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Abstract. Complex, cyber-physical systems must be founded on a digital blueprint that provides the 
most accurate representation of the system by federating information from engineering models across 
multiple enterprise repositories. This blueprint would serve as the digital surrogate of the system and 
evolve as the actual system matures across its lifecycle, from conception and design to production 
and operations. This paper presents a graph-based approach for realizing the digital blueprint, which 
we refer to as the Total System Model. The paper is divided into five parts. Part 1 provides an 
introduction to use cases for model-based systems engineering. Part 2 introduces graph concepts for 
the Total System Model. Part 3 provides a demonstration of the graph-based approach using Syndeia 
software as a representative application. Part 4 provides a summary of this paper, and Part 5 lays out 
potential directions for future work. 

Part 1: Model Based Systems Engineering (MBSE) 
The complexity in modern systems is growing at an unprecedented pace. This complexity arises from 
a range of factors such as increasing number and types of system components, increasing types of 
interfaces and interactions between system components, availability of system functionality outside 
the system boundaries, and increasing interactions with the operating environment (system-of-
systems, internet-of-things). Most mechanical and electrical hardware-dominated systems have 
increasingly become cyber-physical in nature. This complexity challenges the organizations 
developing modern systems that must now be equipped with advanced software and hardware tools 
to support the system through its lifecycle—design, manufacturing, operations, and maintenance—
and must also respond to rapidly evolving market forces and competition for new and improved 
systems. 
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The goal of Model-Based Systems 
Engineering (MBSE) is to create and 
manage a single unified model of the 
system that can represent all of its 
varied aspects, such as requirements, 
structure, and behavior, as shown in 
Figure 1. The system model is 
conceptualized as a graph of 
information that can be viewed from 
or projected onto different 
perspectives. The transition from 
document-based systems 
engineering (DBSE) to MBSE is 
similar to the transition from 2D 
mechanical drawings to 3D CAD 
and the ability to automatically 
derive 2D views from a 3D CAD 
model. 

The OMG Systems Modeling 
Language (OMG SysML) has 
emerged as an open, international, 

and industry standard for representing the system architecture. However, most of the detailed 
engineering is performed in a variety of modeling and simulation tools, as shown in Figure 2.  

The digital blueprint of a system, referred to as the Total System Model (TSM) hereafter, can be 
conceptualized as the system architecture model (as a SysML model) connected to a variety of 
domain-specific models via fine-grained digital connections, as shown in Figure 2 (Bajaj, Zwemer, 
et al., 2016). Enterprises developing complex systems use a variety of configuration management 
systems, such as product lifecycle management (PLM) systems for versioning and managing the 
engineering/manufacturing bills-of-materials, and application lifecycle management (ALM) systems 
for versioning and managing software code, builds, and related artifacts (Fisher, Nolan, et al., 2014; 
Bajaj, Cole, et al., 2016). The TSM includes models managed in different repositories, and inter-
model connections between elements of these versioned models. This approach provides 
organizations the flexibility to use the best-in-class tools for each discipline and connect them to 
other models in the federation. The conception, development, and management of the TSM is a 
fundamental shift underway in organizations developing complex systems.  

The TSM federation evolves over time as each of its constituent models evolve in a multi-disciplinary 
and collaborative environment. As shown in Figure 3, snapshots of the TSM can be taken at different 
stages in the system lifecycle and shared with stakeholders or archived for future queries. For any 
complex system, the Total System Model provides a backbone for traceability, system analyses, 
impact assessment, and “what-if” trade studies across the disciplines. 

	
Figure 1: Goal of MBSE is to develop and maintain a 

single unified system architecture 
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Figure 3: Total System Model evolves as the system definition matures across its lifecycle 

The Total System Model may have different topologies. The topology shown in Figure 2 is a single-
hub-and-spoke system with the system architecture model in SysML as the hub coordinating and 
connected with other disciplines. This may not be the only topology. For example, there are inter-
model relationships between the models in various disciplines that are too detailed to be tracked at 
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Figure 2: Total System Model as the digital blueprint of a system (snapshot in time) 
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the system architecture level. Consider the case of model-based connections between a CAD model 
and a FEA (finite element analysis) or CFD (computational fluid dynamics) model, or consider the 
case of connecting software requirements to code (managed in Git or Subversion) and related tickets 
in an issue tracking system (such as JIRA). Another alternate topology is a multi-hub-and-spoke 
system where we may have different hubs coordinating disciplines at different or same phases of a 
system’s lifecycle. For example, a SysML model may be a hub for systems engineering related 
activities, connected with a PLM hub for coordinating mechanical/electrical design and 
manufacturing activities and an ALM hub for coordinating software activities. A topology without 
hub(s) is also a possibility but without an architecture model in place, disciplines start working as 
silos with ad-hoc information flows between their models. 

Part 2: Graph-based Approach for the Total System Model 
In this section, we discuss how graphs provide a common mathematical formalism for integrating 
different types of engineering models in the Total System Model federation. 

Information models are graphs – Fundamentally, information models of a product or a system are 
composed of entities and relationships between those entities. This network of entities and 
relationships is a mathematical graph data structure. The entities are the vertices in the graph and the 
relationships are the edges in the graph. For example, a SysML model of a system is a graph where 
requirements, blocks, activities, and other elements are the vertices in the graph, and associations, 
dependencies, and other relationships are the edges between the vertices in the graph. Similarly, the 
bill-of-materials information in a PLM system is a graph. Parts have part versions, and each part 
version uses other part versions. A simulation model, such as a Simulink or Modelica model, is also 
fundamentally a graph. Graphs provide a common formalism for representing information models. 

Total System Model (TSM) is a graph of graphs – The TSM is a graph of models, where each 
participating model is itself a graph. The vertices in the TSM graph are elements in the participating 
domain models, such as requirements (or requirement revisions) in a requirements database, parts (or 
part versions) in a PLM system, or blocks in a SysML model. The edges in the TSM graph are 
relationships between elements across models or within a model.  

	

Figure 4: Both inter-model and intra-model connections (edges) exist in the TSM 

Intra-Model and Inter-Model Connections (Edges) – The TSM graph includes two main types of 
edges, as shown in Figure 4 (Bajaj, Zwemer, et al., 2016). The Inter-Model Connections are the 
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edges between model elements in different models or repositories, such as a connection between a 
requirement in DOORS-NG to a requirement or block in the SysML model. These are illustrated in 
Figure 4 using dashed red lines between the circles representing models or repositories. The Intra-
Model Connections are the edges/relationships between elements in the same model, such as a 
satisfy relationship from a SysML block to a SysML requirement, or a trace link relationship between 
a Teamcenter part revision to a requirement revision, or a link relationship between two issues or 
tasks in JIRA. 

Since the TSM is a federation, it only owns the inter-model relationships between the participating 
models in the federation. The intra-model relationships are owned by the participating models but 
are accessible on demand to the TSM, such as when traversing the TSM graph for impact analyses. 

Patterns and Services on Edges – The inter-model and intra-model connections (edges) in the TSM 
graph are of different types. For inter-model connections, we have identified four fundamental types 
as below based on the services they can provide. 
 
Connection pattern Purpose 
Reference Connection This type of connection can be used to track the versions of the 

related model elements. 
Data Map Connection This type of connection can be used to map and track the values of 

attributes of model elements, in addition to the versions of model 
elements. 

Function Wrap Connection This type of connection can be used to wrap executable models 
(e.g. Java, Python, Simulink, or Modelica), send inputs, execute 
the model, and get outputs. 

Model Transform Connection This type of connection can be used to map and track the structures 
of model elements, in addition to attributes and versions of the 
connected model elements. 

As the TSM graph for a system is woven using different types of edges (as above), one can perform 
model comparisons and synchronizations across the complete spectrum of model-based connections, 
thereby ensuring that changes in one model can be propagated to other models. 

Collaborative and automated development of the TSM Graph – As the system develops, one 
must consider how the TSM graph is built. Though we can connect model elements across multiple 
disciplines manually, it is neither a scalable nor a robust approach. The approach we have taken is 
that the specific parts (sub-graphs) of the TSM graph can be automatically generated as we move 
information across the disciplines. For example, when SysML block structure (architecture) is used 
to generate a simulation model, such as in Simulink or Modelica, then the inter-model connections 
are automatically created between the SysML blocks and the newly generated simulation model 
elements. The inter-model connections then provide conduits for model comparisons, data flows, 
transformations, comparisons, and synchronization on an ongoing basis. So, the TSM graph is woven 
as part of the engineering workflow. Additionally, we envision the use of machine learning 
techniques to detect patterns in connected data or inference data that should be connected in the TSM 
graph. 

Models Transformations as Graph Transformations – Since we conceptualize information 
models as graphs, model transformations such as transforming a SysML block to a simulation model 
or PLM part structure, or vice versa, can be grounded in graph transformations. 
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Queries as Graph Pattern Matching – One of the key goals of building a Total System Model 
graph is to be able to perform queries to search for model elements, relationships, and patterns. 
Conceptualizing the connected set of models as a graph makes it possible to leverage graph pattern 
matching and graph engines as a fundamental capability to formulate and execute queries. Examples 
include searching for any requirement in a requirements management system that has not been 
allocated to a structural or a functional element in the system architecture model (in SysML), or 
searching for all allocation relationships between hardware and software systems. A key advantage 
of graph pattern matching over writing functions/methods for specific queries is that it is a declarative 
approach—define what you are searching versus describing how to search. For example, with graph 
pattern matching one needs to only declare the pattern in terms of the nodes and relationships and 
then a graph engine could execute and search the TSM graph for all instances of the pattern.  

Impact Analyses as Graph Traversals – Beyond queries, graphs provide a solid foundation for 
impact analyses across the engineering model space. Two examples are shown in Figure 4. Given a 
change in a requirement in a requirements management system, the TSM graph with intra-model and 
inter-model connections can be used to assess the impact of the change across the model space, 
including if the requirement change will affect hardware parts or CAD designs in a PLM system. 
Alternatively, the same graph can be used by a mechanical engineer working on the hardware design 
to trace the upstream requirements or system functions defined in the architecture model that may 
get affected if the given part fails during operation.  

Part 3: Demonstration of the Graph-based Approach using Syndeia 
Syndeia is a software platform for integrated model-based engineering (MBE/MBSE) developed by 
Intercax with collaboration and support from leading industry organizations. In this section, we use 
Syndeia as a representative software application to demonstrate the concepts related to TSM, 
especially the graph-based aspects which are the theme of this paper. 

	

Figure 5: Syndeia is a software platform for creating, managing, querying, analyzing, and 
visualizing the connected graph of models for a complex system. 



 

 

 

7 

Syndeia enables engineering teams to collaboratively develop and manage the Total System Model 
(TSM) graph of a complex system (or project) by combining the system architecture model (in 
SysML2) with models in a variety of enterprise repositories and tools, such as PLM (e.g. Teamcenter2, 
Windchill2), CAD (e.g. NX2, Creo2), ALM (e.g. GitHub2), Project Management (e.g. JIRA2), 
Requirements Management (e.g. DOORS-NG2), Simulations (e.g. Mathematica2 and 
MATLAB/Simulink2), Databases (e.g. MySQL2), and other data sources (e.g. Excel2), as illustrated 
in Figure 5. Syndeia leverages open standards, such as REST/HTTP2, JSON2, STEP2, JDBC2, 
OSLC2, as well as native APIs to connect to, query, update and search models in enterprise 
repositories.  

Syndeia serves as a “CM-of-CM systems” (where CM implies configuration management) by 
managing the configuration of the entire federation of models, while the models individually are 
managed in different CM systems, such as PLM, ALM, ERP (Enterprise Resource Planning 
systems), and databases. 

Part 3.1: Generating the TSM graph  
As show in Figure 6, Syndeia provides a Dashboard interface to view all the repositories and 
modeling environments on the RHS, and the ability to drag and drop elements from SysML 
architecture model to repositories, or vice versa. Depending upon the selected connection type, the 
drag and drop operations can create connections (e.g. for Reference connections) or 
generate/transform models in addition to creating connections. This makes it possible to build the 
TSM graph in an automated manner as part of the engineering workflow. 

	

Figure 6: Simple drag and drop interface to connect, map, transform models and generate 
the inter-model connections (edges) of the TSM graph 

                                                

 
2	See “References” for detailed citations of software applications, technologies, and standards.	

Switch	 repos
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Part 3.2: Visualizing the TSM Graph 
The inter-model connections (edges) can be shown in a tabular format (Figure 7). The example shows 
model transform connections between blocks in a SysML model and the connected part versions in 
Teamcenter PLM system.  

	

Figure 7: Inter-model connections in the TSM graph shown as a table.  

Inter-model connections in the TSM graph can also be visualized interactively using a circle chord 
diagram, as shown in Figure 8. The figure shows elements from models in SysML, Teamcenter PLM, 
GitHub, JIRA, and Simulink participating in the TSM graph for an Unmanned Aerial Vehicle system. 

	

Figure 8: Inter-model connections in the TSM graph shown as a circle chord diagram 

Figure 9 shows an alternative visualization of the TSM graph. Given a specific model element, such 
as a SysML block or Teamcenter part version or DOORS-NG requirement, one can explore all the 
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connected model elements, one degree of separation at a time. The colored edges in the graph are the 
intra-model connections. In this example, all colored edges are in orange color and represent 
relationships in the SysML model, such as dependencies, associations, and containments. The black-
colored relationships are the inter-model relationships—between model elements in different models 
and tools. 

	

Figure 9: Exploring intra- and inter-model connections in the TSM graph 

Part 3.3: Querying the TSM Graph 
In this section, we will illustrate examples of graph-based queries on the Total System Model. We 
present these queries in 2 parts. In Part 3.3.1, we present graph queries on the system architecture 
model in SysML, and in Part 3.3.2, we present graph queries on the Total System Model graph which 
includes the SysML model and the inter-model connections to elements in requirements, PLM, ALM, 
databases, and other repositories. 

Part 3.3.1: Graph queries on the system architecture (SysML-based) part of the 
Total System Model graph 

GitHubSysML JIRA Teamcenter Simulink

GitHub
folder

Teamcenter
requirement

	

Figure 10: SysML model of a UAV with structural, functional, and requirement elements 
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Figure 10 illustrates an example architecture model of an Unmanned Aerial Vehicle (UAV) system 
in SysML (IBM Rational Rhapsody). The model contains requirements, block structure, use cases, 
and interactions, state machine, and activity-based definitions of UAV behaviors. Figure 11 
illustrates a graph structure generated in Neo4j graph database from the SysML-based architecture 
model using Syndeia.  

	

Figure 11: UAV graph in Neo4j graph database generated from the SysML model  

Given a graph structure, we can now run queries on the architecture model using graph patterns. 
Some example queries and resulting sub-graphs are illustrated below. The queries are formulated 
using the Cypher query language for Neo4j and are shown in the top part of the figures. For example, 
the Cypher query match(p:Package) return p fetches the SysML package structure. 

1. Query – Get all packages in the SysML-based architecture model of the UAV 

	

Figure 12: Query to get all packages in the model 

Cypher	Query
Vertex	types/labels	in	the	resulting	sub-graph
Edge	types/labels	 in	the	resulting	sub-graph
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2. Query – Get all incoming 
and outgoing relationships 
(edges) for the UAV 
requirement specification.  

 

 

 

 

 

 

 

 

 

 

 

3. Query – Get all 
relationships for the UAV 
block. The results show all 
properties of the UAV, and 
requirements and behaviors 
allocated to the UAV. 
  

	

Figure 13: Query to get all relationships for UAV requirement 
specification 

	

Figure 14: Query to get all relationships for the UAV block 
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4. Query – Get all behaviors of the UAV system 

	

Figure 15: Query to get all behavior models associated with the UAV block 

Part 3.3.2: Graph queries on the complete Total System Model graph 

5. Query – Get the complete Total System Model graph, including the SysML model and inter-
model connections. Note the types of vertices and edges returned. 

	

Figure 16: Get all nodes and edges in the TSM graph 
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6. Query – Get all connections between SysML and DOORS-NG requirements. In the resulting sub-
graph, the red nodes are SysML requirement and grey nodes are requirements or requirement 
collections in DOORS-NG. 

	

Figure 17: Get all SysML – DOORS-NG relations  

7. Query – Get all inter-model connections in the TSM graph that are of type 
“REFERENCE_CONNECTION”. The resulting graph (Figure 18) shows reference connections 
between SysML blocks and JIRA issues (purple vertices), SysML blocks (yellow vertices) and 
GitHub files (red vertices), and SysML blocks and Simulink models (green vertices).  

	

Figure 18: Get all reference connections in the TSM graph 
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8. Query – Get all connections to MySQL tables and rows. The resulting graph shows SysML blocks 
(yellow vertices)—radar, video_camera, thermal_camera—connected to MySQL tables with the 
same names (red vertices), and specialization of those blocks connected to rows in MySQL tables 
(green vertices). 

	

Figure 19: Get all connections to MySQL tables and rows in the TSM graph 

9. Query – Trace between the UAV block in the SysML model and the Electrical System part 
(version A.1) in Windchill. The resulting sub-graph indicates that the UAV system uses the 
Platform sub-system which uses an Electrical sub-system that is connected to the Electrical 
System part version A.1 in Windchill. 

	

Figure 20: Trace relationships between UAV block and a Windchill part in the TSM graph 
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10. Query – Get all connections between SysML blocks in the architecture model and PLM 
(Windchill) parts. 

	

Figure 21: Get all connections between SysML blocks and PLM (Windchill) parts in the TSM 
graph 
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11. Query – Trace between a DOORS-NG requirement collection and Windchill part. The resulting 
sub-graph indicates that the DOORS-NG requirement collection (grey vertex) is connected to the 
Windchill part (red vertex) via a SysML requirement (pink vertex) and SysML block (yellow 
vertex). This truly demonstrates inferencing traceability across models. 

	

Figure 22: Get traceability between DOORS-NG requirements / requirement collections and 
Windchill parts within 3 degrees of separation 

Part 3.4: Maintaining consistency across the TSM Graph 
Syndeia leverages the inter-model connections in the TSM graph to provide services for model 
comparisons and bi-directional synchronization. As show in Figure 23, a difference table can be 
generated across a spectrum of inter-model connections to indicate elements that are out of sync. For 
the example shown in Figure 23, new tracking sensors have been added to the UAV system 
architecture model in SysML but are not a part of the UAV bill-of-material in the PLM system 
(Teamcenter). This is highlighted in red in the difference table. 

	

Figure 23: Compare and synchronize connected model elements in the TSM graph 
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Part 4: Summary 
In this paper, we have introduced the concept of a Total System Model as the digital blueprint of a 
system, federating versioned models and model-elements from multiple enterprise repositories and 
software tools, such as PLM, CAD/CAE, ALM, requirements, database, and software configuration 
management systems. This approach provides the benefit to use best-in-class tools and repositories 
for modeling different aspects of the system, such as structure, behavior, requirements, simulation, 
and integrating them using a common system architecture model (as in SysML). We have abstracted 
the Total System Model as a graph structure where the nodes are the models (or model elements) in 
different tools and the edges are the relationships between the models (or model elements). We have 
presented concrete use cases for creating, visualizing, querying, and maintaining consistency in the 
Total System Model graph, using a representative software application—Syndeia. A very broad set 
of query examples (graph pattern matching) have been presented to illustrate the value of abstracting 
the Total System Model as a graph. 

Part 5: Future Work 
We envision the following potential directions for future work. 

1. Develop a library of graph patterns to represent frequently asked questions and basic model 
verification rules that can be executed on the Total System Model, such as detecting all 
requirements that are not satisfied by a structure or function element, or don’t have a test case. 

2. Create mechanisms to develop verification and validation plans that can be executed on the 
TSM graph to continuously check for the consistency of the system model. This may include 
verifying the physics of the problem or continuous verification of requirements. 

3. Develop an approach to model the history of the graph as it evolves across the system 
lifecycle and playout the evolution of a system requirement, part, or function across the 
lifecycle. 

4. Formulate approaches to generate sub-graphs of the Total System Model that can be shared 
outside the boundary of the organization to enable model-based system integration without 
compromising information security and intellectual property. 

5. Enrich relationships (edges) in the TSM graph with parametrized mathematical expressions 
to perform mathematical analyses, varying from simple mass roll-ups to system trade studies 
and assessing the quantitative impact of changes. 
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