
27th Annual INCOSE International Symposium (IS 2017)
Jul 15-20, 2017, Adelaide, Australia

Graph-Based Digital Blueprint for Model Based
Engineering of Complex Systems

Manas Bajaj1, PhD

Chief Systems Officer
Intercax

Jonathan Backhaus
Staff Systems Engineer

Rotary & Mission Systems
Lockheed Martin Corporation

Tim Walden, LM Fellow
Chief Engineer

Advanced Systems
Lockheed Martin Corporation

Manoj Waikar

Senior Software Arch.
Intercax

Dirk Zwemer

President, Intercax

Chris Schreiber

Space Systems Company
Lockheed Martin Corporation

Copyright © 2017 by Intercax LLC and Lockheed Martin. Published and used by INCOSE with permission.

Abstract. Complex, cyber-physical systems must be founded on a digital blueprint that provides the
most accurate representation of the system by federating information from engineering models across
multiple enterprise repositories. This blueprint would serve as the digital surrogate of the system and
evolve as the actual system matures across its lifecycle, from conception and design to production
and operations. This paper presents a graph-based approach for realizing the digital blueprint, which
we refer to as the Total System Model. The paper is divided into five parts. Part 1 provides an
introduction to use cases for model-based systems engineering. Part 2 introduces graph concepts for
the Total System Model. Part 3 provides a demonstration of the graph-based approach using Syndeia
software as a representative application. Part 4 provides a summary of this paper, and Part 5 lays out
potential directions for future work.

Part 1: Model Based Systems Engineering (MBSE)
The complexity in modern systems is growing at an unprecedented pace. This complexity arises from
a range of factors such as increasing number and types of system components, increasing types of
interfaces and interactions between system components, availability of system functionality outside
the system boundaries, and increasing interactions with the operating environment (system-of-
systems, internet-of-things). Most mechanical and electrical hardware-dominated systems have
increasingly become cyber-physical in nature. This complexity challenges the organizations
developing modern systems that must now be equipped with advanced software and hardware tools
to support the system through its lifecycle—design, manufacturing, operations, and maintenance—
and must also respond to rapidly evolving market forces and competition for new and improved
systems.

1 Corresponding author: Dr. Manas Bajaj (manas.bajaj@intercax.com)

Intercax

	47 Perimeter Center East, Suite 410,
Atlanta, GA 30346, USA

www.intercax.com

Lockheed Martin

Corporate Engineering,
Technology & Operations, USA

www.lockheedmartin.com

2

The goal of Model-Based Systems
Engineering (MBSE) is to create and
manage a single unified model of the
system that can represent all of its
varied aspects, such as requirements,
structure, and behavior, as shown in
Figure 1. The system model is
conceptualized as a graph of
information that can be viewed from
or projected onto different
perspectives. The transition from
document-based systems
engineering (DBSE) to MBSE is
similar to the transition from 2D
mechanical drawings to 3D CAD
and the ability to automatically
derive 2D views from a 3D CAD
model.

The OMG Systems Modeling
Language (OMG SysML) has
emerged as an open, international,

and industry standard for representing the system architecture. However, most of the detailed
engineering is performed in a variety of modeling and simulation tools, as shown in Figure 2.

The digital blueprint of a system, referred to as the Total System Model (TSM) hereafter, can be
conceptualized as the system architecture model (as a SysML model) connected to a variety of
domain-specific models via fine-grained digital connections, as shown in Figure 2 (Bajaj, Zwemer,
et al., 2016). Enterprises developing complex systems use a variety of configuration management
systems, such as product lifecycle management (PLM) systems for versioning and managing the
engineering/manufacturing bills-of-materials, and application lifecycle management (ALM) systems
for versioning and managing software code, builds, and related artifacts (Fisher, Nolan, et al., 2014;
Bajaj, Cole, et al., 2016). The TSM includes models managed in different repositories, and inter-
model connections between elements of these versioned models. This approach provides
organizations the flexibility to use the best-in-class tools for each discipline and connect them to
other models in the federation. The conception, development, and management of the TSM is a
fundamental shift underway in organizations developing complex systems.

The TSM federation evolves over time as each of its constituent models evolve in a multi-disciplinary
and collaborative environment. As shown in Figure 3, snapshots of the TSM can be taken at different
stages in the system lifecycle and shared with stakeholders or archived for future queries. For any
complex system, the Total System Model provides a backbone for traceability, system analyses,
impact assessment, and “what-if” trade studies across the disciplines.

	
Figure 1: Goal of MBSE is to develop and maintain a

single unified system architecture

3

	

Figure 3: Total System Model evolves as the system definition matures across its lifecycle

The Total System Model may have different topologies. The topology shown in Figure 2 is a single-
hub-and-spoke system with the system architecture model in SysML as the hub coordinating and
connected with other disciplines. This may not be the only topology. For example, there are inter-
model relationships between the models in various disciplines that are too detailed to be tracked at

Timeline

T1 T2
(Baseline	B1)

T3 T4
(Baseline	B2)

	
Figure 2: Total System Model as the digital blueprint of a system (snapshot in time)

v35

B.20

Rev	7

2012-07-12,	1000h	US	ET

B1

C2

v3
latest

Connections	based	on	Reference,	
Data	Map,	Function	Wrap,	Model	
Transform,	and	Composite	patterns

4

the system architecture level. Consider the case of model-based connections between a CAD model
and a FEA (finite element analysis) or CFD (computational fluid dynamics) model, or consider the
case of connecting software requirements to code (managed in Git or Subversion) and related tickets
in an issue tracking system (such as JIRA). Another alternate topology is a multi-hub-and-spoke
system where we may have different hubs coordinating disciplines at different or same phases of a
system’s lifecycle. For example, a SysML model may be a hub for systems engineering related
activities, connected with a PLM hub for coordinating mechanical/electrical design and
manufacturing activities and an ALM hub for coordinating software activities. A topology without
hub(s) is also a possibility but without an architecture model in place, disciplines start working as
silos with ad-hoc information flows between their models.

Part 2: Graph-based Approach for the Total System Model
In this section, we discuss how graphs provide a common mathematical formalism for integrating
different types of engineering models in the Total System Model federation.

Information models are graphs – Fundamentally, information models of a product or a system are
composed of entities and relationships between those entities. This network of entities and
relationships is a mathematical graph data structure. The entities are the vertices in the graph and the
relationships are the edges in the graph. For example, a SysML model of a system is a graph where
requirements, blocks, activities, and other elements are the vertices in the graph, and associations,
dependencies, and other relationships are the edges between the vertices in the graph. Similarly, the
bill-of-materials information in a PLM system is a graph. Parts have part versions, and each part
version uses other part versions. A simulation model, such as a Simulink or Modelica model, is also
fundamentally a graph. Graphs provide a common formalism for representing information models.

Total System Model (TSM) is a graph of graphs – The TSM is a graph of models, where each
participating model is itself a graph. The vertices in the TSM graph are elements in the participating
domain models, such as requirements (or requirement revisions) in a requirements database, parts (or
part versions) in a PLM system, or blocks in a SysML model. The edges in the TSM graph are
relationships between elements across models or within a model.

	

Figure 4: Both inter-model and intra-model connections (edges) exist in the TSM

Intra-Model and Inter-Model Connections (Edges) – The TSM graph includes two main types of
edges, as shown in Figure 4 (Bajaj, Zwemer, et al., 2016). The Inter-Model Connections are the

5

edges between model elements in different models or repositories, such as a connection between a
requirement in DOORS-NG to a requirement or block in the SysML model. These are illustrated in
Figure 4 using dashed red lines between the circles representing models or repositories. The Intra-
Model Connections are the edges/relationships between elements in the same model, such as a
satisfy relationship from a SysML block to a SysML requirement, or a trace link relationship between
a Teamcenter part revision to a requirement revision, or a link relationship between two issues or
tasks in JIRA.

Since the TSM is a federation, it only owns the inter-model relationships between the participating
models in the federation. The intra-model relationships are owned by the participating models but
are accessible on demand to the TSM, such as when traversing the TSM graph for impact analyses.

Patterns and Services on Edges – The inter-model and intra-model connections (edges) in the TSM
graph are of different types. For inter-model connections, we have identified four fundamental types
as below based on the services they can provide.

Connection pattern Purpose
Reference Connection This type of connection can be used to track the versions of the

related model elements.
Data Map Connection This type of connection can be used to map and track the values of

attributes of model elements, in addition to the versions of model
elements.

Function Wrap Connection This type of connection can be used to wrap executable models
(e.g. Java, Python, Simulink, or Modelica), send inputs, execute
the model, and get outputs.

Model Transform Connection This type of connection can be used to map and track the structures
of model elements, in addition to attributes and versions of the
connected model elements.

As the TSM graph for a system is woven using different types of edges (as above), one can perform
model comparisons and synchronizations across the complete spectrum of model-based connections,
thereby ensuring that changes in one model can be propagated to other models.

Collaborative and automated development of the TSM Graph – As the system develops, one
must consider how the TSM graph is built. Though we can connect model elements across multiple
disciplines manually, it is neither a scalable nor a robust approach. The approach we have taken is
that the specific parts (sub-graphs) of the TSM graph can be automatically generated as we move
information across the disciplines. For example, when SysML block structure (architecture) is used
to generate a simulation model, such as in Simulink or Modelica, then the inter-model connections
are automatically created between the SysML blocks and the newly generated simulation model
elements. The inter-model connections then provide conduits for model comparisons, data flows,
transformations, comparisons, and synchronization on an ongoing basis. So, the TSM graph is woven
as part of the engineering workflow. Additionally, we envision the use of machine learning
techniques to detect patterns in connected data or inference data that should be connected in the TSM
graph.

Models Transformations as Graph Transformations – Since we conceptualize information
models as graphs, model transformations such as transforming a SysML block to a simulation model
or PLM part structure, or vice versa, can be grounded in graph transformations.

6

Queries as Graph Pattern Matching – One of the key goals of building a Total System Model
graph is to be able to perform queries to search for model elements, relationships, and patterns.
Conceptualizing the connected set of models as a graph makes it possible to leverage graph pattern
matching and graph engines as a fundamental capability to formulate and execute queries. Examples
include searching for any requirement in a requirements management system that has not been
allocated to a structural or a functional element in the system architecture model (in SysML), or
searching for all allocation relationships between hardware and software systems. A key advantage
of graph pattern matching over writing functions/methods for specific queries is that it is a declarative
approach—define what you are searching versus describing how to search. For example, with graph
pattern matching one needs to only declare the pattern in terms of the nodes and relationships and
then a graph engine could execute and search the TSM graph for all instances of the pattern.

Impact Analyses as Graph Traversals – Beyond queries, graphs provide a solid foundation for
impact analyses across the engineering model space. Two examples are shown in Figure 4. Given a
change in a requirement in a requirements management system, the TSM graph with intra-model and
inter-model connections can be used to assess the impact of the change across the model space,
including if the requirement change will affect hardware parts or CAD designs in a PLM system.
Alternatively, the same graph can be used by a mechanical engineer working on the hardware design
to trace the upstream requirements or system functions defined in the architecture model that may
get affected if the given part fails during operation.

Part 3: Demonstration of the Graph-based Approach using Syndeia
Syndeia is a software platform for integrated model-based engineering (MBE/MBSE) developed by
Intercax with collaboration and support from leading industry organizations. In this section, we use
Syndeia as a representative software application to demonstrate the concepts related to TSM,
especially the graph-based aspects which are the theme of this paper.

	

Figure 5: Syndeia is a software platform for creating, managing, querying, analyzing, and
visualizing the connected graph of models for a complex system.

7

Syndeia enables engineering teams to collaboratively develop and manage the Total System Model
(TSM) graph of a complex system (or project) by combining the system architecture model (in
SysML2) with models in a variety of enterprise repositories and tools, such as PLM (e.g. Teamcenter2,
Windchill2), CAD (e.g. NX2, Creo2), ALM (e.g. GitHub2), Project Management (e.g. JIRA2),
Requirements Management (e.g. DOORS-NG2), Simulations (e.g. Mathematica2 and
MATLAB/Simulink2), Databases (e.g. MySQL2), and other data sources (e.g. Excel2), as illustrated
in Figure 5. Syndeia leverages open standards, such as REST/HTTP2, JSON2, STEP2, JDBC2,
OSLC2, as well as native APIs to connect to, query, update and search models in enterprise
repositories.

Syndeia serves as a “CM-of-CM systems” (where CM implies configuration management) by
managing the configuration of the entire federation of models, while the models individually are
managed in different CM systems, such as PLM, ALM, ERP (Enterprise Resource Planning
systems), and databases.

Part 3.1: Generating the TSM graph
As show in Figure 6, Syndeia provides a Dashboard interface to view all the repositories and
modeling environments on the RHS, and the ability to drag and drop elements from SysML
architecture model to repositories, or vice versa. Depending upon the selected connection type, the
drag and drop operations can create connections (e.g. for Reference connections) or
generate/transform models in addition to creating connections. This makes it possible to build the
TSM graph in an automated manner as part of the engineering workflow.

	

Figure 6: Simple drag and drop interface to connect, map, transform models and generate
the inter-model connections (edges) of the TSM graph

2	See “References” for detailed citations of software applications, technologies, and standards.	

Switch	 repos
Drag-n-Drop

Drag-n-Drop	generates	models	&	creates	connections

8

Part 3.2: Visualizing the TSM Graph
The inter-model connections (edges) can be shown in a tabular format (Figure 7). The example shows
model transform connections between blocks in a SysML model and the connected part versions in
Teamcenter PLM system.

	

Figure 7: Inter-model connections in the TSM graph shown as a table.

Inter-model connections in the TSM graph can also be visualized interactively using a circle chord
diagram, as shown in Figure 8. The figure shows elements from models in SysML, Teamcenter PLM,
GitHub, JIRA, and Simulink participating in the TSM graph for an Unmanned Aerial Vehicle system.

	

Figure 8: Inter-model connections in the TSM graph shown as a circle chord diagram

Figure 9 shows an alternative visualization of the TSM graph. Given a specific model element, such
as a SysML block or Teamcenter part version or DOORS-NG requirement, one can explore all the

GitHub

SysML

JIRA

Teamcenter

Simulink

9

connected model elements, one degree of separation at a time. The colored edges in the graph are the
intra-model connections. In this example, all colored edges are in orange color and represent
relationships in the SysML model, such as dependencies, associations, and containments. The black-
colored relationships are the inter-model relationships—between model elements in different models
and tools.

	

Figure 9: Exploring intra- and inter-model connections in the TSM graph

Part 3.3: Querying the TSM Graph
In this section, we will illustrate examples of graph-based queries on the Total System Model. We
present these queries in 2 parts. In Part 3.3.1, we present graph queries on the system architecture
model in SysML, and in Part 3.3.2, we present graph queries on the Total System Model graph which
includes the SysML model and the inter-model connections to elements in requirements, PLM, ALM,
databases, and other repositories.

Part 3.3.1: Graph queries on the system architecture (SysML-based) part of the
Total System Model graph

GitHubSysML JIRA Teamcenter Simulink

GitHub
folder

Teamcenter
requirement

	

Figure 10: SysML model of a UAV with structural, functional, and requirement elements

10

Figure 10 illustrates an example architecture model of an Unmanned Aerial Vehicle (UAV) system
in SysML (IBM Rational Rhapsody). The model contains requirements, block structure, use cases,
and interactions, state machine, and activity-based definitions of UAV behaviors. Figure 11
illustrates a graph structure generated in Neo4j graph database from the SysML-based architecture
model using Syndeia.

	

Figure 11: UAV graph in Neo4j graph database generated from the SysML model

Given a graph structure, we can now run queries on the architecture model using graph patterns.
Some example queries and resulting sub-graphs are illustrated below. The queries are formulated
using the Cypher query language for Neo4j and are shown in the top part of the figures. For example,
the Cypher query match(p:Package) return p fetches the SysML package structure.

1. Query – Get all packages in the SysML-based architecture model of the UAV

	

Figure 12: Query to get all packages in the model

Cypher	Query
Vertex	types/labels	in	the	resulting	sub-graph
Edge	types/labels	 in	the	resulting	sub-graph

11

2. Query – Get all incoming
and outgoing relationships
(edges) for the UAV
requirement specification.

3. Query – Get all
relationships for the UAV
block. The results show all
properties of the UAV, and
requirements and behaviors
allocated to the UAV.

	

Figure 13: Query to get all relationships for UAV requirement
specification

	

Figure 14: Query to get all relationships for the UAV block

12

4. Query – Get all behaviors of the UAV system

	

Figure 15: Query to get all behavior models associated with the UAV block

Part 3.3.2: Graph queries on the complete Total System Model graph

5. Query – Get the complete Total System Model graph, including the SysML model and inter-
model connections. Note the types of vertices and edges returned.

	

Figure 16: Get all nodes and edges in the TSM graph

13

6. Query – Get all connections between SysML and DOORS-NG requirements. In the resulting sub-
graph, the red nodes are SysML requirement and grey nodes are requirements or requirement
collections in DOORS-NG.

	

Figure 17: Get all SysML – DOORS-NG relations

7. Query – Get all inter-model connections in the TSM graph that are of type
“REFERENCE_CONNECTION”. The resulting graph (Figure 18) shows reference connections
between SysML blocks and JIRA issues (purple vertices), SysML blocks (yellow vertices) and
GitHub files (red vertices), and SysML blocks and Simulink models (green vertices).

	

Figure 18: Get all reference connections in the TSM graph

14

8. Query – Get all connections to MySQL tables and rows. The resulting graph shows SysML blocks
(yellow vertices)—radar, video_camera, thermal_camera—connected to MySQL tables with the
same names (red vertices), and specialization of those blocks connected to rows in MySQL tables
(green vertices).

	

Figure 19: Get all connections to MySQL tables and rows in the TSM graph

9. Query – Trace between the UAV block in the SysML model and the Electrical System part
(version A.1) in Windchill. The resulting sub-graph indicates that the UAV system uses the
Platform sub-system which uses an Electrical sub-system that is connected to the Electrical
System part version A.1 in Windchill.

	

Figure 20: Trace relationships between UAV block and a Windchill part in the TSM graph

15

10. Query – Get all connections between SysML blocks in the architecture model and PLM
(Windchill) parts.

	

Figure 21: Get all connections between SysML blocks and PLM (Windchill) parts in the TSM
graph

16

11. Query – Trace between a DOORS-NG requirement collection and Windchill part. The resulting
sub-graph indicates that the DOORS-NG requirement collection (grey vertex) is connected to the
Windchill part (red vertex) via a SysML requirement (pink vertex) and SysML block (yellow
vertex). This truly demonstrates inferencing traceability across models.

	

Figure 22: Get traceability between DOORS-NG requirements / requirement collections and
Windchill parts within 3 degrees of separation

Part 3.4: Maintaining consistency across the TSM Graph
Syndeia leverages the inter-model connections in the TSM graph to provide services for model
comparisons and bi-directional synchronization. As show in Figure 23, a difference table can be
generated across a spectrum of inter-model connections to indicate elements that are out of sync. For
the example shown in Figure 23, new tracking sensors have been added to the UAV system
architecture model in SysML but are not a part of the UAV bill-of-material in the PLM system
(Teamcenter). This is highlighted in red in the difference table.

	

Figure 23: Compare and synchronize connected model elements in the TSM graph

17

Part 4: Summary
In this paper, we have introduced the concept of a Total System Model as the digital blueprint of a
system, federating versioned models and model-elements from multiple enterprise repositories and
software tools, such as PLM, CAD/CAE, ALM, requirements, database, and software configuration
management systems. This approach provides the benefit to use best-in-class tools and repositories
for modeling different aspects of the system, such as structure, behavior, requirements, simulation,
and integrating them using a common system architecture model (as in SysML). We have abstracted
the Total System Model as a graph structure where the nodes are the models (or model elements) in
different tools and the edges are the relationships between the models (or model elements). We have
presented concrete use cases for creating, visualizing, querying, and maintaining consistency in the
Total System Model graph, using a representative software application—Syndeia. A very broad set
of query examples (graph pattern matching) have been presented to illustrate the value of abstracting
the Total System Model as a graph.

Part 5: Future Work
We envision the following potential directions for future work.

1. Develop a library of graph patterns to represent frequently asked questions and basic model
verification rules that can be executed on the Total System Model, such as detecting all
requirements that are not satisfied by a structure or function element, or don’t have a test case.

2. Create mechanisms to develop verification and validation plans that can be executed on the
TSM graph to continuously check for the consistency of the system model. This may include
verifying the physics of the problem or continuous verification of requirements.

3. Develop an approach to model the history of the graph as it evolves across the system
lifecycle and playout the evolution of a system requirement, part, or function across the
lifecycle.

4. Formulate approaches to generate sub-graphs of the Total System Model that can be shared
outside the boundary of the organization to enable model-based system integration without
compromising information security and intellectual property.

5. Enrich relationships (edges) in the TSM graph with parametrized mathematical expressions
to perform mathematical analyses, varying from simple mass roll-ups to system trade studies
and assessing the quantitative impact of changes.

References
Bajaj, M., Cole, B., Zwemer, D. "Architecture to Geometry Integrating System Models with

Mechanical Design". AIAA Space 2016 Conference, Long Beach, CA, USA, Sep 13-16,
2016. https://goo.gl/S5LkT4

Bajaj, M., Zwemer, D., Yntema, R., Phung, A., Kumar, A., Dwivedi, A., Waikar, M. "MBSE++ -
Foundations for Extended Model-Based Systems Engineering Across System Lifecycle".
26th Annual INCOSE International Symposium (IS 2016) Edinburgh, Scotland, UK, July 18-
21, 2016. https://goo.gl/qpFaOT

CATIA (Dassault Systèmes) - http://www.3ds.com/products-services/catia, as accessed on Mar 30, 2016
Creo (PTC) - http://www.ptc.com/cad/creo, as accessed on Mar 30, 2016
Dropbox - https://www.dropbox.com/, as accessed on Mar 30, 2016
Egnyte - https://www.egnyte.com, as accessed on Mar 30, 2016
Enterprise Architect (Sparx Systems) - http://www.sparxsystems.com/products/ea/, as accessed on Mar 30,

2016
Enovia (Dassault Systèmes) - http://www.3ds.com/products-services/enovia, as accessed on Mar 30, 2016

18

Fisher, A., Nolan, M., Friedenthal, S., Loeffler, M., Sampson, M., Bajaj, M., VanZandt, L., Hovey,
K., Palmer, J. and Hart, L. (2014), Model Lifecycle Management for MBSE. INCOSE
International Symposium, 24: 207–229. doi: 10.1002/j.2334-5837.2014.tb03145.x (PDF
available at http://goo.gl/ZWywBH)

FMI - https://www.fmi-standard.org/, as accessed on Mar 30, 2016
Git - https://git-scm.com, as accessed on Mar 30, 2016
GitHub - https://github.com/, as accessed on Mar 30, 2016
Google Drive - https://www.google.com/drive/, as accessed on Mar 30, 2016
ISO 10303 (STEP) - http://goo.gl/qH7Rdw, as accessed on Mar 30, 2016
JIRA (Atlassian) - https://www.atlassian.com/software/jira/, accessed on Mar 30, 2016
JSON - http://www.json.org/, accessed on Mar 30, 2016
MagicDraw (No Magic) - http://www.nomagic.com/products/magicdraw.html, as accessed on Mar 30, 2016
MATLAB/Simulink (MathWorks) - http://in.mathworks.com/products/simulink/, as accessed on Mar 30, 2016
Mathematica (Wolfram Research) - http://www.wolfram.com/mathematica/, as accessed on Mar 30, 2016
Melody (Intercax) - http://intercax.com/products/melody/, as accessed on Mar 30, 2016
Neo4j (Neo Technology) - https://neo4j.com/, as accessed on Nov 20, 2016
NX (Siemens) - http://www.plm.automation.siemens.com/en_us/products/nx/, as accessed on Mar 30, 2016
OSLC - http://open-services.net/, as accessed on Mar 30, 2016
ParaMagic® (Intercax) - http://intercax.com/products/paramagic/, as accessed on Mar 30, 2016
ParaSolver (Intercax) - http://intercax.com/products/parasolver/, as accessed on Mar 30, 2016
PLCS - https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=plcs, as accessed on Mar 30, 2016
PTC Integrity Modeler (formerly Artisan Studio from Atego) - http://www.ptc.com/model-based-systems-

engineering/integrity-modeler, as accessed on Mar 30, 2016
RDF - http://www.w3.org/RDF/, as accessed on Mar 30, 2016
REST - http://www.w3.org/2001/sw/wiki/REST, as accessed on Mar 30, 2016
Rhapsody (IBM) - http://goo.gl/qMXwn6, as accessed on Mar 30, 2016
ReqIF - http://www.omg.org/spec/ReqIF/, as accessed on Mar 30, 2016
SOAP - http://www.w3.org/TR/soap/, as accessed on Mar 30, 2016
Solvea (Intercax) - http://intercax.com/products/solvea/, as accessed on Mar 30, 2016
Subversion (Apache) - https://subversion.apache.org, as accessed on Mar 30, 2016
Syndeia (Intercax) - http://intercax.com/products/syndeia/, as accessed on Mar 30, 2016
Systems Modeling Language (SysML, OMG) - http://www.omgsysml.org/, as accessed on Mar 30, 2016
Teamcenter (Siemens PLM) - http://goo.gl/bv7iEB, as accessed on Mar 30, 2016
UPDM - http://www.omg.org/spec/UPDM/, as accessed on Mar 30, 2016
Windchill (PTC) - http://www.ptc.com/product-lifecycle-management/windchill, as accessed on Mar 30, 2016
WSDL – https://www.w3.org/TR/wsdl, as accessed on Mar 30, 2016

Biography
Manas Bajaj, PhD is the Co-Founder and Chief Systems Officers at Intercax. He has led multiple
government and corporate sponsored R&D projects over last 15 years, including SBIR Phase 1 & 2
awards. He has led the development of several commercial software applications, including the
Syndeia application referenced in this paper. Dr. Bajaj earned his PhD (2008) and MS (2003) in
Mechanical Engineering from Georgia Tech, and BTech (2001) from Indian Institute of Technology
(IIT), Kharagpur, India. He has been actively involved in the development of the OMG SysML
standard and the ISO STEP standards, and is a Content Developer for the OCSMP certification
program. Dr. Bajaj is the author of numerous technical papers and articles. He is a co-developer of a
widely popular SysML and MBSE training program with over 4500 participants since 2008.

19

Dirk Zwemer, PhD is Co-Founder and President/CEO of Intercax, directing business development
and providing strategic consulting for customers adopting model-based systems engineering
practices. He is a certified systems modeling professional (OCSMP Level 4 —Model Builder
Advanced). He has over 30 years of experience, and is the author of numerous patents, technical
papers, trade journal articles, and market research reports. He received a PhD in Chemical Physics
from UC Berkeley and an MBA from Santa Clara University.

Manoj Waikar is a Senior Software Architect and development lead at Intercax. He is a core
contributor to the Syndeia platform for MBE/MBSE. He has a rich background in next-generation
web-based applications and technologies.

Jon Backhaus is a Staff Systems Engineer at Lockheed Martin within the Rotary & Mission Systems
business area, supporting the Advanced Systems organization Digital Transformation Initiative. Jon
has a background in systems engineering and applied mathematics. He earned a Master’s in Systems
Engineering from Cornell University and a Bachelor’s in Electrical Engineering from Bucknell
University.

Tim Walden is a Lockheed Martin Fellow and the Advanced Systems Chief Engineer, within
Corporate Engineering & Program Operations. Tim has led the corporate Digital Transformation
Initiative, bringing the advancements of the 4th Industrial Revolution to the diverse Lockheed Martin
portfolio. He has 30 years in the Defense Industry, including 20 years in the satellite ground system
domain. He has a Bachelor of Science in Computer Science from West Virginia University.

Chris Schreiber is a Systems Engineering Manager at Lockheed Martin Space Systems Company,
leading Model-Based Systems Engineering implementation across all Space Systems Company
programs, and is the acting Senior Manager for the Systems Engineering Modernization department.
Chris has a background in software and systems engineering in the aerospace and defense and
manufacturing industries. He earned his B.S. in Finance and Economics from the University of
Montana, and is completing his M.S. in Computer Science Systems Engineering from the University
of Denver.

