than optimize… If a decision 
maker could optimize, it surely should do so. Only the real-world constraints on 
its capabilities prevent it from achieving the optimum. By necessity, it is forced to 
compromise, but the notion of optimality remains intact” (Stirling 2003: 10).

Satisficing may be seen as a pragmatic approach in constrained situations. A 
particular instance arises in defense procurement, where the operational environ-
ment in which the solution system will operate is continually changing. At the 
same time, complex defense and aerospace systems may take many years to real-
ize, during which the initial, “most effective” design configuration would no longer 
be “most effective” under changed conditions and operational environments. 
Operational systems may be obsolescent upon delivery. Even in the relatively stable 
1960s, large command-and-control systems had to be 67% and 95% redone to fit 
the environmental changes that had occurred during their development (Boehm 
1973). Since many defense systems-engineering projects continue to operate in this 
way (primarily due to contractual constraints on the defense systems-engineering 
process), it is worth enunciating one final systems-engineering principle.

7. Satisficing (a portmanteau of satisfy and suffice, coined by Herbert Simon) is a decision-making strategy 
that attempts to meet criteria for adequacy, rather than to identify an optimal solution.
8. See Sniedovich 2009 for a balanced discussion of optimization versus satisficing, Pareto optimization, 
adaptive optimization, and related issues.

SE Principle G: Adaptive Satisficing
“Successful systems engineering involves a continuing process of adapting the 

system’s requirements and solutions to enable the system to produce mutually sat-
isfactory results for its success-critical stakeholders” (Boehm and Jain 2006). In the 
context of the INCOSE definition of systems engineering as enabling the realization 
of successful systems, principle G implies two sub-principles, as given by Boehm 
and Ross (1989):

SE Sub-Principle G1: System Success. “A system will succeed if and only if it 
makes winners of its success-critical stakeholders.”

SE Sub-Principle G2: System Success Realization. “Making winners of your 
success-critical stakeholders requires
1. identifying all of the success-critical stakeholders (SCSs);
2. understanding how the SCSs want to win;
3. having the SCSs negotiate a win-win set of product and process plans;
4. controlling progress toward SCS win-win realization, including adaptation to 

change.” 
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In Harnessing Complexity: Organizational Implications of a 

Scientific Frontier (New York: Free Press, 1999), R. Axelrod 
and S. Cohen describe the use of genetic algorithms as the 

interaction of twelve concepts. These twelve concepts interact 
according to the following scenario (numbers added to annotate 
the twelve concepts):

Agents [1] of a variety [2] of types [3] use their strategies [4] in 
patterned interaction [5] across both physical space [6] and con-
ceptual space [7] with each other and with artifacts [8]. Perfor-
mance measures [9] on the resulting events drive the selection 
[10] of agents and/or strategies through processes of error-prone 
copying [11] and recombination [12] thus changing the fre-
quencies of the types within the system thereby changing the 
emergent characteristics of the system and creating a new gap 
relative to desired performance. (Axelrod and Cohen 1999: 154)

A later survey by Robert Plotkin in his article, “The Automation 

Are You Programmable, Inventive, or Innovative? Jack Ring, jack.ring@incose.org

of Invention” (The Futurist, July – August 2009, http://www.wfs.org/

futurist.htm), describes how genetic algorithms converge on a product 
design or discover the content and structure of an intervention 
system for complex, problematic situations.

Now consider your personal participation in a systems-engineer-
ing project. Read the annotated paragraph above again, this time 
envisioning yourself as one of the agents. Do you interact with the 
diversity of practitioners, exchanging knowledge and adapting your 
ideas and practices in pursuit of the best set of trade-offs? What com-
petencies, information base, intuition base, and risk-aversion policy 
can you apply to producing a descriptive model of the problematic 
situation, and then a responsive prescriptive model of an effective 
solution? Do you simply apply prescribed practices regardless of 
outcome, or can you collaboratively devise and evaluate various 
alternatives, as do genetic algorithms, estimating the likelihood of 
an effective system being realized? Better yet, can you rapidly co-
evolve with your colleagues to discover a previously unforeseen idea 
that makes a dramatic difference for the sponsors?

The Use of Systems Engineering Methods to Explain the Success of an 
Enterprise Sonia Bhar Ahluwalia, sahluwal@stevens.edu

Systems-engineering methods are gaining momentum for build-
ing and maintaining systems throughout industry and govern-
ment. These methods have also been used to understand the 

intangible forces behind the success of a system. In this article, I 
present a case study based on my work as a master’s student at the 
Stevens Institute of Technology that shows how systems methodolo-
gies can be used to pinpoint the reasons for the success of a Fortune 
500 company that is renowned as a great place to work.

Google is a simple yet powerful search engine. It connects users 
worldwide to an abundance of free information, literally at their 
fingertips. Advertisers have generated nearly 100 percent of Google’s 
revenues (Google 2008: 20), yet there is another force to be reckoned 
with—corporate culture. Google’s corporate culture views the 

employee as an individual with the unique potential to “change the 
world” (Google 2009b).

History
Google was begun unintentionally by two Stanford PhD students, 

Larry Page and Sergey Brin, who were investigating ways to help 
users locate information on the Internet. They believed that there 
should be a way to bring order and structure to the seemingly cha-
otic and random Internet based on the example of citing references 
in research papers. In order for a scholar’s research paper to be gain 
the respect of other scholars, the author must cite the research of 
other respectable scholars. The two PhD students believed that the 
Internet could be understood similarly as a long chain of references 

http://www.wfs.org/futurist.htm
http://www.wfs.org/futurist.htm
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and cross-references (Boardman and Sauser 2008: 12).
Initially, the students wanted to sell their search algorithm to AltaVista for USD 

1 million, but the company refused. These students were disappointed by the rejec-
tion, not so much because of the monetary loss, but rather, the loss for humanity, 
who would never experience powerful ways of getting the information they want. 
Not taking no for an answer, the students dropped out of the PhD program, created 
their own company, and blazed a new trail for the Internet—which humanity now 
knows as Google. This USD 200 billion company’s signature search engine has 
proven so useful for searching information that its name has become a common 
verb (Boardman and Sauser 2008: 14).

A User’s Perspective
To understand Google’s business model and how corporate culture factors in, we 

must first acknowledge its principle, “focus on the user and all else will follow” (Au 
et al. 2008). Google strives to bake user-friendliness into its products and services, 
which are mainly Web-deployed applications. Hence Google.com greets all its users 
with a plain, yet versatile interface where someone can type in a search query and 
potentially unlock the mysteries of the universe (well, according to some, at least).

“Rich pictures” provide the best way to describe how Google serves their users. 
The Open University System Group’s Web site (http://systems.open.ac.uk/materials/t552/

pages/rich/richAppendix.html) explains that this term refers to a particular kind of visu-
al representation used to simplify complex situations, as opposed to brainstorming 
and writing ideas, “because our intuitive consciousness communicates more easily 
in impressions and symbols than in words.” A person can make a rough model of a 
complex situation by drawing objects, and positioning these objects based on their 
interpreted relationship to one another. An actor is the driving force behind such 
depictions: the picture thus represents how the entity in question interacts with the 
overall situation.

The rich picture in figure 1 shows how the actor, in this case the user, interacts 
with Google (which encompasses the search engine and the company that works 
behind the scenes). The user views Google as a simple program that provides access 
to information of different types (depicted by different colors of the rainbow) based 
on the user’s requests ideas. Google empowers ordinary users by making them feel 
they have the opportunity to accomplish extraordinary things.

Google’s Business Model
At first blush, Google seems like a paradox: its simple interface provides the user 

with a world of free knowledge, while Google rakes in profits. How is this all possible? 
It’s very simple (of course): Google’s automated online-advertising program AdWords 
allows advertisers to create concise three-line text ads and enables them to specify 

Figure 1. Rich picture: User’s interaction with Google

possible search terms and Web content that closely match these ads. Then, whenever 
Google runs a program to display the results of a search query, or Web content, 
AdWords will execute, and determine which ad to display, based on how well the ad 
matches the search query or Web content, how often users have clicked the link to the 
ad in the past, and how much the advertiser is willing to pay Google each time a user 
clicks on the ad. This ensures that high-paying advertisers are not simply “squatting” 
on precious Google real estate but that advertisers with relevant ads get a higher 
return on their investment by displaying these ads to users who are most likely to 
express interest (Google 2008: 12). Figure 2 uses a “systemigram” (Boardman and 
Sauser 2008: 87) to illustrate this entire process, which ultimately generates profit for 
both the advertiser and Google.

As you may note, third-party network members are considered part of Google’s 
family of products and services. The thousands of third-party network members 
comprise of Web-site owners that use Google’s advertising program, AdSense, to 
profit from their Web content. AdSense is a syndication of AdWords that will pull 
relevant ads for display along with the Web content to these third-party network 
member Web sites (free of charge to the network member). Every time a visitor to a 
network member’s Web site clicks on a link for an ad, the advertiser pays Google, 
who in turn shares the profit with that network member.

http://systems.open.ac.uk/materials/t552/pages/rich/richAppendix.html
http://systems.open.ac.uk/materials/t552/pages/rich/richAppendix.html
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Google’s Corporate Culture
Google competes to attract and retain marketable advertisers by enabling them 

to create simple ads and ensure these ads are displayed to users who are most likely 
to respond to them. On the other hand Google also competes to attract and retain 
highly talented employees. Google was started by two graduate students who, USD 
200 billion later, want to maintain a close-knit atmosphere by treating employees as 
individuals with unique talents and dreams. They believe that knowledge trumps 
experience and thus hire most employees straight out of college. Google’s facilities 
are a cross between the fun of a theme park and the knowledge hub of world-class 
universities. Employees bounce technical ideas back and forth while lounging on big 
comfy sofas and playing with dogs (Google 2009a stresses that Google is a canine-
friendly environment where employees can bring their dogs to work).

Google encourages employees to spend 20 percent of their time working on inde-
pendent projects. Initiatives such as AdWords were shaped under these auspices. 
Studies in management have demonstrated time and time again that employee 
appreciation plays a significant role in a company’s success, and entire books have 
been published on this subject (Heskett et al. 1997). Figure 3 shows how corporate 
culture drives profit.

Amid all the fun, there is the risk that the company might lose site of its ultimate 
goal, which is to serve the user (Capek 2007). Google addresses this by making it 
a priority to incorporate user-friendliness into its products and services. This is 

Figure 2. Advertisers drive Google’s profit
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accomplished by introducing all new Google employees (also known as “Nooglers”) 
to the User Experience (UX) team. This team is comprised of Google employees 
located across the globe with diverse skill-sets who teach an orientation course 
called “Life of a User,” which complements the Nooglers’ technical training when 
they first join Google. “Life of a User” immerses the new employees in user-friend-
liness concepts and principles. UX team members are available to dispense advice 
on user-friendliness for the hundreds of active projects worked on at any given 
time. Plus, there are reference materials available that allow development teams to 
learn and benefit from previous designs (Au et al. 2008).

At later phases of application development, the initial product is posted onto 
Google Labs, where users can use and test the application to provide feedback. 
User interactions with applications are tracked using Web analytics, which the 
UX team studies to understand how applications are being used, what is working, 
or not working so that development teams can make improvements and upgrades 
accordingly (Au et al. 2008).

Since employees can choose to work on independent projects that fascinate 
them rather than projects that address a specific user need, it is imperative for 
Google to make the applications attractive to users. At the same time, AdWords will 
“push” relevant ads for display on these applications based on what the user is 
viewing, so that the users will be more likely to reply to the ads and thus generate 
profit for advertisers and Google.
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Possible Ways to Weather the Economic Storm
The current economic crisis has created a break in the profit-generating models 

that I illustrated above. Users are being laid off from their jobs, which mean they 
have less disposable income and are less likely to respond to ads that are relevant 
to their search queries and Web content they are viewing. In turn, advertisers 
are getting less return on their investments from their ads, which may cause 
advertisers to break their agreements with Google.

Because advertisers contribute most of Google’s profits, there is a legitimate fear 
in the company that the amount of advertisements, and therefore the profits, will 
be drastically slashed. Hence, Google had no choice but to freeze hiring and lay off 
hundreds of human-resources positions (Das and Lawsky 2009). News of layoffs is a 
terrible blow to corporate culture because the prospect of losing one’s job is always 
at the back of the employee’s mind. Figure 4 demonstrates how the economy could 
damage Google’s business model. Once the bubbles for advertisers and ads are 
removed, note that there is no longer any indication of how profit will be generated.

However, there are ways to remain resilient and weather this storm. Google’s 
2008 annual report dealt with many challenges to Google’s operations (Google 
2008a). Several of these challenges can be addressed, and used to (at the very least) 
sustain profits.

Modernization and talent are Google’s lifeline; CEO Eric Schmidt warned in the 
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Figure 4. Google’s business model without advertisers and their ads. Plus a lack of flexibility and fun 
for employees.

annual report, “If we do not continue to innovate and provide products and services 
that are useful to users, we may not remain competitive, and our revenues and 
operating results could suffer” (Google 2008: 20). He also said, “We rely on highly 
skilled personnel and, if we are unable to retain or motivate key personnel, hire 
qualified personnel or maintain our corporate culture, we may not be able to grow 
effectively” (Google 2008: 27). Currently, Google allows its employees to devote 20 
percent of their time to pursue independent projects. Google should raise this to 30 
thirty percent at least temporarily. This will further expand the employee’s skill set 
and create peace of mind for the employees in case they are the next to receive a 
pink slip. This peace of mind may allow the employees to innovate and extend their 
network of professionals to interact with. An employee with varied skill sets who 
can think outside the box and is in touch with a large network of individuals across 
different industries will have the confidence to survive this economic storm. In the 
unfortunate event that the employee is laid off, the employee will have the opportu-
nity to apply and qualify for more jobs with varying skill sets.

Mr. Schmidt also acknowledged another problem facing Google: “Because our 
users need to access our services through Internet access providers, they have 
direct relationships with these providers. If an access provider or a computer or 
computing device manufacturer offers online services that compete with ours, the 
user may find it more convenient to use the services of the access provider or manu-
facturer” (Google 2008: 18). To respond to this problem, Google should consider 
becoming an Internet service provider (ISP) itself, and provide services that are 
comparable, or exceed other reputed ISPs.

Another problem Google faces is with regard to international users: “In order 
to compete, we need to better understand our international users and their 
preferences, improve our brand recognition, our selling efforts internationally, 
and build stronger relationships with advertisers. If we fail to do so, our global 
expansion efforts may be more costly and less profitable than we expect” (Google 
2008: 19). Google should encourage international studies by establishing projects 
that study lesser-known international users and their preferences, for which there 
is great potential for Google to have market share. It should establish partnerships 
with university programs that specialize in these areas of study. By this, Google 
would also be creating goodwill with the university world so when the economy 
improves it will be easier to hire and retain recent graduates. These efforts may 
ensure that Google stays afloat until it can restructure its business model to better 
dodge the punches and blows of the economy, while continuing to focus on the 
user above all else.

Conclusion
Systems-engineering methods can be used to understand the inner workings of 
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an enterprise and explain why it has 
flourished. By the same token these 
methods have been used to provide 
solutions for sustaining success in 
troubling times.
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Announcing BKCASE: Body of Knowledge and 
Curriculum to Advance Systems Engineering
Alice Squires, alice.squires@stevens.edu; Art Pyster, arthur.pyster@incose.org; David Olwell,  
david.olwell@incose.org; Stephanie Few, smfew@nps.edu; and Don Gelosh, donald.gelosh@incose.org

Technical Activites

In September 2009, Stevens Institute of Technology, together with the Naval 
Postgraduate School, began the Body of Knowledge and Curriculum to Advance 
Systems Engineering (BKCASE, pronounced “bookcase”) project. BKCASE is 

a three-year effort to create a robust Systems Engineering Body of Knowledge (SE 
BoK) and a Graduate Reference Curriculum in System Engineering (GRCSE, pro-
nounced “Gracie”). Endorsed by the INCOSE Board of Directors, with significant 
funding from the U.S. Department of Defense and support from the IEEE Systems 
Council, BKCASE is the response to a call from government and industry for a 
globally recognized, community-created foundation for the discipline of systems 
engineering. The BKCASE project hopes to materially influence standard practice, 
workforce models, certification, and graduate education around the world.

Figure 1 describes BKCASE, showing the project in the upper left-hand corner, 
and the products — comprised of SE BoK and GRCSE — in the lower right-hand 
corner. The BKCASE systems diagram describes the project development through 
a “story” of the relationships between the project and products, the systems-
engineering community, and the various products in the community that will 
be developed based on BKCASE. The BKCASE vision is that competency models, 
certification programs, textbooks, graduate programs, and related workforce-
development initiatives for systems engineering around the world will align 
themselves with BKCASE.

The SE BoK will define and organize the vast knowledge of the discipline of 
systems engineering, including its methods, processes, practices, and tools. Within 
that organization, the SE BoK will point to many thousands of pages of articles, 
books, Web sites, and other sources of knowledge about systems engineering. The 
SE BoK will facilitate a common understanding of the core of the field, and will 
aid fast and efficient knowledge retrieval. The SE BoK will build consensus on the 
boundary of the discipline and facilitate communication among systems engineers.

GRCSE will be based on the SE BoK and will define the entrance expectations, 
curriculum architecture, curriculum content, and expected student outcomes for 
graduate programs in systems engineering. GRCSE will recommend that students 
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learn about the application of systems engineering in an application domain 
or business segment. The use of GRCSE for guidance will enable consistency in 
student proficiency at graduation, making it easier for students to select where to 
attend and for employers to evaluate prospective new graduates.

The BKCASE team includes invited authors and volunteer reviewers from 
around the world representing different locales, business segments, professional 
societies, and areas of expertise. The team has representation from government, 
industry, and academia. Authors volunteer their time for one or two days per 
month, attend quarterly workshops, and participate in periodic virtual meetings. 
Reviewers work as time permits. Once fully staffed, the team will have thirty to 
forty authors and several hundred reviewers. Some authors and reviewers will 
work on both SE BoK and GRCSE; others will work on only one product.

Two interim drafts and the final products will be developed in one-year 
intervals starting in June (SE BoK) and September (GRCSE) of 2010, with version 
1.0 products due out in 2012. Both INCOSE and the IEEE Systems Council will be 
heavily involved from the beginning, possibly leading them to take up mainte-
nance responsibility for BKCASE products and to adopt them in their own prod-
ucts such as the INCOSE Systems Engineering Handbook and INCOSE professional 
certification program. Anyone interested in supporting BKCASE in any capacity, 
or anyone who has source material to offer, please contact the project leader, Art 
Pyster, by e-mail at art.pyster@stevens.edu. For additional information on BKCASE, 
please see http://www.bkcase.org.

New Guidelines for Graduate Software-
Engineering Education
Mark Ardis, mark.ardis@stevens.edu; Tom Hilburn, hilburn@erau.edu; and Art Pyster,  
art.pyster@incose.org

A new set of guidelines for graduate software-engineering education was 
recently published by Stevens Institute of Technology. In 2007 academia, 
industry, government, and professional societies formed a coalition called 

the Integrated Software and Systems Engineering Curriculum (iSSEc) project to 
create a reference curriculum that reflects current development practices and 
the greater role of software in today’s systems. The guidelines are published as 
the Graduate Software Engineering 2009 (GSwE2009): Curriculum Guidelines for 
Graduate Degree Programs in Software Engineering and are available at http://www.

gswe2009.org. Earlier versions of this work used the name “Graduate Software Engi-
neering Reference Curriculum (GSwERC).”

One of the primary goals of the iSSEc project was the incorporation and inte-
gration of systems-engineering knowledge and practices into graduate software-
engineering programs. Large systems today include significant software content. 
The software engineers who work on these systems need to understand better the 
relationships between hardware, software and human components. INCOSE has 
been an active member of the iSSEc project, participating in authorship, review, 
and promotion of the effort.

We are indebted to the many experts who helped create the guidelines. A 
complete list of those participants and their supporting organizations is included 
in the report. We are especially grateful to Kristen Baldwin and others in the U.S. 
Office of the Secretary of Defense for their consistent, generous, and thoughtful 
support of this project.

History of the Project
In 1989 the Software Engineering Institute (SEI) of Carnegie Mellon University 

published a landmark report on graduate education in software engineering (Ardis 
and Ford 1989). Several universities in establishing their software-engineering 
degree programs used the recommendations in that report. Since then, the way 
software is developed has changed dramatically. Software’s scale, complexity, and 
criticality have mushroomed, yet no significant effort has been made to revisit and 
update the original SEI recommendations.

GSwE2009 builds on the SEI curriculum foundations plus those of other initia-
tives, such as the Guide to the Software Engineering Body of Knowledge (SWEBOK; 
Bourque and Dupuis 2004) and Software Engineering 2004: Curriculum Guidelines Figure 1. Systems diagram describing BKCASE

Best
Practices

Tools

Process Proven
Techniques

Experienced
Guidance

Lessons
Learned

Standards

ESEP

CSEP CSEP-Acq

ASEP

that
shapes and

endorses

that simplifies

that enables

that will
maintain

leveraged
to build

to 
evaluate

to 
develop

to 
author

by

by

for

informs

to

provides

used to
certify to 

developto 
define

drive

resulting
in

that 
together
create

for 
use
by

SE Masters
Program
Selection

Consistent
Proficiency in
SE graduates

Curriculum
Content

Alice Squires 11/2/2009

SE
TextbooksDefined Student

Outcomes

Curriculum
Architecture

Entrance
Expectations

Evaluation
of Job

Candidates

The
Boundary fo

Systems
Engineering

metadata

Pointers

Graduate
Programs

in SE

SE Body of
Knowledge (SEBok)

BKCASE Products

BKCASE
Project

INCOSE

SE
Community

Graduate Reference
Curriculum in SE

(GRCSE)

SE Certification
Programs

SE Knowledge

Professional
Societies

IEEE

Government

IndustryAcademia

ACM

SE Workforce
Development

Initiatives

SE 
Competency

Models

informs

drives

builds
consensus on

organizes/
defines

to 
guide

to developto guide

that facilitates
searching of

is supported by 
SE experts in

http://www.gswe2009.org
http://www.gswe2009.org


December 2009 | Volume 12 Issue 471

Technical ActivitIes

for Undergraduate Degree Programs in Software Engineering (ACM and IEEE 2004). 
The iSSEc project followed an iterative, evolutionary approach in creating GSwE2009, 
beginning with the formation of a curriculum author team (CAT). First established in 
July 2007, the CAT is a set of invited experts from industry, government, academia, 
and professional associations. CAT membership grew as GSwE2009 matured.

The CAT met in workshops approximately every three months between August 
2007 and September 2009, leading to the release of GSwERC 0.25 in February 2008, 
GSwERC 0.5 in October 2008, and GSwE2009 1.0 in September 2009. The software-
engineering community was invited to review versions 0.25 and 0.5 to provide the 
necessary feedback to develop the current version (1.0). The review of version 0.5 
generated more than 800 individual review comments, which were adjudicated for 
use in creating version 1.0. The detailed comments and their adjudication can be 
found at http://www.GSwE2009.org.

Professional-society participation in the creation of GSwE2009 has been 
essential to ensuring that GSwE2009 will have the desired impact on global 
graduate education. Both INCOSE and the U.S. National Defense Industrial 
Association (NDIA) Systems Engineering Division were early participants in 
GSwE2009, and each contributed authors. In 2008, the Institute of Electrical and 
Electronics Engineers (IEEE) Computer Society Education Activities Board became 
an official participant. In 2009 the Association for Computing Machinery (ACM), 
the IEEE Computer Society, and the Brazilian Computer Society (BCS) also chose 
to participate. GSwE2009’s success has motivated the start of related efforts by the 
BKCASE project to create a Systems Engineering Body of Knowledge and a Graduate 
Systems Engineering Reference Curriculum — each with an “appropriate” amount of 
software-engineering perspective and content. The BKCASE efforts should lead to 
version 1.0 products in 2012.

Content of Curriculum Recommendations
GSwE2009 includes the following elements:
A set of outcomes to be fulfilled by a student who successfully completes a •	
graduate program based on the curriculum
A set of student skills, knowledge, and experience assumed by the curriculum, •	
not intended as entrance requirements for a specific program, but as the start-
ing point for the curriculum’s outcomes
An architectural framework to support implementation of the curriculum•	
A description of the fundamental or core skills, knowledge, and practice to be •	
taught in the curriculum to achieve the outcomes. This is termed a Core Body of 
Knowledge (CBOK) and includes topic areas and the depth of understanding a 
student should achieve.

A university considering the creation or modification of a graduate software 
engineering program should be able to use the CBOK and the architectural frame-
work to design appropriate courses and degree requirements. The outcomes and 
entrance assumptions should help in determining the expected market and value 
of the program to potential students and their employers.

In addition, GSwE2009 includes the following:
The fundamental philosophy for GSwE2009 development as described in a set •	
of guiding principles
A discussion of how GSwE2009 will evolve to remain effective•	
A mapping of expected outcomes to the CBOK and to the total GSwE2009 pro-•	
gram recommendations
A description of Knowledge Areas (KAs) discussed in GSwE2009 that are not •	
yet fully integrated into the current version of the Software Engineering Body of 
Knowledge (SWEBOK)
Glossary, references, and other supporting material.•	

Expected Student Outcomes
Graduates of a master’s program that satisfies GSwE2009 recommendations will 

do the following:
Master the Core Body of Knowledge (CBOK).•	
Master software engineering in at least one application domain, such as •	
finance, medical, transportation, or telecommunications, and one applica-
tion type, such as real-time, embedded, safety-critical, or highly distributed 
systems. That mastery includes understanding how differences in domain and 
type manifest themselves in both the software itself and in its engineering, and 
includes understanding how to learn a new application domain or type.
Master at least one Knowledge Area (KA) or subarea from the CBOK to at least •	
the Bloom Synthesis level (Bloom 1956).
Be able to make ethical professional decisions and practice ethical professional •	
behavior.
Understand the relationship between software engineering and systems •	
engineering and be able to apply systems-engineering principles and practices 
in the engineering of software.
Be an effective member of a team, including teams that are international and •	
geographically distributed, effectively communicate both orally and in writ-
ing, and lead in one area of project development, such as project management, 
requirements analysis, architecture, construction, or quality assurance.
Be able to reconcile conflicting project objectives, finding acceptable compro•	
mises within limitations of cost, time, knowledge, existing systems, and 
organizations.
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Understand and appreciate feasibility analysis, negotiation, and good communi-•	
cations with stakeholders in a typical software development environment, and be 
able to perform those tasks well; have effective work habits and be a leader.
Be able to learn new models, techniques, and technologies as they emerge, and •	
appreciate the necessity of such continuing professional development.
Be able to analyze a current significant software technology, articulate its •	
strengths and weaknesses, compare it to alternative technologies, and specify 
and promote improvements or extensions to that technology.

Curriculum Architecture
Figure 1 provides an overview of the curriculum architecture. GSwE2009 identi-

fies the fundamental skills and knowledge that all graduates of a master’s program 
in software engineering must possess. This is captured in the half-circle area 
labeled Core Materials. These skills and knowledge include such topics as systems-
engineering fundamentals, requirements engineering, software design, and ethics 
and professional conduct.

The next half-circle in figure 1, labeled University-Specific Materials, represents 
materials that an institution might include in order to tailor its program to meet its 
specific objectives. These will vary by institution or degree program. For example, 
a program that emphasizes safety-critical systems might have a required course on 
such systems that would be part of the university-specific materials.

Baseline: expected capability 
Graduates with a BS in Computing

Core
Materials

University-Specific
Materials

Elective
Materials

Capstone Experience

Prep
Materials

other degree, some experience

old degree, recent experience

BS and extensive 
experience

business graduates BSEE and BSCE graduates

BSSE and BSCS graduates

Figure 1. GSwE2009 curriculum architecture

Elective Materials accommodate different interests of individual students, but 
may still reflect a program focus. For example, a program may focus on informa-
tion security, verification and validation (V&V), or health-care systems, providing a 
series of courses that allow a student to gain depth in a technical area.

Core Body of Knowledge
The Core Body of Knowledge (CBOK) includes all of the fundamental or core 

skills, knowledge, and experience to be taught in the curriculum to achieve the 
expected student outcomes. The primary source for developing the CBOK was the 
SWEBOK. Knowledge elements were also derived from the Software Engineering 
2004 curriculum guidelines (ACM and IEEE 2004), the INCOSE Guide to Systems 
Engineering Body of Knowledge (INCOSE 2004), and especially the INCOSE Systems 
Engineering Handbook (Haskins 2007).

Figure 2 shows the knowledge elements of CBOK and their expected relative 
proportions of the GSwE2009 curriculum. Although specific systems engineering 
knowledge elements only represents 2–3% of the CBOK, they are considered a 

crosscutting concern 
that arises in many 
other areas. For 
example, systems-
engineering material 
would also be covered 
under requirements 
engineering, testing, 
configuration 
management, and 
project management.

Systems Engineering in 
the Curriculum

Of particular inter-
est to INSIGHT readers 
should be the discus-
sion of the systems-

engineering knowledge area and its integration into the curriculum guidelines. You 
are encouraged to review, for example, section 6.5 on “Systems Engineering Issues” 
of the CBOK and appendix C.2, “Systems Engineering.”

The iSSEc project has just completed two companion reports to help schools 
interested in creating or modifying graduate software engineering programs. 
The first report compares current programs to the guidelines, and the second 

Ethics and
Professionalism

(1-2%)

Systems Engineering
(2-3%)

Requirements
Engineering (6-8%)

Software Design
(9-11%)

Software Process
(3-4%)

Software Quality
(3-4%)

Non-Core
Curriculum

(~50%)

Software Construction
(1-3%)

Software Maintenance
(3-4%)

Testing (4-6%)

Configuration
Management (2-3%)

Software Engineering
Management (7-9%)

Figure 2. CBOK knowledge elements as percentages of GSwE2009 
curriculum
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answers common questions about 
implementation of graduate degree 
programs in software engineering. 
Please visit the GSwE2009 Web 
site, http://www.gswe2009.org, to 
download the reports. You may also 
use the site to submit comments or 
questions. Your help in improving 
the recommendations is greatly 
appreciated. 
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Notes to the Editor
Reviewer’s Response to Author’s Reply—Mark Powell, mark.powell@incose.org

Book Review  |  Analytical Methods for Risk 
Management:  A Systems Engineering Perspective

In the October 2009 issue of INSIGHT, Paul Garvey took 
rather vigorous exception to my review of his new book 
Analytical Methods for Risk Management: A Systems Engi-

neering Perspective (review published in the April 2009 issue 
of INSIGHT). Mr. Garvey lists eleven different comments in 
my review that he considers to be “reviewer inaccuracies.” 
Strangely, most of his response and commentaries to these 
“inaccuracies” are largely orthogonal to my review comments. 
In the interest of INCOSE members who are involved in risk 
management in their jobs, I believe it is necessary to respond 
to Mr. Garvey’s rebuttal of my review of his book. But first let 
me provide some background.

I volunteered to review this book because the title intrigued 
me. Analytical methods in my experience refers to mathematics 
beyond multivariable calculus, but more generically suggests 
a quantitative vice qualitative/subjective approach. The term 
risk management covers a lot of territory. So the title, Analytical 
Methods for Risk Management, implied that this book would 
discuss quantitative mathematical approaches beyond simple 
four-function math to be used in performing all of the functions 
of risk management, addressing as a minimum risk identi-
fication, risk analysis, risk assessment, risk mitigation, risk 
tracking, and risk metrics. I have yet to encounter a text that 
attempts this. Then there is the subtitle, A Systems Engineering 
Perspective. We systems engineers seem to always get the dirty 
job of risk management on projects. We face a lot of challenges 
in risk management that the graduate business-school texts 
on risk management do not address. I anticipated as a result of 
this subtitle that this book would indeed address a generous 
sampling of those challenges specific to systems engineering 
with quantitative analytical solutions. This title heralded much 
promise for INCOSE members for improving their performance 
of risk management in their jobs.

The preface of this book reinforced my initial expectations 
as generated by the title. Terms were used in describing the 

intent of the book such as “analytical principles” and “imple-
mentation” and “practice.” Then it recommended for its read-
ing a “mathematical background in differential and integral 
calculus.” The preface, in reference to the body of literature 
available on risk management, stated that this book “provides 
managers and systems engineers a guide through the founda-
tional processes, analytical principles, and implementation 
practices of engineering risk management.” This sounded 
analogous to what James Martin’s great Systems Engineer-
ing Guidebook (1997) accomplished for systems-engineering 
management in general. Fulfillment of the objectives Garvey 
stated in his preface would greatly benefit INCOSE systems 
engineers, and would address a number of topics often dis-
cussed in the INCOSE Risk Management Working Group.

To prepare for my original review, I read Garvey’s book 
cover to cover three times and took copious notes. I have 
scanned this book again considering Mr. Garvey’s rebuttal 
to my review. I will now address Mr. Garvey’s misidentified 
“reviewer inaccuracies.” Rather than take up a lot of space 
quoting my original review comment and Garvey’s rebuttal 
point, I will use Garvey’s point numbering, synopsize my 
original review comment, and then respond.

Point 1. My comment on Garvey’s lack of coverage of the 
literature in Bayesian statistics. Garvey’s discussion of things 
Bayesian, as he points out in his rebuttal, covered seven pages 
and five problems for the students. However, Garvey’s pages 
24–31 merely state Bayes’ law and provide examples of alge-
braic manipulations of it. Garvey provides five problems for the 
student to exercise this simple algebra of Bayes’ law, problems 
one might find in a general undergraduate text on probability 
and statistics. This sum total of coverage does not constitute a 
guide to over eighty years of development of modern Bayesian 
statistics. While Garvey uses the term “Bayesian inference” 
rather loosely in pages 28–31, there is much, much more to 
Bayesian inference and statistics than simply exercising the 

http://www.acm.org/education/curricula-recommendations
http://www.acm.org/education/curricula-recommendations
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algebra of Bayes’ law. For a sampling of textbook coverage of modern Bayesian infer-
ence and statistics, I recommend considering just a few of the many texts available on 
the subject: Jeffreys (1939), Raiffa and Schlaifer (1961), Schmitt (1969), Box and Tiao 
(1973), Berger (1985) (a personal favorite of mine), Bernardo and Smith (1994), Gelman, 
et al. (1995) (used as a text in a number of my courses), Sivia (1996), and Robert and 
Casella (1999). This is by no means an exhaustive bibliography on this subject, even 
in my own personal library. Garvey’s title and preface led me to expect to see at least a 
few of these listed in the references in Garvey’s book, with some actual discussion of 
the type of Bayesian “inference” and “statistics” covered in these texts.

Point 2. My comment praising Garvey for addressing the invalid use of ordinal scales 
and the product formula. Garvey clearly identifies that there are some serious problems 
using the product formula to develop “risk score” isocontours (actually, there are prob-
lems using it with both ordinal and cardinal scales). On page 115, Garvey states that 
“an impact times probability approach for ranking risks within an ordinal risk matrix 
should not be used.” How else should the reader interpret that statement other than 
“Do NOT use this formula”? I agree with Garvey very strongly on this, by the way.

Point 3. My note on Garvey’s lack of discussion of the risk aversion artificially 
introduced by the product formula. Garvey’s rebuttal refers to figure 4.21, which 
does show the concave isocontours for risk scores as produced by the product 
formula. Garvey’s rebuttal statement about these being the consequence of the 
“mathematical behavior of the product formula” is true, and fully consistent with 
my point. Even with “proper calibration” of both axes in the matrix (the scaling of 
both the probability and consequence axes into something approaching linearity), 
the product formula still produces these concave isocontours. The product formula 
artificially imparts “risk aversion” via the math, which is its inherent problem. This 
becomes glaringly obvious if one borrows a utility-construction method to develop 
the risk-score isocontours and compares with those produced using the product 
formula. Risk aversion and tolerance should only be applied by the decision maker, 
who must decide whether or not to expend resources on mitigation of a risk, not by 
the math. Garvey’s rebuttal refers to page 153, which I reread again looking intense-
ly for hints of “risk aversion,” but found nothing. This is a really important pathol-
ogy of the product formula that is not widely understood. The very fact that Garvey 
identified that something was wrong with the product formula is in my opinion 
laudable, something few risk management texts do. A clear explanation of specifi-
cally what is wrong can really help systems engineers avoid a number of pitfalls in 
performing risk management.

Point 4. My use of the term “risk factors” in my review. Garvey did not use this 
term in his book, because as stated in his rebuttal, it is “imprecise.” I will contend 
that it is certainly no more imprecise than the terms risk scores or risk levels, all 
used synonymously with risk factors across a variety of sources. Back in the 1970s 

when I got into risk management, nobody used the term risk scores; they used the 
term risk factors. Old terminology apparently sticks with you even when it becomes 
out of vogue. I refer the reader to old versions of MIL-STD 882 from back then, and 
the DSMC System Engineering Management Guide (1983) for examples. In INCOSE, 
we still see the term risk factors used quite often, and we all know that it means the 
same thing as risk scores.

Point 5. My comment on Garvey’s lack of comprehensive coverage of “risk factor 
formulae.” Garvey found fault with the product formula for calculating risk score 
isocontours. It is then appropriate that his book address a comprehensive sampling 
of other risk score formulae, and further explain the issues associated with each. 
None of them is perfect. The formula I presented in my review as an example of an 
important one omitted in Garvey’s book, sometimes referred to as the parallel risk 
factor formula (analogous to calculating the overall resistance of a network of resis-
tors in parallel), was the primary formula used for risk-factor calculations in the 
U.S. Department of Defense up until sometime in the 1990s. See the aforementioned 
DSMC System Engineering Management Guide. By the way, this parallel formula I 
mentioned artificially imparts, due to the math, risk tolerance, and is just as faulty 
as the product formula. Ironically, the weighted probability and impact formula that 
Garvey repeatedly uses for risk ranking can be used as a formula for calculating risk 
score isocontours, but it is not obvious that Garvey suggests that it be used for such.

Point 6. My recommendation that this book be considered for optional readings 
for a graduate-level risk-management course. This is a favorable comment for this 
book. I am sent two or three texts on risk management each year by various text-
book publishers to consider for use in my courses in risk management and applied 
decision analysis. Few of these offer any added value to my courses; much less have 
sufficient and comprehensive material to use as a central text. I thought Garvey, 
however, had enough good points in his book to recommend it to other professors 
for additional readings for their students.

Point 7. My comment on Garvey’s omission of discussion of risks with severe 
impacts and very low probabilities. Systems engineers face this problem in risk 
assessment — the statistical processing of data to calculate the assurance that a risk 
will be realized above or below a specified level. Garvey’s book completely ignored 
the task of risk assessment in general. Proper quantitative risk assessment requires 
the use of modern-day Bayesian statistics. Garvey’s neglect of risk assessment per-
haps explains his lack of coverage of Bayesian statistics. The problem that systems 
engineers face is that for very low-probability risks, you seldom get many if any 
event data to process statistically. This becomes especially aggravated if the con-
sequence is severe. Garvey’s rebuttal referred to pages 147–152, which address risk 
ranking, something entirely different from risk assessment. Two other important 
points relative to this comment regarding the preface of this book: (1) the Bayesian 
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statistics used for proper risk assessments are mathematically intense, requiring 
a “mathematical background in differential and integral calculus”; and (2) the 
Bayesian statistics texts I identified earlier as not referenced by Garvey offer valid 
analytical and numerical methods for solving this problem for systems engineers.

Point 8. My comment on Garvey’s absence of any discussion of “risk analysis.” 
Garvey’s rebuttal refers to section 4.3, and rereading it once again, I saw nothing 
more than a discussion on risk ranking, as Garvey confirms in his rebuttal com-
ment. “Risk analysis” is that activity in risk management where engineering analy-
ses are performed to understand what factors can produce the consequence and at 
what level, what the sensitivities of the consequence level might be to various fac-
tors, what the sensitivities might be for the probability of the consequence at some 
level being realized, and what data might be available or needed for a risk assess-
ment. Risk analysis, and the analytical methods employed, is highly dependent on 
the type of technology involved in the specific consequence being considered: for 
example, electronic failures must be analyzed quite differently than aeronautical 
failures. An introduction to the spectrum of analytical methods employed by sys-
tems engineers in risk analysis would have significantly expanded Garvey’s book, 
and have been quite useful and appreciated by systems engineers.

Point 9. My comment on Garvey’s lack of discussion of the myriad of risk-man-
agement standards. Systems engineers often find themselves working on a wide 
variety of projects in a wide variety of industries during a career. Risk management 
on one project may have a certain standard proscribed, on the next project another 
one, and it is not unusual for the engineer to have to select a standard to use on a 
project where one is not proscribed. Garvey in his rebuttal commentary justified 
omitting any such discussion of risk-management standards because of the vari-
ety of terminology and methods offered between the existing standards. Systems 
engineers greatly need a good translation matrix between these standards to be 
effective in performing risk management over the course of their careers. Garvey’s 
book could have been of incalculable value had it addressed these various stan-
dards, with caveats about the differences between them, especially in the terminol-
ogy vagaries. Here again I refer to Garvey’s stated intent in his preface to provide 
“implementation practices.” Dealing with this variety of existing standards of risk-
management practice remains a serious challenge for systems engineers, and has 
been identified as a major problem for INCOSE members. The INCOSE 2005 Interna-
tional Symposium panel discussion I mentioned in my review (and documented in 
the 2005 International Symposium proceedings) did not solve this problem.

Point 10. My comment on Garvey’s limited discussion of risk management for 
enterprise systems. Garvey’s rebuttal refers to section 4.6 to find this coverage. 
Upon rereading this section, I confirmed that it does have a top-level discussion of 
“what an enterprise is.” I did not, however, find a substantial set of methods ana-

lytical or otherwise that would help project managers implement and effectively 
use a risk-management program within an enterprise. I could find nothing in this 
section or the entire book to justify the use of risk management in an enterprise. 
Systems engineering and risk management for the enterprise were major themes for 
the INCOSE International Symposium in 2007, the proceedings of which were not 
referenced by Garvey. Garvey did provide some interesting discussion on portfolio 
management from a capability perspective, and tried to tie it to risk management, 
but that does not address the scope of risk management for the enterprise.

Point 11. My comment about Garvey leaving systems engineering on the title page. 
The systems engineers in INCOSE face serious challenges in the performance of risk 
management that are unique to their field. There were many systems-engineering-
type words used in a lot of places in the book. But after my third cover-to-cover 
reading, I was still left wondering where in the book were the analytical methods to 
help the systems engineer address any of these discipline-specific challenges. The 
discussion of TPMs seemed a bit strange and out of place in this book on risk man-
agement, and that was about the only real substantive systems-engineering content 
I remembered after three readings.

I eagerly await a text on risk management that fulfills the expectations that 
Garvey’s title and preface inspired. Despite that, I stand by my comments and 
recommendations for Garvey’s book as stated in my original review, including 
those that were favorable. Should any INCOSE members require further clarifi
cation of my original review comments or the discussion in this rebuttal response, I 
welcome e-mail contact at the address above. 
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Final Thoughts
From the Chief Editor
Bob Kenley, insight@incose.org

This is the first issue of INSIGHT published in the new horizontal format. 
We hope that you find that this format enhances readability on a com-
puter screen and that you take advantage of some of the other features, 

such as hyperlinks to the table of contents on each page, a thumbnail view of 
the pages, bookmarks for navigation, and live hyperlinks to the Internet and 
e-mail applications.  If you have any suggestions for further enhancements to 
the layout of INSIGHT, I would like to hear from you.

Our upcoming editions of INSIGHT have theme topics on our Council’s 
Technical Operations, the symposium in Chicago, and knowledge manage
ment for systems engineering. As always, I am thankful to those who have 
volunteered to serve as theme editors, and I am delighted to receive proposals 
for future theme editions.

Upcoming submission deadlines and themes for INSIGHT

Presort Std
U.S. Postage

PAID
Seattle, WA
Permit #4

INSIGHT
International Council on Systems Engineering
7670 Opportunity Road, Suite 220
San Diego, CA 92111-2222

Issue Submission Date for 
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Theme Theme Editor

1st Qtr 2010 15 Feb 2010 Technical Operations Timothy Dilks

2nd Qtr 2009 15 May 2010 The Best of Loughborough: Highlights 
from the Conference on Systems 
Engineering Research and SEANET

Roy Kalawsky and 
Ricardo Valerdi

3rd Qtr 2010 8 Aug 2010* 2010 International Symposium 
Coverage: Chicago, Illinois, USA

Jack Stein

4th Qtr 2010 15 Oct 2010 Systems Development from Deep Sea 
to Deep Space: 

Mike O’Driscoll 
and Sam Seymour

1st Qtr 2011 15 Feb 2011 Knowledge Management for Systems 
Engineering** 

Regina Griego

*  Submission deadline moves according to International Symposium date
** Please contact the theme editor by 21 May 2010 to propose a theme article.
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